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ABSTRACT In this study, using the Hain GenoType MTBDRsl assays (versions 1 and
2), we found that some nonsynonymous and synonymous mutations in gyrA in My-
cobacterium tuberculosis result in systematic false-resistance results to fluoroquinolo-
nes by preventing the binding of wild-type probes. Moreover, such mutations can
prevent the binding of mutant probes designed for the identification of specific re-
sistance mutations. Although these mutations are likely rare globally, they occur in
approximately 7% of multidrug-resistant tuberculosis strains in some settings.
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As part of its recommendation for a shorter treatment regimen for multidrug-
resistant tuberculosis (MDR TB), the World Health Organization (WHO) recently

endorsed version 2 of the Hain GenoType MTBDRsl as the first genotypic drug suscep-
tibility testing (DST) assay for detecting resistance to fluoroquinolones and to the
second-line injectable drugs kanamycin, amikacin, and capreomycin (1–5). Specifically,
the WHO has endorsed its use instead of phenotypic methods as an initial direct test
for ruling in resistance in patients with either MDR TB or confirmed resistance to
rifampin. The precise correlation between genotype and phenotype for some muta-
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tions, however, remains unclear, which complicates the interpretation of this assay (5).
The WHO is currently reviewing the available evidence to address this point.

The only documented instance of systematic false-positive fluoroquinolone resis-
tance results with the MTBDRsl was caused by the gyrA Acc/Gcc T80A gCg/gGg A90G
double mutations relative to the Mycobacterium tuberculosis H37Rv laboratory strain,
given that the A90G mutation prevents the binding of the WT2 band of this assay (Fig.
1) (6–9). Several independent studies, which used a variety of techniques, demon-
strated that these double mutations do not confer resistance to any of the four
fluoroquinolones currently used for the treatment of TB (i.e., ofloxacin, levofloxacin,
moxifloxacin, and gatifloxacin) and may even result in hypersusceptibility (6, 7, 9–15).
Unfortunately, most of the strains with double mutants were not typed, which left two
key questions largely unanswered. First, it remains unclear whether these strains are
monophyletic or polyphyletic. Second, there is only limited evidence on how wide-
spread the group(s) of strains with these mutations is.

There are several pieces of circumstantial evidence regarding these mutations. Only
10 primary research studies from our internal database of 265 in which gyrA was
studied reported these double mutations, although it should be noted that not all of
these studies covered codon 80 (6–15). This suggested that these mutations are not
widespread globally. Based on studies that found the T80A mutation to be a marker for
the M. tuberculosis Uganda genotype (formerly known as Mycobacterium africanum
subtype II but now known to be a sublineage within Euro-American M. tuberculosis
lineage 4), we speculated that the gyrA double mutant strains might constitute a
subgroup of the Uganda genotype (16, 17). This hypothesis appeared to be
consistent with the results of two studies from the Republic of the Congo and the
Democratic Republic of the Congo, which reported the highest frequency of these
double mutants (in 60% [9/15] versus 7.2% [15/209] of MDR TB cases from Brazza-
ville and Pointe-Noire versus Kinshasa, respectively) (7, 8). This was further sup-
ported by mycobacterial interspersed repetitive-unit–variable-number tandem-
repeat (MIRU-VNTR) results (7, 15).

To clarify the exact relationship of these double mutants with regard to the wider
M. tuberculosis complex (MTC) diversity, we analyzed the genomes of 1,974 previously
published MTC strains (14). This identified a single T80A�A90G double mutant, which,
as expected, resulted in a false-positive result with the MTBDRsl assay (Table 1,
C00014838). We then analyzed this strain in a wider collection of 94 Uganda or
Uganda-like strains, including 27 T80A�A90G double mutants (or variants thereof),
which confirmed that this double mutation was a marker for a subgroup of Uganda
strains (Fig. 2; see also Table S1 in the supplemental material). Of these 28 double
mutant strains (or variants thereof), 25 originated from the Democratic Republic of
Congo in a study of acquired drug resistance, nested in routine surveillance conducted

