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SUMMARY

By observing their social partners, primates learn
about reward values of objects. Here, we show that
monkeys’ amygdala neurons derive object values
from observation and use these values to simulate a
partner monkey’s decision process. While monkeys
alternated making reward-based choices, amygdala
neurons encoded object-specific values learned
fromobservation. Dynamic activities converted these
values to representations of the recorded monkey’s
own choices. Surprisingly, the same activity patterns
unfolded spontaneously before partner’s choices in
separate neurons, as if these neurons simulated the
partner’s decision-making. These ‘‘simulation neu-
rons’’ encoded signatures of mutual-inhibitory deci-
sion computation, including value comparisons and
value-to-choice conversions, resulting in accurate
predictions of partner’s choices. Population decod-
ing identified differential contributions of amygdala
subnuclei. Biophysicalmodeling of amygdala circuits
showed that simulation neurons emerge naturally
from convergence between object-value neurons
and self-other neurons. By simulating decision com-
putations during observation, these neurons could
allow primates to reconstruct their social partners’
mental states.
INTRODUCTION

Primates observe the choices of social partners to learn about

the reward value of objects. Such values learned from observa-

tion not only inform own decision-making but may also provide a

basis for understanding the decisions of others. For example, by

observing partners’ foraging choices, primates learn which

foods are valuable and worth choosing (van de Waal et al.,

2013). In turn, knowing how a partner values specific objects

may help the observer to model the partner’s future deci-

sions (Barlow, 1990; Lee and Seo, 2016). These cognitive
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processes—learning from others and predicting their choices—

are critical foundations for primates’ sophisticated social

behavior. Yet, despite recent progress in primate social neuro-

science (Adolphs, 2006; Chang et al., 2013a; Isoda et al., 2018;

Lee and Seo, 2016; Wittmann et al., 2018), their neuronal basis

is poorly understood.

Neurophysiological recordings in primates have shown that

neurons in select brain structures encode the observed actions

(Báez-Mendoza et al., 2013; Fabbri-Destro and Rizzolatti,

2008; Yoshida et al., 2011), performance errors (Báez-Mendoza

and Schultz, 2016; Yoshida et al., 2012), and expected rewards

(Chang et al., 2013b, 2015) of social others. One recent study

identified neurons that explicitly predicted others’ choices in a

strategic game (Haroush and Williams, 2015). While these sig-

nals constitute important building blocks for social behavior,

several key questions remain open.

First, the neuronal value inputs leading to social choice predic-

tions are unclear. Reinforcement learning provides a mechanism

whereby neurons can derive values for decision-making from

past choices and experienced outcomes (Schultz et al., 1997;

Sutton and Barto, 1998). Such values may also be learned

from observing social partners, likely through the same associa-

tive processes (Behrens et al., 2008; Heyes, 2012). However, it is

unknown whether neurons indeed derive object values from

social, observational learning, andwhether a shared code under-

lies both observation-derived and experience-derived values.

Second, the neuronal mechanisms that translate values to

social choice predictions are unknown. Cognitive theories sug-

gest that understanding others’ decisions requires simulation

by the same mechanisms underlying one’s own mental states

(Adolphs, 2006; Gordon, 1996; Shanton and Goldman, 2010).

In neural networks, decision-making involves mutual-inhibitory

competition between choice-coding neurons, which signal this

competition as dynamic value comparisons and value-to-choice

conversions (Deco et al., 2013; Hunt and Hayden, 2017; Tsutsui

et al., 2016; Wang, 2008). But whether these neuronal computa-

tions also underlie modeling of social partners’ decisions, as

implied by the simulation view, has never been tested.

We reasoned that the amygdala—a collection of nuclei in the

temporal lobe—may be important in these processes. Amygdala

neurons process associatively learned values (Chang et al.,

2015; Johansen et al., 2011; Paton et al., 2006), economic
by Elsevier Inc.
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Figure 1. Observational Learning Task

(A) Task. Two monkeys faced each other over a touch screen and took turns making choices between sequentially shown visual objects to learn object-reward

probabilities (object values). The recorded monkey was required to fixate the screen center on own (self) and partner’s (other) trials until blue touch targets

appeared. ISI, inter-stimulus interval.

(B) Design for a testing session. Initial learning of object-reward probabilities was followed by reward-probability reversal (testing value-tracking) and object

switch between animals (testing observation learning).
decisions (Grabenhorst et al., 2012, 2016), and social informa-

tion, including faces (Gothard et al., 2007; Leonard et al., 1985;

Munuera et al., 2018; Rutishauser et al., 2013). Amygdala dam-

age profoundly impairs primates’ social behavior (Adolphs

et al., 1998, 2005; Kluver and Bucy, 1939). The amygdala is

also implicated in autism (Amaral et al., 2008; Baron-Cohen

et al., 2000; Rutishauser et al., 2013), which is marked by impov-

erished social cognition (Lai et al., 2014). Although the amyg-

dala’s role in social behavior is typically explained in terms of

associative learning and social perception, whether amygdala

neurons also contribute to more complex social cognition is

unclear.

To address these questions, we recorded the activity of single

amygdala neurons in a social context in which two monkeys

observed and learned from each other’s reward-based choices.

We found that amygdala neurons encoded object-specific

values learned from social observation and own experience in

a common code, as suitable decision inputs. Distinct ‘‘simulation

neurons’’ dynamically translated these values into representa-

tions of the partner monkey’s forthcoming choices. Beyond

choice predictions, these neurons encoded the critical well-

conceptualized signatures of a neuronal decision computation,

specifically before the partner’s (but not recorded monkey’s)

decisions. Based on these single-neuron data, we propose a

biophysically realistic theory of mental simulation as neural deci-

sion computation. We show that simulation neurons emerge

naturally via self-organization from object-value neurons and

additionally found self-other discriminating neurons.

Our data and model suggest that distinct neurons in primate

amygdala use common value inputs to compute own decisions

and simulate decisions of social partners. By encoding decision
computations during social observation, amygdala simulation

neurons could constitute basic precursors for human mentaliz-

ing capacities.

RESULTS

Observational Learning Task and Behavior
We studied the neuronal basis of observational learning in single

amygdala neurons while two monkeys observed and learned

from each other’s choices for different visual cues (‘‘objects’’)

(Figure 1A). The task allowed the animals to track the changing

reward probabilities of choice objects (‘‘object values’’) for them-

selves and their partner. Importantly, the two animals worked on

distinct object sets. To encourage observational learning, we

switched object sets between animals (Figure 1B) and tested

whether prior observation of partner’s choices benefitted own

performance. We also reversed object-reward probabilities to

test value tracking. (We use the term ‘‘switch’’ to refer to object

switches between animals.)

In single sessions, the monkeys’ choices tracked object

values over probability reversals and object switches between

animals (Figure 2A). On average, the animals required fewer trials

to choose the best object post-switch (i.e., after objects had

switched between animals) compared to individual learning

(Figure 2B), depending on the partner’s preceding performance

(Figure S1A). The animals’ choices were well described by rein-

forcement learningmodels that estimated subjective values from

each animal’s own choice-reward history (Figures 2C and S1B;

Table S1; Equations 1 and 2). The animals’ performance approx-

imated optimality by matching model performance (Figure S1C).

Value learning was also expressed in gaze patterns: on own
Cell 177, 986–998, May 2, 2019 987



Figure 2. Monkeys Observe and Learn from

Each Other’s Choices

(A) Example session. Trial-by-trial record of

choices and rewards for recorded monkey (top

panels) and partner (bottom panels). Blue curves,

seven-trial running averages of choices (dark) and

modeled choice probabilities (light); vertical bars,

single-trial choices, referenced to objects on left of

each panel; short and long bars, unrewarded and

rewarded choices. Numbers in colored boxes

indicate object-reward probabilities.

(B) Observational learning in choices. Number of

trials required for first choice of high-probability

object, comparing initial trials (learning from

experience) and post-switch trials (after observing

partner’s choices, t(186) = 2.62, paired t test).

(C) Reinforcement learning model. Psychometric

function relating model-derived value difference to

choice probability (across animals and sessions,

error bars smaller than symbols) is shown. Inset:

histogram of correctly modeled choices.

(D) Observational learning in gaze patterns.

Contrast map of recorded monkey’s fixations

before partner’s right versus left choices (measured

after appearance of both objects before partner

released touch key). Themonkeywasmore likely to

fixateon theobject thepartnerwasgoing tochoose,

before the partner’s movement (p < 1.0 3 10�16,

rank-sum test). All averages are mean ± SEM.

See also Figure S1.
trials, the animals looked longer at objects they were going to

choose (Figures S1D and S1E); on partner’s trials, they looked

longer at objects the partner was going to choose, thereby antic-

ipating the partner’s choices (p < 1.0 3 10�16; Figures 2D and

S1F). Thus, monkeys learned object values from observation

and used these values for own decision-making and for predict-

ing their partner’s choices.

Amygdala Neurons Signal Object Values Learned from
Observation and Own Experience in a Common Code
Individual amygdala neurons signaled reward values for specific

objects, irrespective of whether these values derived from own

experience or from observed partner’s choices. On partner’s

trials, the neuron in Figure 3A responded strongly when the

object’s value was high and the partner chose it frequently.

Responses declined after unannounced probability reversal

when the partner eventually preferred the alternative. After ob-

jects switched between animals, the neuron continued to track

value during the recorded monkey’s own choices. These

neuronal responses reflected the object’s subjective value

derived from reinforcement models fitted separately to partner’s

and recorded monkey’s reward-choice histories (Figure 3B;

p = 0.0001, multiple regression, Equation 3).

Among 205 recorded amygdala neurons, 127 neurons (62%)

encoded such values (Figure 3C), often specifically for one

object (70/127 neurons, 55%, Table S2). We identified these

neurons by first selecting object-evoked responses (p <

0.005, Wilcoxon test) and then regressing these responses on

model-derived subjective values, controlling for self-other trial

type, object choice, and object sequence (p < 0.05, multiple

regression, Equation 3). Population activity on partner’s trials
988 Cell 177, 986–998, May 2, 2019
closely followed the changing subjective values in step with

the partner’s choices (Figures 3D and S2A). Change-point anal-

ysis (Paton et al., 2006) further confirmed this neuronal-

behavioral correspondence (Figure 3E). Importantly, value

signals for partner’s objects appeared even before the re-

corded monkey experienced reward from these objects

(46/205 neurons, 22%, Equation 4); such signals thus derived

purely from observation, as supported by further analyses (Fig-

ures S2B–S2D). Although value-coding neurons were present

across different amygdala nuclei (Figure 3F) (Paxinos et al.,

2000), support-vector-machine classification showed the

strongest value signals in the lateral nucleus (Figure 3G), a

key region for associative learning (Johansen et al., 2011).

Thus, amygdala neurons derived object values from own expe-

rience and observational learning.