85 86 87 88 89 90 91 92 93 94 95 96

WT1

WT2

WT3

MUT1 gCg/gTg A90V MUT3A  gAc/gCc  D94A
MUT3B  Gac/Aac or Tac  D94N or Y
MUT3C  gAc/gGc  D94G
MUT3D  Gac/Cac  D94H

MUT2 Tcg/Ccg S91P

FIG 1 Line probe assays consist of oligonucleotide probes that are immobilized on a nitrocellulose strip.
This diagram depicts the region of gyrA targeted by the MTBDRsl assay (numbers refer to codons). The
binding of a mutant probe (MUT1-3D) that targets the three codons highlighted in dark gray (90, 91, and
94; the corresponding nucleotide and amino acid changes are shown under the respective codons)
and/or lack of binding of a wild-type probe (WT1-3) is interpreted as genotypic fluoroquinolone
resistance, provided that all control bands of the assay, including the one for gyrA, are positive. The
diagram was based on the package insert of version 1 of the assay (40). The exact design of the wild-type
probes is regarded as a trade secret by Hain Lifescience, so it is unclear whether the WT3 band covers
all three nucleotides of codon 92. The mutant probes cannot be depicted, as they also constitute a trade
secret. Versions 1 and 2 of the assay are identical with regard to the gyrA region; thus, results from version
1, which was used for most experiments in this study, should also be valid for version 2 (4).
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from 2006 to 2009 for drug resistance in Kinshasa (18). Specifically, strains were drawn
from a collection of 324 phenotypically rifampin-resistant isolates, resulting in a fre-
quency of 7.7% (25/324), which is in line with the aforementioned frequency of 7.2% in
Kinshasa during the period of 2011 to 2013 (8).

Synonymous mutations have been shown in other contexts to cause systematic
false-positive results, such as those for rifampin when using genotypic DST assays
such as the Hain GenoType MTBDRplus or Cepheid Xpert MTB/RIF (19, 20). To date,
the equivalent phenomenon had not been described with the MTBDRsl assay. We
therefore screened the aforementioned 1,974 genomes and the Sanger sequencing
data of 104 MDR TB strains from Medellín (Colombia) and unpublished data, which
identified six different synonymous mutations in the fluoroquinolone resistance-
determining region of gyrA (14, 21). Two of the synonymous mutations (caC/caT
H85H and ctG/ctA L96L) did not cause false-resistance results by preventing the
corresponding wild-type bands from binding (Table 1). In contrast, the remaining
four did, including a mutation at another nucleotide position of codon 96 (Ctg/Ttg)
(Table 1), which was found in seven Haarlem strains from Colombia that were
closely related based on 24-locus MIRU-VNTR, resulting in a systematic false-
resistance rate of 6.7% (7/104) in Medellín.

FIG 2 Maximum likelihood phylogeny based on 3,710 single nucleotide variants differentiating all 95 Uganda and Uganda-like M. tuberculosis strains. The
numerical code shown corresponds to the lineage classification by Coll et al. (41). Phylogenetic variants in the gyrA fluoroquinolone resistance-determining
region are color coded. The 28 T80A�A90G strains (or variants thereof) formed a monophyletic group and were consistently susceptible to ofloxacin and other
fluoroquinolones when tested (see Table S1 in the supplemental material). This group included the novel T80A�A90C double mutant and, importantly, the
T80A�A90G�D94G triple mutant, which comprised the high-confidence D94G resistance mutation that was genetically linked to the double mutations (as
opposed to occurring in the same population as a mixed infection) (12). This was in line with a recent report by Pantel et al., who suggested that classical
resistance mutations may not cause resistance in a T80A�A90G background, whereas a study by Brossier et al. found that this combination of mutations did
correlate with ofloxacin resistance (6, 15). It is therefore possible that these triple mutants have MICs close to the epidemiological cutoff value for ofloxacin,
although more data are required to confirm this hypothesis (42, 43).
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Furthermore, we showed that the T80A�A90G double mutations and the synony-
mous gcG/gcA A90A and atC/atT I92I mutations prevented the binding of not only their
corresponding wild-type band(s) but also that of the Tcg/Ccg S91P probe (Table 1).
Similarly, if the A90V resistance mutation arose in the A90A background (i.e., by a
further change in the triplet gCG/gTA), it would not be detected by the gCg/gTg A90V
probe.

The consequences of these findings depend on a variety of factors. The aforemen-
tioned mutations that result in systematic false-positive results are likely rare globally
(i.e., �1% based on the total number of strains initially screened for this study).
Nevertheless, they can be frequent locally. Synonymous mutations in particular are not
selected against, which means that it is only a matter of time until the MTBDRsl is used
in a region where it has a poor positive predictive value, as would be the case in
Medellín. As a result, the absence of binding of wild-type probes without concomitant
binding of a mutant probe is a true marker of resistance in most settings, because this
binding pattern identifies (i) valid resistance mutations, such as G88C and G88A, that
can be inferred only by the absence of WT1, (ii) D94Y, which, contrary to the package
insert, was not detected by MUT3B (Table 1), and (iii) mutations that are targeted by
specific mutant probes but to which the mutant probes do not bind for unknown
reasons (i.e., when the absence of wild-type probes acts as a failsafe method) (22, 23).
In other words, simply ignoring wild-type bands would likely result in a significant loss
of MTBDRsl sensitivity.

In the MTBDRsl instructions, Hain acknowledges that synonymous mutations can
result in false-resistant results, but the instructions do not comment on the T80A�A90G
mutation or on the effects of synonymous and nonsynonymous mutations on the
binding of mutant probes (24). The WHO report that endorsed the assay did not discuss
the consequences of systematic false-resistant results (3, 4). In light of the potentially
severe consequences of systematic false-resistance results, we propose that in cases
where fluoroquinolone resistance is inferred from the absence of a wild-type band
alone, appropriate confirmatory testing is undertaken immediately. This would not only
be beneficial to the patient but also may prove cost-effective overall for the TB control
program (i.e., by avoiding the unnecessary use of more toxic, less effective, and often
more expensive drugs, thereby minimizing transmission and enabling preventive ther-
apy of contacts with fluoroquinolones [9, 25]). Given that systematic false-positives are
rare in most settings, we would advise not discontinuing fluoroquinolone treatment
while confirmatory testing is being carried out, provided this testing is done rapidly
(e.g., using targeted sequencing of the locus in question to identify synonymous
mutations, the T80A�A90G mutations, or any resistance mutations). Ideally, this should
be complemented with phenotypic DST to identify heteroresistance that is missed by
Sanger sequencing, which cannot detect mutations that occur in below 10 to 15% of
the total population (26). Alternatively, fluoroquinolones could be kept in the regimen
but not counted as an effective agent until systematic false-positives are excluded.

Although not investigated here, these highlighted issues likely apply to some, if not
all, other commercial genotypic DST assays for fluoroquinolones, which are manufac-
tured by Autoimmun Diagnostika, NIPRO, Seegene, YD Diagnostics, and Zeesan Biotech
(27–32). Our findings therefore underline the need for diagnostic companies, including
Cepheid, which is currently adapting its GeneXpert system for fluoroquinolone testing,
to consider the genetic diversity within the MTC at the development stage and to
monitor test performance after uptake in clinical settings (19, 33, 34). Importantly, this
also applies to software tools designed to automate the analysis of whole-genome
sequencing data. In fact, three of the current tools (KvarQ, Mykrobe Predictor TB, and
TB Profiler) misclassified strain BTB-08-045 with gyrA T80A�A90G as resistant to at least
one fluoroquinolone because the respective mutation catalogues of these tools list
A90G as a resistance mutation, whereas the tools CASTB and PhyResSE correctly
classified the strain (35–39).
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