We tested whether neurons encoded observation-derived

values and experience-derived values in a shared code, which

would facilitate their flexible use as decision inputs. Consistent

with shared encoding, single-neuron value slopes calculated

separately for recorded monkey’s and partner’s trials were high-

ly correlated (Figure 3H). Support-vector-machine classification

demonstrated that value-coding precision depended on both

animals’ data and that precision increased with the number of

neurons in the decoding sample (Figures 3I and 3J). Training

the classifier to decode partner’s values before object switch

(i.e., during observational learning) allowed significant cross-

decoding of the recorded monkey’s values post-switch (Fig-

ure 3J, inset). In other words, value signals on partner’s trials

during observation could be read out using the recorded mon-

key’s own value code. These findings indicated a shared, trans-

ferable value code in amygdala.



Figure 3. Amygdala Neurons Encode Object Values from Observational Learning and Own Experience in a Common Code

(A) A single amygdala neuron, recorded in lateral nucleus, tracked object-reward probability on partner’s trials and recorded monkey’s trials.

(B) Subjective value coding. The neuron in (A) encoded trial-by-trial subjective values derived from reinforcement models. Peri-event time histogram sorted by

value terciles is shown. Raster display: ticks indicate impulses, rows indicate trials.

(C) Histogram of value slopes (b) for all responses (black) and value-coding responses (orange).

(D) Activity of value-coding neurons on partner’s trials (black) tracked partner’s choice probability (magenta) when reward probabilities reversed.

(E) Neuronal-behavioral correspondence. Value-coding neurons’ change points tracked behavioral change points.

(F) Reconstructed locations of value-coding neurons, superimposed on cresyl violet-stained section through one animal’s amygdala. Colors indicate different

nuclei (La, lateral; BL, basolateral; BM, basomedial; Ce, centromedial). Diamond: neuron from (A) and (B). Collapsing in anterior-posterior dimension resulted in

symbol overlap.

(G) Value decoding across nuclei. Leave-one-out cross-validated accuracy of support-vector-machine classifier decoding high versus low value from 20 highest-

slope neurons per nucleus, using data from both animals (all differences: p < 0.005, Wilcoxon test).

(H) Single-neuron value slopes for recorded monkey and partner (linear regression).

(I) Classifier value decoding depended on single-neuron value slopes for self and other. Decoding is based on randomly sampled subsets of 20 neurons

(5,000 iterations).

(J) Value decoding on recorded monkey’s and partner’s trials. (Decoding is from 205 neurons3 4 objects.) Inset: successful decoding when training classifier on

partner’s data before object switch to decode (test) recordedmonkey’s post-switch values (green, values supporting own observation learning) but not vice versa

(blue, values irrelevant for own observation learning).

(K) Relationship between observation-derived neuronal values and observation-learning performance. Across sessions, decoding accuracy for partner’s values

before object-switch predicted recorded monkey’s post-switch learning. Subset-decoding as in (I). All averages are mean ± SEM.

p values indicate Pearson correlation.

See also Figure S2.
Crucially, value-coding precision on partner’s trials predicted

the recorded monkey’s own performance: on average, when

the recorded monkey’s neurons showed more precise value

coding during the initial observation phase (before object

switch), the recorded monkey learned faster once objects had

switched (Figure 3K). Thus, observation-derived neuronal values

were behaviorally relevant and constituted suitable inputs for

decision-making.
Amygdala Neurons Simulate Decision Processes during
Social Observation
Decision-making involves two stages: value inputs are

compared between options and then converted to a choice

output. Individual amygdala neurons dynamically coded these

decision components during the recorded monkey’s trials to

signal the monkey’s own choices (Figure S3), complying

with computational decision theories (Deco et al., 2013;
Cell 177, 986–998, May 2, 2019 989



Figure 4. Amygdala Neurons Simulate the Partner’s Decision Making through Value Comparisons and Value-to-Choice Conversions

(A) Single neuron predicting choice for partner but not recorded monkey. Responses to second object on partner’s (left) and recorded monkey’s trials (right),

sorted by forthcoming object choice are shown. Recorded monkey was required to fixate objects without looking at partner. Monkeys could plan object choice

but not left-right action before target appearance.

(B) Neuronal value comparison on partner’s trials. Population activity of value-coding neurons during sequential presentation of partner’s choice objects.

(C) Neuronal value slopes on partner’s trials indicatedmutual-inhibitory value comparison. Left: anti-correlated value slopes for first object at first cue and second

cue; object-value signals changed sign from first to second cue. Right: correlated values slopes for first and second object. (One data point is outside

plotted range.)

(D) Stronger choice signals for easier decisions. Population activity of choice-predictive neurons on partner’s trials for easy and difficult decisions (median-split by

unsigned value difference) is shown.

(E) Value-to-choice conversion before partner’s choice in a single neuron. Explained variance of value and choice regressors from sliding-window regression is

shown. Activity transitioned from coding value (decision input, magenta) to predicting partner’s choice (decision output, black).

(F) Location of neurons predicting partner’s choices. Diamond: neuron from (A).

(G) Accuracy of neuronal decision simulation depended on basomedial neurons.

(H) Neuronal choice prediction from classifier approximated reinforcement learning (RL) model.

(I) Neuronal choice prediction during observational learning (before object switch) predicted recorded monkey’s post-switch performance. All averages are

mean ± SEM.

p values indicate Pearson correlation.

See also Figures S3, S4, and S5.
Wang, 2008). Surprisingly, the same decision-related activities

occurred spontaneously before partner’s choices but in sepa-

rate neurons, as if these neurons simulated the partner’s

decision-making (Figure 4, described next). We refer to these

neurons as simulation neurons because they dynamically coded

key signatures of decision computation during social observa-

tion, in the absence of decision requirements for the recorded

monkey.

The neuron in Figure 4A signaled the partner’s forthcoming ob-

ject choice well before the partner’s observable action (p =

0.0009, multiple regression, Equation 7; Table S3); it failed to

signal the recorded monkey’s own object choice. This neuron

thus specifically encoded the predicted output of the partner’s

decision process. Multiple regression identified neurons with

activity related to partner’s choices, controlling for value and

other covariates (31/205 neurons, 15%; p < 0.05, Equation 7).

Importantly, separate neurons signaled the recorded monkey’s
990 Cell 177, 986–998, May 2, 2019
own choices for the same objects (37/205, 18%), whereas few

individual neurons signaled object choices for both animals

(9/205, 4%). Such separate choice coding for self and other in

single neurons was significantly more prevalent than joint choice

coding (z-test for dependent samples, p < 0.0005; Figure S3G).

The distinct coding in separate neurons indicated that choice

signals on partner’s trials did not simply reflect generalized,

cue-evoked decision activity or erroneous decision preparation

by the recorded monkey. Importantly, the animals did not

mistake partner’s trials for their own (0.3% erroneous action

attempts on partner’s trials). Thus, distinct amygdala neurons

encoded the partner monkey’s predicted decisions.

In addition to predicting partner’s object choices, amygdala

neurons encoded abstract choices in an order-based frame of

reference, by signaling whether the partner would choose the

first or second object on a given trial (Equation 7; Table S3).

Again, separate neurons encoded order-referenced choices for



partner and recordedmonkey (Figure S3G). Notably, order-refer-

enced choices were purely internal variables without explicit

correspondence to sensory task events, which confirmed cod-

ing of internally simulated decisions.

Amygdala neurons seemed to construct predictions of part-

ner’s choices by the same mechanisms used for the recorded

monkey’s own choices, as indicated by the encoding of three

key decision-making signatures. First, amygdala neurons

dynamically encoded value comparisons of partner’s choice

options, as shown by responses to sequential objects that de-

pended on both objects’ values (Figure 4B, 86/205 neurons,

Equation 7; cf. Figure S3). Specifically, neurons signaled values

for partner’s competing choice objects with anti-correlated

slopes (Figure 4C). Competing objects thus had opposing influ-

ences on neuronal activity—a characteristic signature of value

comparison by mutual inhibition (Deco et al., 2013; Wang,

2008). Neurons encoding such value comparisons on partner’s

trials often failed to code value in a non-social control task, per-

formed separately from the main task (29/47 control-tested

neurons, 62%, Figure S4); these neurons thus did not reflect

generalized, cue-evoked valuation. Second, decision signals

on partner’s trials were stronger for easier decisions (i.e., larger

value differences, Figure 4D), resembling decision neurons in

non-social tasks (Kim and Shadlen, 1999). Stronger choice sig-

nals for easier decisions are consistent with the resolution of

an underlying mutual-inhibitory winner-take-all competition,

whereby neurons representing the ‘‘winning’’ choice option

show higher activity for easier, clearly resolved value compari-

sons (Deco et al., 2013; Wang, 2008). Third, in individual neu-

rons, sequential value signals on partner’s trials evolved into

explicit predictions of partner’s choices (‘‘value-to-choice con-

versions’’; Figure 4E, 22/205 neurons; 11%). These neurons

thus encoded the complete information-processing sequence

involving value comparison and choice prediction, indicative of

a neuronal decision process. Different from object-value neu-

rons, which particularly involved lateral nucleus, neurons with

simulation-related activities were especially (but not exclusively)

linked to basomedial nucleus, which encoded partner’s value-

to-choice conversions more accurately and more frequently

than lateral neurons (p = 8.2 3 10�4, c2 test, Figures 4F and

4G). Notably, neurons selective for partner’s choices (Figure 4F)

were closely intermingled with those selective for recordedmon-

key’s choices (Figure S3F).

Taken together, our notion of neuronal decision simulation

derived from partner-specific choice predictions and computa-

tionally well-characterized signatures of an underlying decision

process, including dynamic value comparisons, sensitivity to

choice difficulty, and explicit value-to-choice conversions.

Beyond choice prediction, individual simulation neurons en-

coded some or all of these formal decision-making signatures

on partner’s trials, well before the partner’s observable action.

Neuronal Decision Simulations Are Related to a
Monkey’s Own Learning Success andObservation of the
Partner’s Actions
Using population decoding, we tested relationships between

neuronal decision signals and behavior. Support-vector-machine

decoding from unselected neurons showed that neuronal coding
of partner’s and recorded monkey’s decisions was nearly

optimal: its accuracymatched reinforcementmodels that derived

choice predictions from reward-choice history (Figure 4H).

Across sessions, the accuracy with which neurons encoded

partner’s decisions predicted the recorded monkey’s observa-

tion-learning success, with better performance after more accu-

rate decision coding (Figure 4I, p = 1.33 10�6, partial correlation

controlling for value coding, cf. Figure 3K). This behavioral rela-

tionship was found for activities measured during object presen-

tation before partner’s action; it therefore demonstrated the

importance of internal decision simulations for observation

learning. In addition, choice-decoding accuracy during action

observation (when the partner reached for the chosen object)

also reflected learning performance (p = 1.1 3 10�5). Perfor-

mance relationships were not found when decoding control vari-

ables, such as whether self or partner was choosing (p = 0.296).

We examined whether simulation activities depended on the

recorded monkey’s observations of partner’s choices. Across

sessions, single-neuron sensitivities to partner’s forthcoming

choices reflected the amount of time that the recorded monkey

spent looking at the partner’s choices when the partner reached

for choice targets on the touch screen (Figures S5A and S5B).

Neuronal population decoding of partner’s choices was also

more accurate in sessions in which the recorded monkey spent

more time observing the partner’s choices (Figures S5C

and S5D).

Thus, neuronal coding of partner’s simulated decisions was

linked to the recordedmonkey’s own performance and to obser-

vation of partner’s choices. Naturally, any simulation activity

would need to be informed by observations of partner’s previous

choices; however, simulation activity within trials preceded the

partner’s observable choice and thus did not reflect simple

observation.

Population Codes for Value and Choice in Amygdala
Subnuclei
We adapted a biologically plausible nearest-neighbor classifier

to examine coding differences between amygdala subnuclei

(Figures 5A and 5B). Value decoding and choice decoding

from mean activity vectors was accurate across nuclei, with

higher accuracies for value decoding (Figures 5C and 5D). We

examined the capacity for transferring value and choice signals

between self and other, by classifying single-trial activity vectors

measured on recorded monkey’s trials using mean activity vec-

tors from partner’s trials. Cross-decoding for value was accurate

in lateral nucleus but declined sharply in other nuclei (Figure 5C).

By contrast, cross-decoding for choice was above chance but

overall less accurate than value cross-decoding, involving

lateral, basomedial, and basolateral nucleus (Figure 5D). Thus,

lateral nucleus was particularly important for value cross-

decoding, as also suggested by separate support-vector-

machine classification (cf. Figure 3G).

To examine these codes more directly, we computed correla-

tions between mean-activity vectors. In lateral nucleus, correla-

tions between population vectors for different value levels were

low within-self and within-other (Figure 5E), indicating appro-

priate separation of different values; by contrast, activity vectors

for identical value levels were highly correlated between self and
Cell 177, 986–998, May 2, 2019 991



Figure 5. Population Codes for Value and Choice in Amygdala Subnuclei

(A) Decoding approach. A nearest-neighbor classifier computed Euclidean distances between single-trial activity vectors (red point) andmean activity vectors for

different value levels or choices (groups A, B) measured on recordedmonkey’s trials (decodingwithin Self, top panel). Cross-decoding usedmean activity vectors

from partner’s trials (cross-decoding Self-Other, bottom panel).

(B) Location of value-coding neurons and choice-coding neurons for decoding (20 neurons per nucleus, selected based on regression coefficients; collapsing

anterior-posterior levels resulted in display-overlap of nuclei).

(C) Value-decoding accuracies for subnuclei within self (left) and cross-decoding (right) before objects switched between animals. Gray line: chance.

(D) Choice-decoding accuracies for subnuclei.

(E) Correlations between mean activity vectors related to different value levels. rSelf,Self, activity vectors for different values within-self; rOther,Other, correlation for

different values within-other; rSelf,Other, correlation for same value levels across animals.

(F) Correlations between mean activity vectors related to different choices. *Significantly different correlations (p < 0.005, Bonferroni corrected).

Error bars indicate SEM.
other (Figure 5E), significantly more so than in other nuclei (p <

0.001). Thus, lateral-nucleus neurons responded similarly to

self and other’s high-value objects, suggesting a shared value

code suitable for cross-decoding. Self-other cross-correlations

for choices were significantly lower than or not significantly

different from within-animal correlations (Figure 5F).

Thus, biologically plausible decoding from small groups of

selected neurons suggested a shared value code between self

and other, specifically in lateral nucleus.

Amygdala Neurons Discriminate Self-Trials from Other-
Trials
In social situations, self-other discrimination is crucial for agent-

specific neural reference frames (Chang, 2017; Wittmann et al.,

2016). We found that many amygdala neurons showed differen-

tial activity on self-trials and other-trials (164/205 neurons, 80%;

p < 0.05, Equation 8; Table S4). The neuron in Figure 6A (left)

showed increased activity during object presentation when it
992 Cell 177, 986–998, May 2, 2019
was the recorded monkey’s turn to choose, while the neuron in

Figure 6A (right) showed increased activity when it was the part-

ner’s turn. Self-other signals occurred throughout trial epochs

(Figure 6B). They were not explained by object value, choice,

or other factors, which were regression covariates (Figure 6C).

Amygdala population activity enabled highly accurate self-other

discrimination (Figure 6D). Self-other discriminating neurons

were prevalent across amygdala subnuclei (Figure 6E).

Computational Model of Separate Amygdala Decision
Circuits for Self and Other
From these data, we hypothesized that separate decision sys-

tems in primate amygdala might compute own choices and

simulate choices of social partners. We designed an attractor

neural-network model (Figure 7A) in which distinct pools of deci-

sion neurons generate choices for self and other (‘‘choice layer,’’

cf. Figure 4A), based on conjunctive inputs from shared object-

value neurons (‘‘value layer,’’ cf. Figure 3B), and self-other



Figure 6. Social Self-Other Neurons

(A) Two amygdala neurons differentiating self and other trials. Left: neuron with stronger activity during presentation of second choice cue on recorded monkey’s

trials, compared to partner’s trials. Right: neuron with stronger activity on partner’s trials.

(B) Population activity of self-other discriminating neurons. Activity was sorted by each neuron’s preferred trial type (self versus other).

(C) Histogram of regression coefficients of neurons with self-other coding.

(D) Support-vector-machine decoding accuracy of self versus other trials from neuronal activity.

(E) Locations of self-other-coding neurons. Diamonds: neurons from (A).

All averages are mean ± SEM.
discriminating ‘‘social neurons’’ (‘‘social layer,’’ cf. Figure 6A). By

biasing the choice layer, social neurons selectively enable value-

based decision-making in one of two separate systems. Further

examples of these recorded functional neuron types are shown

in Figure 7B. These neuron types were frequently observed:

127 object-value neurons (62%), 37 self-choice neurons (18%),

31 other-choice neurons (15%), 164 self-other neurons (80%),

with individual neurons often integrating these signals.

We constructed a biologically plausible implementation of this

circuit architecture (see STAR Methods) in which different

choice-selective neuronal populations compete with each other

to implement decision-making through mutual inhibition in an

attractor neural network (Wong and Wang, 2006). Our approach

followed previous studies that linked decision computations to

anti-correlated neuronal value slopes (Strait et al., 2014) and

value-to-choice conversions in single neurons (Grabenhorst

et al., 2012; Tsutsui et al., 2016). These approaches are based

on previous demonstrations that such analyses can be linked

to mutual inhibition processes in attractor models (Chau et al.,

2014; Hunt et al., 2012).

The model reproduced our main data features as follows.

Given constant value inputs, biasing from the social layer’s

‘‘other’’ neurons generated choice signals only in the other

(simulation) decision system but not in the self decision system

(Figure 7C), with stronger signals for easier decisions (Figure 7D).

Conversely, biasing from self neurons generated choice only in

the self system. Selective decision computation critically de-
pended on the social layer’s input strength (Figure 7E): value

inputs alone were insufficient to drive a decision computation;

rather, the simulation module required additional activation by

appropriate input from self-other neurons to show differential,

choice-predictive activity. Data from recorded amygdala neu-

rons further supported the model’s plausibility: population cod-

ing latencies conformed to the model’s implied information

flow (Figure 7F), whereby value signals and self-other signals

evolve into choice signals. Moreover, individual amygdala neu-

rons combined the model’s key signals (Figure 7G, 20/205 neu-

rons, 10%).

We propose that distinct simulation neurons emerge naturally

through a self-organization process, by learning to respond to

coactive object-value neurons and social other neurons. Sup-

porting this idea, neuronal separation of partner’s from recorded

monkey’s choices increased over time (Figure 7H). Notably,

while some neurons linked choice signals to action signals for

the recorded monkey (21/205 neurons; Figure S6, Equation 10;

Table S5), such choice-to-action transitions were entirely absent

for the partner (0/205 neurons). This result could suggest that,

while one decision circuit computes the recorded monkey’s

own choices to guide actions, a distinct decision circuit imple-

ments offline simulations of the partner’s decisions without

translation into action.

These results support our hypothesis that separate decision

systems in amygdala compute choices for self and social others.

Amygdala inhibitory circuits and plasticity mechanisms (Janak
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Figure 7. Biophysically Plausible Model of Amygdala Circuits for Social Decision Simulation

(A) Model architecture inspired by recorded neuron types. Object-specific value neurons (Value layer) and self-other discriminating social neurons (Social layer)

provide convergent excitatory inputs to two separate decision systems (Choice layer) for computing recorded monkey’s choices (Decision module) and for

simulating partner’s choices (Simulation module). Within each choice-layer module, pools of object-specific neurons with recurrent excitatory connections

implement decision-making by mutual-inhibitory winner-take-all competition (mediated by interneurons, not shown). Depending on self-other bias, value inputs

initiate competition selectively in one of the two choice-layer modules; once competition is resolved, the winning pool enters a high-activity attractor state that

represents the choice.

(B) Neuron types on which model is based. Three representative recorded example neurons are shown.

(C) Modeled choice-layer neurons. Neurons in simulation module signal partner’s choice on partner’s trials when social layer provides other bias (top left) but not

on recorded monkey’s trials when social layer provides self bias (top right). Conversely, neurons in decision module signal choice for recorded monkey with self

bias (bottom right) but not other bias (bottom left).

(D) Model reproduces decision-difficulty effect of simulation neurons.

(E) Bifurcation diagram of model activity. Differential, choice-predictive activity of neurons in simulation module depends on strength of self-other input from

social layer.

(F) Latencies of signals for value, self-other, choice across recorded neurons. Cumulative fraction of significant neurons following cue onset. Value and self-other

signals preceded choice signals (p < 0.05, Wilcoxon test).

(G) A single recorded amygdala neuron integrating value, social, and choice information. Explained variances from sliding-window regression are shown.

(H) Neuronal discrimination of self from other’s choices increased within session. Decoding accuracy for high-low value, self-other trials, and self-choice versus

other-choice were calculated from recorded neuronal responses within ten-trial windows over two-trial steps. All averages are mean ± SEM.

See also Figure S6.
and Tye, 2015; Pape and Pare, 2010) seem potentially suited for

implementing this design.

DISCUSSION

These data show that when monkeys observe and learn from

each other’s choices, amygdala neurons derive object-specific

reward values from social observation, and dynamically convert

these values to representations of the partner’s forthcoming

choices. Neuronal object values were subjective, as they re-

flected partner’s and recorded monkey’s distinct reinforcement

histories (Figures 3B and S2). Neurons signaled values from

observation and experience in a common code that was highly

accurate and transferable between self and other, particularly
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in lateral nucleus (Figures 3G–3J and 5). Such common,

object-centric value coding facilitates reward learning irrespec-

tive of who is choosing and provides versatile inputs for own

decisions and social simulations. Accordingly, the recorded

monkey learned better from more accurately coded values (Fig-

ure 3K). By processing partner’s and recorded monkey’s values

in a shared code, these amygdala neurons provide a physiolog-

ical basis for integrating own and others’ experiences.

In contrast to object-referenced values, amygdala neurons en-

coded decisions with a social reference frame: specific simula-

tion neurons signaled partner’s predicted choices distinct from

recorded monkey’s own choices (Figure 4A). These neurons

encoded three key signatures of the simulation of partner’s deci-

sion-making, including sequential value comparisons, sensitivity



to decision difficulty and explicit value-to-choice conversions

(Figures 4B–4E). The simulation activities unfolded dynamically

and spontaneously, well before partner’s observable choices

and without decision requirement for the recorded monkey, re-

sulting in accurate predictions of partner’s choices. Amygdala

neurons thus seemed to construct partner’s choice predictions

by the samemechanisms as those underlying the recordedmon-

key’s own choices (cf. Figure S3), typical of mental simulation

(Adolphs, 2006; Gordon, 1996; Shanton and Goldman, 2010).

Simulating others’ decisions with dedicated neurons is unantic-

ipated by cognitive theories but functionally crucial: it enables

offline simulations that prevent erroneous acting-out of other’s

choices—shown by absent choice-to-action conversions for

partner (Figure S6)—and disambiguates other’s from own choice

signals for downstream processing.

Although population decoding showed some capacity for

self-other cross-transfer of choice codes (Figure 5D), this likely

resulted from pooling individual neurons with selective choice

coding for self or other. This result and the anatomical intermin-

gling of neurons coding own or other’s choices suggest that

simulation neurons may be difficult to detect in human imaging,

which averages over neural populations.

We constructed a biophysically plausible attractor neural-

network model based on the functional neuron types we re-

corded (Figures 7A and 7B). The model captured key data

features, including selective decision computation for self or

other and suggested that simulation neurons can emerge

from conjunctive object-value and self-other signals (Figures

7C–7H). These results are consistent with the existence of sepa-

rate decision circuits in primate amygdala that use common

object values to compute own decisions and simulate decisions

of social partners. We suggest that the mapping from object-

centric value neurons to separate decision neurons for self and

other could involve a competitive, feature-detection network

(Rolls and Treves, 1998) coupled to an attractor decision-making

network. When confronted with novel choice objects, this

competitive network would learn, via lateral or mutual inhibition,

to respond to repeatedly co-active object-selective and self-

other neurons, and subsequently activate different choice

neurons for self and other. This suggestion for how simulation

neurons ‘‘emerge’’ (i.e., are functionally set up) via self-organiza-

tion is supported by the observed gradual separation of self-

choice and other-choice signals (Figure 7H).

Previous research identified important building blocks for pri-

mate social behavior in amygdala, including face neurons (Goth-

ard et al., 2007; Leonard et al., 1985; Rutishauser et al., 2013). In

a classic study, face neurons were prevalent in basomedial

(accessory basal) nucleus (Leonard et al., 1985), which we found

particularly implicated in decision simulations (Figure 4G).

Recent studies described amygdala neurons coding facial

expression (Gothard et al., 2007), reward expectations for others

(Chang et al., 2015), and conspecifics’ hierarchical rank (Mu-

nuera et al., 2018). Simulation neurons could provide an output

channel for these signals by locally integrating them to choice

predictions for specific social partners. Notably, the distinct

choice coding for self or other and the dynamic value-to-choice

conversions suggest that simulation activities did not reflect

reward expectation or state valuation (Belova et al., 2008).
In a previous study, amygdala neurons’ value sensitivities

were correlated between self and other, but only when values

were behaviorally relevant for the recorded monkey (Chang

et al., 2015). In the present study, amygdala value codes were

transferable between self and other, but mainly when objects

were relevant for observational learning (Figures 3J, inset, and

5C). Thus, amygdala neurons encode object values especially

when they are behaviorally or socially relevant. Previous studies

also showed neuronal discrimination between biological part-

ners and computer opponents (Báez-Mendoza et al., 2013;

Haroush and Williams, 2015; Hosokawa and Watanabe, 2012).

It will be interesting to test how simulation neurons respond to

computer opponents.

A recent study first reported neurons in cingulate cortex that

predicted other’s forthcoming decisions in a strategic game

(Haroush and Williams, 2015). Our study builds on this critical

work by identifying the neuronal value inputs and decision com-

putations underlying such choice predictions, and their potential

origin in attractor neural networks. Determining whether social

predictions first arise in cingulate or amygdala would require

simultaneous recordings. Nevertheless, amygdala neurons

seem suited to construct decision simulations, as suggested

by their value-to-choice transitions. Importantly, amygdala le-

sions affect encoding of stimulus-reward associations in cingu-

late cortex (Rudebeck et al., 2017), and both amygdala and

cingulate participate in learning (Klavir et al., 2013) and prosocial

choices (Chang et al., 2013b, 2015). Thus, it is likely that anterior

cingulate cortex (Haroush and Williams, 2015) and amygdala

(shown here) interact in modeling partners’ choices.

Our findings are distinct from social error monitoring and ac-

tion observation. Neuronal responses to others’ performance

errors are found in medial frontal cortex (Yoshida et al., 2012)

and striatum (Báez-Mendoza and Schultz, 2016). Prefrontal neu-

rons also track choices and outcomes during competition with

opponents (Hosokawa and Watanabe, 2012; Lee and Seo,

2016; Seo et al., 2014). Such signals likely contribute tomacaque

observational learning shown here and previously (Subiaul et al.,

2004). However, error signals are reactions to external events

that follow partner’s choices, different from the predictive, purely

internal decision simulations reported here.

The separate coding of other’s from own choices by distinct

neurons and the prospective encoding of purely internal, unob-

servable value comparisons, value-to-choice conversions and

choice predictions distinguishes simulation neurons from mirror

neurons, which respond to both executed and observed actions

(Fabbri-Destro and Rizzolatti, 2008). Importantly, the present

choice-predictive signals were not sensory responses to the

other’s choice, as they were measured during sequential cue

presentation well before partner’s overt choice. At the time of

partner’s action, we found no evidence for action-coding mirror

neurons in amygdala (Figure S6).

Our findings link recent concepts on the functions of amygdala

neurons in decision-making (Grabenhorst et al., 2012, 2016) to

the amygdala’s well-known role in social behavior. Classical

studies demonstrated deficient emotion recognition and social

judgment in humans with amygdala lesions (Adolphs et al.,

1998, 2005). Current accounts of these deficits emphasize the

amygdala’s importance in social perception and in directing
Cell 177, 986–998, May 2, 2019 995



attention to specific face parts (Adolphs et al., 2005; Rutishauser

et al., 2013, 2015). Our data point toward an additional mecha-

nism, whereby amygdala simulation neuronsmay actively recon-

struct social partners’ mental states. A ‘‘constructive’’ neural

mechanism for social cognition in amygdala had previously

been proposed (Adolphs, 2006), but its single-neuron basis re-

mained unclear. The simulation neurons described here seem

well suited to support understanding of others’ mental states,

as they translate observation-derived values into representa-

tions of other’s decisions.

The amygdala is implicated in autism and other conditions

with atypical social cognition, including social anxiety (Amaral,

2002; Baron-Cohen et al., 2000; Lai et al., 2014; Rutishauser

et al., 2013). Our data and model (cf. Figures 7A and 7B) may

offer new insights into these conditions by specifying single-

neuron building blocks and computational architectures for

social cognition. We speculate that dysfunction or absence of

amygdala simulation neurons, or their inputs, could impoverish

social cognition by reducing an individual’s ability to simulate

others’ mental states. Deficient neuronal simulation by the

amygdala could play a role in the poor perspective-taking and

social communication seen in autism. Conversely, hyperactivity

of amygdala neurons might exaggerate spontaneous simulation

of others’ mental processes. Given the amygdala’s outputs to

emotional and physiological effector systems (Johansen et al.,

2011), such exaggerated social simulations could provoke

somatic symptoms typical of social anxiety (Amaral, 2002).

Further, our model implies that altered connection-weights be-

tween neuron types (cf. Figure 7A) or instability in the simulation

module’s attractor-dynamics could disrupt social cognition.

Our data and model suggest a neurobiological account of

mental simulation as neural decision computation. The findings

have implications for emerging directions in artificial intelligence

in which machines are trained to model social partners’ minds

(Rabinowitz et al., 2018). Based on single-neuron data, we pro-

pose a solution to this computational problem: convergence of

value signals and self-other signals onto decision neurons en-

ables the primate amygdala to alternately compute choices for

self and other. Such flexibility in processing own and others’

mental states is crucial in primate life, which is governed by com-

plex social hierarchies that affect amygdala structure and

function (Noonan et al., 2014). The amygdala simulation neurons

reported here could allow primates to reconstruct their social

partner’s mental states and may constitute simple precursors

for human mentalizing capacities, such as theory of mind.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures conformed to US National Institutes of Health Guidelines. The work has been regulated, ethically reviewed and

supervised by the following UK and University of Cambridge (UCam) institutions and individuals: UK Home Office, implementing the

Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012, and represented by the local UKHomeOffice Inspector; UK

Animals in Science Committee; UCam Animal Welfare and Ethical Review Body (AWERB); UK National Centre for Replacement,

Refinement and Reduction of Animal Experiments (NC3Rs); UCam Biomedical Service (UBS) Certificate Holder; UCam Welfare

Officer; UCam Governance and Strategy Committee; UCam Named Veterinary Surgeon (NVS); UCam Named Animal Care and

Welfare Officer (NACWO).

Three healthy adult male rhesus monkeys (Macaca mulatta) participated in the present experiments: two monkeys (weighing

10.5 and 12.3 kg) participated as recorded monkeys, and a third monkey (weighing 12.0 kg) participated as partner monkey. The

animals had not been used for previous experiments. The number of animals used is typical for primate neurophysiology experi-

ments. The animals were housed in groups of two or three animals; the three animals participating in the present study lived in

different groups. At the time of neurophysiological recordings, the animals were highly trained in the experimental task.

METHOD DETAILS

Neurophysiological recordings
The experimental procedures for neurophysiological recordings from amygdala in awake, behaving macaque monkeys followed our

previous studies (Grabenhorst et al., 2012). A head holder and recording chamber (Gray Matter Research) were fixed to the skull

under general anesthesia and aseptic conditions.We used bonemarks on coronal and sagittal radiographs to localize the anatomical

position of the amygdala in reference to the stereotaxically implanted chamber, as described previously (Grabenhorst et al., 2012).

Specifically, we located the amygdala posterior to the sphenoid bone, rostral to the posterior clinoid processes at and above the

dorsoventral position of the posterior clinoid process.We recorded activity from single amygdala neurons from extracellular positions

during task performance, using standard electrophysiological techniques including on-line visualization and threshold discrimination

of neuronal impulses on oscilloscopes. We aimed to record representative neuronal samples from the dorsal, lateral, and

basal amygdala. A stainless steel tube (0.56 mm outer diameter) guided a single tungsten microelectrode of 0.125 mm diameter

and 1- to 5-MU impedance (FHC Inc.) through the dura and assured good targeting of subcortical structures. A hydraulic microma-

nipulator (MO-90; Narishige, Tokyo, Japan) served to advance themicroelectrode vertically in the stereotaxic plane. Neuronal signals

were amplified, bandpass filtered (300 Hz to 3 kHz), and monitored online with oscilloscopes. Somatodendritic discharges from

single amygdala neurons were distinguished from background noise and other neurons using a time threshold window discriminator

(WD-95; Bak Instruments), which produced a 1.0-ms-long standard transistor-transistor logic (TTL) pulse for each neuronal impulse

that helped in the online inspection of neuronal recordings. Behavioral data, digital signals from the impulse window discriminator,

and analog eye position data were sampled at 2 kHz on a laboratory computer with custom MATLAB (Mathworks Inc.) code. We

recorded analog impulse waveforms at 22 kHz and sorted them offline for data analysis, using cluster-cutting and principal

component analysis (Offline sorter; Plexon).

Microelectrodes FHC https://www.fh-co.com/
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During recordings, we sampled activity from about 400 amygdala neurons and recorded and saved the activity of neurons that

appeared to respond to any task event during online inspection of several trials. Thus, we aimed to identify task-responsive neurons

but we did not preselect based on more specific response characteristics. This procedure resulted in a database of 205 neurons

which we analyzed statistically. Statements about the number of neurons showing specific effects are made with reference to these

task-related neurons. The number of neurons is similar to those reported in previous studies on primate amygdala; we performed no

formal sample size estimation. Thus, experiments were replicated across both animals and across recorded neurons. Animals were

not assigned to different groups; accordingly, randomization and blinding were not performed. No animals or recorded neurons were

excluded.

Following completion of data collection, the animals received an overdose of pentobarbital sodium (90 mg/kg iv) and were

perfused with 4% paraformaldehyde in 0.1 M phosphate buffer through the left ventricle of the heart. We reconstructed recording

positions from 50-mm-thick, stereotaxically oriented coronal brain sections stained with cresyl violet based on electrolytic lesions

(15–20 mA, 20–60 s, made in one animal) and lesions by cannulas placed to demarcate recording areas, recording coordinates for

individual neurons noted during experiments, and in reference to other brain structures with known electrophysiological signatures

recorded during experiments (internal and external globus pallidus, substantia innominata). We assigned recorded neurons to

amygdala subnuclei with reference to a stereotaxic atlas (Paxinos et al., 2000) at different anterior-posterior positions (figures

show neuron locations collapsed over anterior-posterior levels). We recorded 66 neurons from the lateral amygdala, 86 neurons

from the basolateral amygdala, 23 neurons from the basomedial (also termed accessory basal) amygdala and 30 neurons from

the centromedial amygdala (Table S6). The histological reconstructions validated also the previously radiographically assessed

anatomical position of the amygdala as done in earlier reports (Grabenhorst et al., 2012).

Observational learning task
Two monkeys performed an observational learning decision-making task (probabilistic reversal learning) under computer control

(Figure 1A). The animals sat in primate chairs (Crist Instruments) and faced each other over a horizontally mounted touch screen

(EloTouch 1522L 15’; Tyco). The animals alternated trial-by-trial making choices between pairs of sequentially presented visual

objects. The animals worked on separate object pairs; we switched object pairs between animals halfway through an experimental

session. To maximize reward, the animals were required to learn and track the (uncued) reward probabilities associated with the

different objects. One object within a pair was associated with a reward probability of 0.85, whereas the other object was associated

with a reward probability of 0.15. Reward probabilities reversed between objects after blocks of typically 25 – 35 trials per animal. The

specific reward probabilities were chosen based on pre-testing to ensure that the animals maintained highmotivation during the task

while at the same time providing sufficient variation in choices. A computer-controlled solenoid valve delivered juice reward from

a spout in front of the animal’s mouth. On each completed trial, the acting animal received one of two outcomes: on ‘rewarded’ trials,

a liquid reward of 0.8 mL was delivered whereas on ‘non-rewarded’ trials, a small reward of 0.05 mL was delivered. The observer

animal did not receive any reward. We found that a small reward instead of non-reward on ‘unrewarded’ trials ensured that the animal

maintained high motivation on this demanding task, in which each animal was rewarded only every second trial. Reward delivery of

both large and small reward was accompanied by a sound to mask solenoid clicks.

The outline of a recording session is shown in Figure 1B and a full trial-by-trial record for one session for both animals is shown in

Figure 2A. Each session consisted of four main periods. At session start, the animals took turns trial-by-trial to choose between two

novel visual cues (‘objects’), with each animal choosing from its own object pair (two object pairs, four objects in total per session).

Depending on the animals’ learning performance, typically after 25-35 trials, we reversed the reward probabilities between the two

objects in each session, requiring the animals to adapt their choices to maximize reward. Following another period of 25-35 trials, we

switched the object sets between animals (‘object switch’), crucially without altering the object-reward probabilities. This design

allowed the animals to observe each other’s choice before object switch to learn the current reward value of each object, and sub-

sequently use this knowledge for their own choices once objects switched between animals. After object switch, we performed

another reward-probability reversal. Thus, an average recording of one neuron would consist of about 200 choice trials. (The raster

plots in the figures show only a subset of these trials while corresponding peri-event time histograms were calculated based on all

recorded trials for a given neuron.)

Each trial started when the background color on the touch screen changed from black to gray. To initiate the trial, both recorded

monkey and partner monkey were required to place their hand on an immobile, touch-sensitive key (each animal had its own touch

key). Presentation of the gray background was followed by presentation of an ocular fixation spot (1.3� visual angle). On each trial, the

recorded animal was then required to fixate this spot within 4� for 500 ms. Following 500 ms of central fixation, a first choice cue

(‘object’) appeared centrally for 350 ms and was followed, after cue offset, by a 350 ms inter-stimulus interval, which was then

followed by a second choice cue shown for 350 ms and another 350 ms inter-stimulus interval. (A few initial recording sessions

used durations of 500 ms.) Following sequential presentation of these individual choice objects, the two objects reappeared simul-

taneously on the left and right side of themonitor (determined pseudorandomly). After 100ms, the fixation spot disappeared and two

blue rectangles appeared below the choice objects at themargin of themonitor, close to the position of the touch-sensitive key on the

side of the acting animal that was required to choose on the current trial. The recorded animal was no longer required to fixate once

the fixation spot had disappeared. The acting animal was required to release the touch key and touch one of the object-associated

blue rectangles within 1.5 s to make its choice. Once the animal’s choice was registered, the unchosen object disappeared and after
e2 Cell 177, 986–998.e1–e9, May 2, 2019



a delay of 500 ms, the chosen object also disappeared and a liquid reward was given to the acting animal. Reward delivery was fol-

lowed by a trial-end period of 1,000 – 2,000 ms which ended with extinction of the gray background. The next trial started after an

inter-trial interval of 2,000 – 4,000 ms (drawn from a uniform random distribution). The roles of acting and non-observing animal

reversed after every correct trial. Assignment of visual objects to first or second presentation period and to left or right choice target

position on each trial was randomized.

Possible errors included failure to make contact with the touch-sensitive key before the trial (both animals), key release before the

go signal (both animals), failure to touch a choice target (acting animal), failure to fixate the central fixation spot at trial start (recorded

animal) or fixation break in the period between initial fixation and disappearance of fixation spot (recorded animal). Errors led to a brief

time out (3,000 ms) with a black background and then trial repetition. Task performance was typically interrupted after three

consecutive errors.

Stimuli and behavior were controlled using customMATLAB code (TheMathworks) and Psychophysics toolbox (version 3.0.8). The

laboratory was interfaced with data acquisition boards (NI 6225; National Instruments) installed on a PC running Microsoft

Windows 7.

Non-social control task
We tested some amygdala neurons in a non-social control task to determine whether neuronal value coding in the observational-

learning task was specific to a social situation with decision-making requirements. The control task involved presentation of pre-

trained conditioned stimuli that predicted liquid reward for the recorded monkey with different probabilities. This separate task

was performed without the social partner being present in the room; it thus constituted an entirely non-social situation. Note that

the recorded monkey’s own trials during the main task already constituted a non-social control for neuronal decision activity with

the partner being present. Each trial started with presentation of a fixation spot. The animal was required to fixate within 4� for

500 ms and throughout the trial until reward delivery. The fixation spot was followed by presentation of a visual conditioned stimulus

(drawn from a set of four to six stimuli) in the center of the screen for 500 ms; stimuli were distinct from but similar to the ones used in

the main observational learning task. Each stimulus predicted forthcoming reward with a specific probability between 0.15 and 0.85.

This stimulus period was used for neuronal data analysis by regressing impulse activity in this period on cued reward probability.

Stimulus presentation was followed by an inter-stimulus interval of 500 ms, which was followed by reward delivery. In some cases,

we included an additional 500 ms reward magnitude cue with subsequent 500 ms inter-stimulus interval before reward delivery.

Separate choice trials using the stimuli from this control task verified that the animals could use the information provided by these

stimuli to make meaningful, reward-maximizing choices (preferring higher over lower reward probabilities and higher over lower

reward magnitudes).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
To assess the animals’ speed of learning, we calculated the number of trials that the animal required to choose the object with the

current high reward probability, separately for session start (individual learning) and after object switch between animals (observa-

tional learning) (Subiaul et al., 2004). We then compared trial numbers for individual learning and observational learning across

recording sessions (two-sided paired t test, Figure 2B).

To test whether the animals’ choice for the high-probability object post-switch depended on partner’s preceding choices

(Figure S1A), we proceeded as follows. We regressed the recordedmonkeys’ choice probability for the high-probability object within

the first three trials following object switch in each session on two variables: the first was a dummy variable indicating whether

the partner monkey chose the high-probability object on the last trial before switch (this was the critical variable that captured the

potential observational learning effect: the recordedmonkeymight bemore likely to choose the high-probability object if he observed

the partner choose this object immediately before object switch); the second regressor was a control dummy variable indicating

whether the recorded monkey chose the high-probability object on the last trial before switch (as this variable referred to a different

object than the one assessed in the post-choice period, it should be unrelated to the recorded monkey’s post-switch choice).

Reinforcement learning model
To describe the animals’ behavior in the observational learning task, and to derive trial-by-trial measures of subjective object values

for neuronal analysis, we fitted reinforcement learning models to the animals’ choices. We fitted separate models to each animal’s

own choice-reward records. (Note that our study did not aim to test how an animal’s own choices and rewards were integrated on a

trial-by-trial basis with the partner’s observed choices and rewards; such a test would require that the animals take turns choosing

between the same object pair trial-by-trial, as opposed to working on separate object pairs as done here.)

The best-fitting model (‘Reversal RL’, see Table S1) accounted for the reversal-learning nature of the task by updating both the

value of the chosen and unchosen option on each trial, as typical for reward-reversal learning tasks. Object values in this model

were updated as follows (Equation 1):

Vt + 1
A =Vt

A + a
�
Rt � Vt

A

�
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Vt + 1
B =Vt

B + a
��Rt � Vt

B

�

with Vt as the expected value of object A on trial t, Rt as reward
A (coded as 0 or 1 for small and large reward, respectively), Rt � Vt
A

as prediction error between reward Rt and expected value Vt
A on trial t, a as free-parameter learning rate and Vt + 1

A as the updated

expected object value for the next trial, and corresponding variables for the alternative object B. The prediction error for

object B, � Rt � Vt
B, involved updating the value for object B in the opposite direction as for object A. This model is a variant of

standard reinforcement learning as it updates additionally the value of the unchosen option. The object choice on each trial

was determined by the softmax rule (Sutton and Barto, 1998) (Equation 2):

PðAÞ= 1�
1+ exp

�� b
�
Vt
A � Vt

B

���
with PðAÞ as choice probability for object A and b as the free-para
meter inverse temperature, which reflects the degree of stochas-

ticity in the animal’s choices.

We estimated the model’s free parameters by fitting the model to the trial-by-trial record of choices and rewards within each

session, separately for each session and separately for the two animals. Model fitting was performed using a maximum likelihood

procedure with the Nelder–Mead search algorithm (implemented by the MATLAB function ‘fminsearch’).

We compared several alternative reinforcement learning models with the results of the model comparison shown in Table S1. The

additional models tested include: (1) a reinforcement learning model formulated as above but without updating the value of the

unchosen option (‘Basic RL’ in Table S1), (2) a reinforcement learning model with an adaptive learning rate, whereby the learning

rate on each trial was modified based on the unsigned trial-specific reward prediction error (‘Reversal RL, adaptive rate’), (3) variants

of the reinforcement learning models just described with different learning rates for the chosen and unchosen option (‘Reversal RL,

2 learning rates’). Model comparison using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Pseudo

R2 identified the reversal-learning variant as the best-fitting model.

Eye data analysis
Wemonitored the recorded animal’s eye position using an infrared eye tracking system at 125 Hz (ETL200; ISCAN) placed next to the

touchscreen. Before each recording session, we calibrated the eye tracker during a fixation task with a moving fixation spot that the

animals had to follow. During recordings, accuracy of calibration of the eye tracker was regularly checked and if necessary recali-

brated. Themonkey’s headwas slightly tilted forward (�10�) for a better view of the touchscreen.We assessed eye position in a plane

in front of the monkey’s eyes, followed by a transformation to the horizontal touchscreen plane (Báez-Mendoza et al., 2013). We then

determined whether and when a fixation occurred. We defined a fixation when eye velocity was below 25% of its statistical standard

deviation for more than 60 ms. For analysis of fixations in specific task-related time windows, we excluded fixations that occurred

within the first 100 ms of stimulus onset to remove anticipatory fixations. We selected fixations that met the above criteria and

that occurred on specific trial types, e.g., other’s trial, left chosen. To create frequency maps of eye fixations, a histogram matrix

(50 3 50 cm) with the possible eye positions was convolved with a Gaussian function (s = 1.5). Matrices were then converted into

percentage units. To obtain the maps shown in Figure 2D and Figure S1E, we subtracted the fixation matrix of left chosen trials

from the matrix for right chosen trials to obtain a matrix of differential left-right eye fixations (thus, a positive difference means

that a higher percentage of fixations occurred for a given location on left-chosen trials compared to right-chosen trials). We rescaled

the color map so that zero difference was shown in white color. For statistical comparisons, we defined regions of interest (ROIs)

around left and right choice objects, which were given by the position of the object on the screen; we defined these positions for

each monkey based on plots during the period where only the chosen object was shown and the animal looked at that object.

Statistical comparisons were performed for fixation densities across all coordinates within the ROIs. We performed a ranksum

test to compare fixation frequency differences between the left and right object regions of interest. For analysis of gaze patterns

during choice target presentation and before confirmation of choice, we focused on fixations that lasted aminimum of 500ms, which

inmany cases selected the final fixation before key release. Results remained significant for a shorter analysis period between choice

cue onset and before release of the touch key, i.e., before the animal initiated a movement to execute choice. For analyses shown in

Figure S5, we were interested in the recorded monkey’s dynamic gaze patterns during observation of the partner’s choices, and

therefore used a shorter minimum fixation criterion of 300 ms.

Neuronal data analysis
We counted neuronal impulses for each neuron on correct trials in fixed time windows relative to different task events focusing on the

following non-overlapping task epochs: 500 ms after fixation spot before cues (Fixation), 350 ms after onset of first cue (i.e., first

choice object), 350 ms after offset of first cue, 350 ms after onset of second cue, 350 ms after offset of second cue, 500 ms after

onset of choice targets. We did not observe systematic differences in activity patterns between animals in preliminary analyses;

therefore, we pooled data from both animals for subsequent analyses.

Our analysis strategy was as follows. We used fixed-window and sliding-window linear regression analyses to identify neuronal

responses related to specific variables. For fixed-window analyses, we first identified task-related object-evoked responses by
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comparing activity during object presentation (first and second cue period) to a baseline control period (before appearance of fixation

spot) using theWilcoxon test (p < 0.005, Bonferroni-corrected for multiple comparisons). A neuronal response was classified as task-

related if it was significantly different to activity in the control period (the pre-fixation period on each trial of the main social task). We

used a multiple linear regression model to test for neuronal activities related to specific task variables while including other relevant

variables as covariates. We also used sliding-window multiple regression analyses with a 200-ms window that we moved in steps of

25 ms across each trial (without pre-selecting task-related responses). Sliding-window analyses tested for dynamic coding of

different task-related variables over time within trials and also confirmed that our results did not depend on the pre-selection of

task-related responses or definition of fixed analysis windows. To determine significance of sliding-window regression coefficients,

we used a bootstrap approach as follows. For each neuron, we performed the sliding-window regression 1,000 times using trial-

shuffled data and determined a false positive rate by counting the number of consecutive sliding-windows in which a regression

was significant with p < 0.05. We found that less than five percent of neurons with trial-shuffled data showed more than seven

consecutive significant analysis windows. Accordingly, we classified a sliding-window analysis as significant if a neuron showed

a significant (p < 0.05) effect for more than seven consecutive windows. Statistical significance of regression coefficients was

determined using t test; all tests performed were two-sided. Additional population decoding, described below, examined indepen-

dence of our findings from pre-selection of task-related responses and served to assess information about specific task variables

contained in the neuronal population.

We performed our regression analysis in the framework of the general linearmodel (GLM). Neuronal responseswere testedwith the

following regression models:

GLM 1 (Equation 3): this GLM was the main model for identification of object-value coding responses. It served the following pur-

poses: First, the GLM served to identify neurons whose object-evoked responses encoded value across animals. Second, the GLM

served to derive value bs for the histogram shown in Figure 3C.

y = b0 + b1ðObject valueÞ + b2 ðSelf � otherÞ+ b3 Choice + b4 ðObject sequenceÞ + ε

with y as the neuronal activity in response to a specific object during the 350ms period in which the object was shown on each trial

(measured over the whole experimental session, including pre-switch and post-switch periods), ‘Object value’ as the trial-specific

subjective value of that object as derived from a reinforcement learning model (Equation 1) fitted to the choices of the animal that

was currently working on that object, ‘Self-other’ as a dummy variable (coded as 1 or 0) indicating whether the current trial was

for the recorded monkey (self) or the partner (other), ‘Choice’ as the current-trial object choice (coded as 1 or 0 if the object was

chosen or not chosen, respectively), ‘Object sequence ‘’as a dummy variable for the current-trial object sequence (coded as 1 or

0 depending on whether the object was shown first or second on the current trial, respectively), and ε as error. Note that per neuron,

we fitted the GLM four times on distinct object-evoked responses as we tested four objects per neuron; we thus tested 820 object

responses (4 objects 3 205 neurons). Note that the datasets for each object within each neuron were independent from each other

because we showed objects sequentially and thus could measure neuronal responses evoked by specific objects.

GLM 2 (Equation 4): this GLM served as a test for coding of object values that were derived purely from observation, by testing for

object-value coding before objects switched between animals, and thus before the recorded monkey experienced own reward from

the partner’s objects.

y = b0 + b1 ðObject valueÞ + b2 Choice + b3 ðObject sequenceÞ+ ε
with y as the neuronal activity in response to a specific object be
fore objects switched between animals, and all other variables as

defined above. This GLM 2 identified 113 value neurons on Self trials and 46 value neurons on Other trials. These latter neurons thus

unambiguously encoded object values derived from observation, before the recorded monkey chose any of the partner’s objects.

GLM 3 (Equation 5): this GLM served the following purposes: First, to test how many neurons had activity related to object values

separately on Self trials and onOther trials. Second, to determine howmany neurons had activity related to object values for both Self

and Other trials when relationships to object value were assessed with separate GLMs for Self and Other trials (thus, lowering

statistical power, but showing unambiguous value coding on Self and Other trials). Third, the GLM served to derive value bs for

the analyses shown in Figure 3H, I.

y = b0 + b1 ðObject valueÞ + b2 Choice + b3 ðObject sequenceÞ + ε
with y as the neuronal activity in response to a specific object on S
elf trials or Other trials across the whole experimental session. This

GLM 3 identified 232 value responses (130 neurons) on Self trials and 101 value responses (72 neurons) on Other trials. Of these neu-

rons, 53 neurons showed significant value coding on both Self trials andOther trials (when assessedwith separate GLMs). This result,

together with the significant relationship between value coefficients for Self and Other (Figure 3H), supports the conclusion that many

amygdala neurons encoded object values irrespective of whether value derived from individual learning or observational learning.

GLM 4 (Equation 6) this GLM served to test whether overall model fit of our main value-coding model GLM1 was improved by

inclusion of separate interaction terms that modeled value-coding specifically for self-trials and specifically for other trials. We

used partial F-tests to test for significant (p < 0.05) improvements in model fit by inclusion of self-other specific value regressors,

compared to GLM 1:
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y = b0 + b1 ðSelf �OtherÞ + b2 Choice + b3 ðObject sequenceÞ+ b4 ðObject value 3SelfÞ+ b5 ðObject value 3OtherÞ+ ε
with y as the neuronal activity in response to a specific object acr
oss the whole session, ‘Object value 3 Self’ as an interaction term

between object value and Self - Other and ‘Object value3 Other’ as an interaction term between object value and Self - Other trials

(the two interaction terms thus tested for object value coding specifically on self or other trials). This GLM 4 showed that of 221 value-

coding responses identified with GLM 1, the majority (155 responses, 70%) were not significantly improved by modeling Self/Other-

specific value coding. These results support our conclusion that value coding occurred mostly irrespective of the self versus other

distinction.

GLM 5 (Equation 7): this GLM was the main model for identifying neurons with significant choice-coding and significant coding of

first-object value and second-object value. It served the following purposes. First, the GLM served to identify neurons with activity

related to choices and dynamic value comparisons, while controlling for other task-related variables. Second, the GLM served to

derive coefficients of partial determination (partial R2) for Figure 4E, Figure S3E and Figure S4B. Third, the GLM served to derive

regression coefficients (bs) for the analyses in Figure S5. Two GLMs were fitted separately to data on recorded monkey’s trials

and data on partner’s trials. TheGLMwas calculated as a sliding-windowmultiple regression (except for analyses shown in Figure S5,

for which we used fixed-window analysis to derive neuronal bs).

y = b0 + b1 ðObject1 first �Object2 firstÞ+ b2 ðObject3 first �Object4 firstÞ+ b3 ðObject1 chosen�Object2 chosenÞ
+ b4 ðObject3 chosen�Object4 chosenÞ+ b5 ðFirst object chosenÞ + b6 ðFirst object valueÞ+ b7 ðSecond object valueÞ
+ b8 ðChosen object valueÞ+ ε
with y as neuronal activity in 200mswindows that weremoved in 2
5ms steps across the trial, starting 500ms before onset of first cue

and ending 350ms after onset of choice targets, ‘Object1 first – Object2 first’ as indicator variable for whether object 1 or object 2was

shown as first cue on a given trial, ‘Object3 first – Object4 first’ as indicator variable for whether object 3 or object 4 was shown as first

cue on a given trial, ‘Object1 chosen – Object20 chosen as indicator variable for whether object 1 or object 2 was chosen on a given

trial, ‘Object3 chosen – Object4’ chosen as indicator variable for whether object 3 or object 4 was chosen on a given trial, ‘First object

chosen’ as indicator variable for whether the first or second object was chosen on a given trial, ‘First object value’ as object value of

the first shown object, ‘Second object value’ as object value of the second shown object, ‘Chosen object value’ as the object value of

the chosen object. Objects 1 to 4 were defined according to the pairing of objects for recorded monkey and partner as follows.

Objects 1 and 2 were the objects from which the recorded monkey chose at session start; following object switch, the partner chose

between these objects. Objects 3 and 4 were the objects from which the partner monkey chose at session start; following object

switch, the recorded monkey chose between these objects.

We also used this GLM 5 to examine whether object-value neurons identified in GLM 1 (Equation 3) were distinct from

neurons that encoded values for decision-making (in an order-based reference frame of first-versus-second object) identified

in GLM5 (Equation 7). Among 127 neurons classified as object-value coding with GLM 1, 45 neurons (35%) were also classified

as coding values for decision-making on partner’s trials (‘Second object value’ regressor in Equation 7). By contrast, 82 neurons

encoded object value but were insignificant for the second-value regressor on partner’s trials and 30 neurons were significant

for the second-value regressor on partner’s trials without showing object-value coding. For the recorded monkey’s trials,

53 object-value neurons (43%) showed a significant second-value regressor, 74 neurons encoded object value but were

insignificant for the second-value regressor and 28 neurons were significant for the second-value regressor on recordedmonkey’s

trials without showing object value. Thus, some neurons were classified as coding both object value and value for decision-

making but substantial numbers of neurons also showed distinct coding of either object value or order-based value for

decision-making.

GLM 6 (Equation 8): this GLM served the following purposes. First, the GLM served to identify neurons with activity that distin-

guished self versus other trials, while controlling for other task-related variables. Second, the GLM served to derive self-other bs

for the graph shown in Figure 6C. Third, the GLM served to calculate coding latencies for Figure 7F. Fourth, the GLM served to derive

coefficients of partial determination (partial R2) for Figure 7G. One GLM was fitted across both recorded monkey’s and partner’s

trials. The GLM was calculated as a sliding-window multiple regression.

y = b0 + b1 ðObject1 first �Object2 firstÞ + b2 ðObject3 first �Object4 firstÞ + b3 ðObject1 chosen�Object2 chosenÞ
+ b4 ðObject3 chosen�Object4 chosenÞ + b5 ðFirst object chosenÞ + b6 ðFirst object valueÞ+ b7 ðSecond object valueÞ
+ b8 ðChosen object valueÞ+ b9 ðSelf �OtherÞ+ ε
with ‘Self – Other’ as an indicator variable for whether the current
 trial was the recorded monkey’s or the partner’s trial, and all other

variables as defined above.

GLM 7 (Equation 9): this GLM served to derive value bs for the analyses and plots shown in Figure 4C and Figure S3C and for

selecting responses for the plots shown in Figure 4B (N = 37 responses) and Figure S3B (N = 107 responses). Separate GLMs

were fitted for recorded monkey’s and partner’s trials. We used this model to estimate the valuation component of neuronal

decision-related activities, as was done in previous studies (Strait et al., 2014), for the purposes of performing the analysis shown
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in Figure 4C and S3C, and for visualizing the value-comparison effect in population activity shown in Figure 4B and Figure S3B. The

formal identification of neurons with significant dynamic value-coding was performed with GLM 5.

y = b0 + b1 ðObject valueÞ+ ε
with y as firing rate during presentation of first cue or second cue
 (fitted in separate GLMs) and ‘Object value’ as object value of the

first or second object (fitted in separate GLMs).

GLM 8 (Equation 10): this GLM served the following purposes. First, the GLM served to identify neurons with activity related to

recorded monkey’s or partner’s left-right actions and object-specific spatial left-right cue positions. Second, the GLM served to

derive coefficients of partial determination (partial R2) for Figure S6B and E. Two GLM were fitted separately for recorded monkey’s

and partner’s trials. The GLM was calculated as a sliding-window multiple regression.

y = b0 + b1 ðObject1 chosen�Object2 chosenÞ + b2 ðObject3 chosen�Object4 chosenÞ + b3 ðFirst object chosenÞ
+ b4 ðFirst object valueÞ+ b5 ðSecond object valueÞ + b6 ðChosen object valueÞ+ b7 ðObject1 left �Object2 leftÞ
+ b8 ðObject3 left �Object4 leftÞ + b9 ðLeft chosenÞ+ ε
with y as firing rate in 200mswindows that were moved in 25ms s
teps across the trial, starting 350ms before onset of choice targets

and ending 750ms after onset of choice targets, ‘Object1 left – Object2 left’ as indicator variable for whether object 1 or object 2 was

shown as left or right choice target, ‘Object3 left – Object4’ left as indicator variable for whether object 3 or object 4 was shown as left

or right choice target, ‘Left chosen’ as indicator variable for whether the left or right target was chosen.

Change point analysis
Weperformed a change point analysis to test the correspondence between activity of value-coding neurons and the animals’ choices

following unannounced probability reversals, using methods used in previous studies (Paton et al., 2006). The test identifies change

points based on slope changes in the cumulative record of choices and neuronal responses. We constructed cumulative records of

neuronal activity around reversal trials based on seven-trial smoothed neuronal impulse rates measured during object presentation.

We constructed corresponding cumulative choice records around reversal points. We included data from both recorded animal and

partner. We excluded sessions in which no change point was identified. Following previous studies (Paton et al., 2006), if multiple

change points were identified, we picked the one closest to the reversal point. A change point was identified using t test with a critical

value of p = 1.0 3 10�6. We show in Figure 3E the results from 182 value-coding responses that met these criteria (R = 0.264, p =

0.0003). The result was significant individually within each monkey (monkey A: R = 0.288, p = 0.002; monkey B: R = 0.242, p =

0.04) and similar results were obtained across all responses, without pre-selection for value coding (across animals: R = 0.166,

p = 5.5 3 10�5; monkey A: R = 0.233, p = 4.2 3 10�5; monkey B: R = 0.119, p = 0.048).

Normalization of population activity
To normalize activity from different amygdala neurons, we subtracted from the impulse rate in a given task period the mean impulse

rate of the pre-fixation control period and divided by the standard deviation of the control period (z-score normalization). We also

distinguished neurons that showed positive relationships or negative relationships with a given variable, based on the sign of the

regression coefficient, and sign-corrected responses with a negative relationship. Normalized data were used for Figure 3D,

Figure 4B, D, Figure S2A, C, D, Figure S3B, D, Figure 6B, and all decoding analyses.

Normalization of regression coefficients
Standardized regression coefficients were defined as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and sy the stan-

dard deviations of independent variable i and the dependent variable, respectively. Standardized regression coefficients were used

for Figure 3C, 3H, 3I, Figure 4C, Figure 6C, Figure S2C, Figure S3C and Figure S4D. Specifically, to create the scatterplots shown in

Figure 4C and Figure S3C, we performed a linear regression of impulse rates during presentation of the first object or second object

on that object’s current value (Equation 9), derived from the animal-specific reinforcement-learning model. These regressions were

performed separately for recorded monkey and partner monkey. The scatterplots show data from all 205 recorded amygdala

neurons (one data point lies outside the plotted data range).

Population decoding
We used a support-vector-machine (SVM) classifier to quantify information about task-related variables contained in neuronal pop-

ulation activity in defined task periods, following previous neurophysiological studies (Grabenhorst et al., 2016; Tsutsui et al., 2016).

The SVM classifier was trained to find a linear hyperplane that best separated patterns of neuronal population activity defined by a

given grouping variable (e.g., high versus low value, choice for object A versus object B, self-trial versus other-trial, self-choice versus

other-choice). Additional nearest-neighbor (NN) classification was also used which assigned each trial to the group of its nearest

single-trial neighbor in a space defined by the distribution of impulse rates for different levels of the grouping variable using the

Euclidean distance. Both SVM and NN classification are biologically plausible as downstream neurons could perform similar
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classification by comparing inputs on a given trial with stored synaptic-weight vectors. Both classifiers performed qualitatively very

similar but SVM decoding was typically more accurate.

To prepare data for decoding, we aggregated z-normalized trial-by-trial impulse rates of independently recorded amygdala neu-

rons from specific task periods into pseudo-populations. We used all recorded neurons that met inclusion criteria for a minimum trial

number, without pre-selecting for coding a specific variable. Depending on the variable used for decoding, we only included neurons

in the decoding analyses that had a minimum number of either 5 or 10 trials per group for which decoding was performed; we

confirmed that results were robust to changes in this minimum trial number. We created two n bymmatrices with n columns deter-

mined by the number of neurons and m rows determined by the number of trials. We defined two matrices, one for each group for

which decoding was performed, using the following different groupings. For object-value decoding, we defined separate groups for

low and high object value, determined for each neuron by calculating value terciles. (We obtained very similar results by repeating the

decoding analyses based onmedian-split.) For choice decoding, we defined two separate groups depending on the object choice on

each trial (A or B, given by the set of two objects from which the animal was currently choosing). For self-other decoding, we defined

two separate groups depending on whether it was the recorded monkey’s (self) or partner’s (other) trial. For choice decoding shown

in Figure 7H, wewished to test the neuronal discriminability of self-choice versus other-choice; we therefore grouped trials according

to whether recorded monkey or partner chose a given object. Accordingly, each cell in a matrix contained the impulse rate from a

single neuron on a single trial measured for a given group. Because neurons were not simultaneously recorded, we randomly

matched up trials from different neurons for the same group and then repeated the decoding analysis with different random trial

matching (within-group trial matching) 150 times. We found this number of repetitions produced very stable classification results

and confirmed robustness with respect to changes in this number. (We note that this overall approach likely provides a lower bound

for decoding performance as it ignores potential contributions from cross-correlations between neurons; investigation of cross-

correlations would require data from simultaneously recorded neurons.)

We quantified decoding accuracy as the percentage of correctly classified trials, averaged over all decoding analyses for different

randomwithin-group trial matchings. We used a leave-one-out cross-validation procedure: a classifier was trained to learn the map-

ping from impulse rates to groups on all trials except one test trial; this remaining trial was then used for testing the classifier and the

procedure repeated until all trials had been tested. We obtained very similar results when splitting data into 80% training trials and

20% test trials. We implemented SVM decoding in MATLAB (Version R2013b, Mathworks, Natick, MA) using the ‘svmtrain’ and

‘svmclassify’ functions with a linear kernel and the default sequential minimal optimization method for finding the separating hyper-

plane. The NN decoding was implemented in MATLAB with custom code.

To investigate how decoding accuracy depended on the number of neurons in the decoding sample (Figure 3J, Figure 6D), we

randomly selected a given number of neurons at each step (without replacement) and then determined the percentage correct

classification. For each step (i.e., each possible population size) this procedure was repeated 100 times. We also performed decod-

ing for randomly shuffled data (shuffled group assignment without replacement) with 5,000 iterations to test whether decoding on real

data differed significantly from chance. Statistical significance was determined by comparing vectors of percentage correct

decoding accuracy between real data and randomly shuffled data using the rank-sum test.

For the analyses shown in Figures 3I, K, Figure 4G, I, and Figure S5C, D, we performed decoding repeatedly over 5,000 iterations

based on small subsets (N = 20) of randomly sampled neurons drawnwithout replacement (within each iteration) from all neurons that

met minimum criteria for classification. For each iteration, we noted the percentage-correct accuracy as well as the identity of the

neurons included in the sample. This approach allowed us to then relate the decoding accuracy resulting from a given subset of

20 neurons to the average value slope of these individual neurons (Figure 3I), the average behavioral performance of the recorded

monkey during the sessions in which these neurons were recorded (Figure 3K, Figure 4G), the fraction of basomedial neurons in

the sample (Figure 4I), or mean fixation durations (Figure S5C, D).

For Figure 5, we adapted a nearest-neighbor classifier to examine coding across amygdala nuclei. We computed Euclidean dis-

tances between single-trial activity vectors and mean activity vectors for different value levels or choices. Such decoding could be

neurally implemented by comparing current-trial activity patterns to synaptic-weight vectors based on past trials. We focused on the

task period before objects switched between animals, as this was the most relevant period for observational learning. We prese-

lected the 20 neurons with highest value-coding and separately the 20 neurons with highest choice coding in each nucleus, based

on regression coefficients. We then proceeded as for the decoding analyses described above, except that decoding was not based

on Euclidean distances between single-trial vectors but on Euclidean distances between a single-trial test vector and the mean ac-

tivity vectors for the two alternative groups, calculated from all trials except the test trial. For Self-to-Other cross-decoding, we used

single-trial test vectors from the recordedmonkey’s trials and computed the Euclidean distances to mean activity vectors calculated

from the partner’s trials. Figure 5A illustrates this approach: a single-trial test point (in the activity space of two example neurons) was

compared to mean activity vectors for recorded monkey (upper panel) and partner (lower panel). Figure 5E and F show the correla-

tions between themean activity vectors corresponding to different decoding groups (i.e different value levels, or different choices) on

recordedmonkey’s trials (rSelf,Self), different decoding groups on recordedmonkey’s trials (rOther,Other), and same decoding groups on

recorded monkey’s and partner’s trials (rSelf,Other). A higher coefficient rSelf,Other compared to rSelf,Self and rSelf,Other would show that

population vectors for the same values across recorded monkey’s and partner’s trials were more similar than vectors for different

values within each animal, indicative of shared neuronal coding.
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Biophysical neuronal network model of decision-making
We adapted an established network model of decision-making that we extended to the architecture shown in Figure 7A. The network

contains two decision modules: the ‘self’ module computes the recorded monkey’s own choices and the ‘other’ module simulates

the social partner’s choices. Each decision-making module is implemented as an attractor neural network (ANN), which is a widely

studied model of evidence accumulation that relies on reverberant activity of competing neural populations (or pools) and mutual

inhibition mediated by slow NMDA channel opening dynamics. The decision of each ANN depends on the activity of the competing

decision populations. More specifically, each module is thus composed of two reverberating populations of excitatory object-

specific decision-making neurons. The competition between the two alternative choices is implemented through mutual

GABAergic inhibitory connections between both excitatory pools. The operation of each of these populations is captured by the

Dynamic Mean Field (DMF) equations (Wong and Wang, 2006). The DMF describes consistently the time evolution of the ensemble

activity of different neural populations consisting of biophysical realistic spiking neurons coupled through excitatory (AMPA and

NMDA) and inhibitory (GABA-A) synaptic receptor types. In the DMF approach, each population firing rate depends on the input

currents into that population, whereas the input currents depend on the firing rates. Consequently, the population firing rate can

be determined self-consistently by a reduced system of coupled non-linear differential equations expressing the population firing

rates and the respective input currents. In brief, the mean field approach considers the diffusion approximation according to which

sums of synaptic gating variables are replaced by a DC component and a Gaussian fluctuation term. Moreover, the first passage

equation for calculating the firing rate is approximated by a simple sigmoidal input–output function (Wong and Wang, 2006). Since

the synaptic gating variable of NMDA receptors has a much longer decay time constant (100 ms) than the AMPA receptors, the dy-

namics of the NMDA gating variable dominates the time evolution of the system, while the AMPA synaptic variable instantaneously

reaches its steady state. Hence, one can neglect contributions by the AMPA receptors to the local recurrent excitation. The decision-

making module dynamics can be simply described by the following set of coupled non-linear stochastic differential equations:

x1ðtÞ= J11S1ðtÞ � J12S2ðtÞ+ I0 + I1 + Inoise;1ðtÞ
x2ðtÞ= J22S2ðtÞ � J21S1ðtÞ+ I0 + I2 + Inoise;2ðtÞ
dSiðtÞ
dt

= � SiðtÞ
tS

+ ð1� SiðtÞÞgHiðtÞ
HiðtÞ= axiðtÞ � b

1� exp½ � dðaxiðtÞ � bÞ�
Ii = Jextm0ð1HDÞ
tn
dInoise;iðtÞ

dt
= � Inoise;iðtÞ+uðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tns

2
noise

q

where HiðtÞ denotes the population firing rate of the excitatory pop
ulation i. SiðtÞ denotes the average excitatory synaptic gating var-

iable at the population i. The input currents to the excitatory population i is given by Ii. The different level of value evidence to the

respective decision-making pools is regulated by the parameter D. In our case D was 0.01 for the difficult decision condition and

0.05 for the easy decision-making condition. The input parameters were Jext = 0.000183 nAHz-1 and m0 = 30 Hz. I0 encodes external

social input stimulation for simulating the social effect. As shown in Figure 7E, I0 was chosen before the bifurcation (I0 = 0.38) for

simulating the case without social input, and after the bifurcation (I0 = 0.44) for simulating the case with social input. Parameter values

for the neuronal input– output functions H are: a = 270 (VnC)-1, b = 108 Hz, and d = 0.154 s. The kinetic parameters are g = 0.641, the

NMDA latency tS = 100 ms and the noise latency tn = 10 ms. The reverberatory excitatory synaptic coupling was J11 = J22 = 0.6 nA

and the inhibitory synaptic coupling was J12 = J21 = 0.3 nA. In the last equation uðtÞ is uncorrelated standard Gaussian noise and the

noise amplitude was s2noise = 0.02 nA. We used the Euler-Murayama method for integrating the stochastic system of coupled

differential equations.
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Supplemental Figures

Figure S1. Behavioral Data, Related to Figure 2

A, Recorded monkey’s choices after object switch depended on partner’s immediately preceding pre-switch performance. Regression of recorded monkey’s

post-switch choice probability for the high-value object (calculated over the first three post-switch trials) on partner’s pre-switch choice probability for the same

object (‘Other choice’) and, as control, for the recorded monkey’s pre-switch choice probability for a different high-value object (‘Self choice’). The recorded

monkey was more likely to choose the high-value object if the partner chose the same object immediately before switch. B, Results of fitting reinforcement

learning models. Distributions of pseudo R2 and learning rate across animals and sessions. C,Monkey’s behavior matched reinforcement learners. Reward rate

obtained by both recorded monkeys (green, blue) within the first three trials post-switch (mean ± s.e.m. across sessions), and best-fitting reinforcement learning

model plotted for different learning rates (Equation 1). Black and magenta curves show corresponding reward rate (mean ± s.e.m) of simulated reinforcement

learner within three simulated post-switch trials (10,000 iterations). ‘Random’: reward rate obtained by agent making random choices; ‘Omniscient’: reward rate

obtained by agent always choosing the best option. Choice stochasticity parameter for reinforcement learner was set to themean parameter value of the animals.

D, Fixations for left and right object on own left-choice trials. Fixation densities for regions of interest corresponding to location of left and right object, measured

after cue appearance before left-object choice, across animals (left) and separately for both recorded monkeys (fixations were not measured for non-recorded,

partner monkey). Statistical test: ranksum test. E, Contrast map of recorded monkey’s fixations before recorded monkey’s right versus left choices (measured

after target appearance before recorded monkey released touch key). F, Fixations for left and right object on partner’s right-choice trials (left/right refers to the

recordedmonkey’s perspective). Fixation densities for regions of interest corresponding to location of left and right object measured after cue appearance before

partner’s choice. (As both animals faced each other over the touch screen, partner’s left choice corresponds to observed right choice for recorded monkey.) All

averages are mean ± s.e.m.



Figure S2. Object-Value Coding Tests, Related to Figure 3

A, Activity of value-coding neurons on recordedmonkey’s trials (black) tracked recordedmonkey’s choice probability (magenta) over reward-probability reversal.

B, C, Control analysis for encoding of partner’s values versus recorded monkey’s values. B, Trial-by-trial record of subjective values, choices and rewards in an

example session for recordedmonkey (black) and partner (magenta). Curves: subjective object values derived from reinforcement learningmodel fitted to data on

recorded monkey’s trials (black) and partner’s trials (magenta). Blue points indicate trials with significant (larger than one standard deviation) value difference

between animals; these values (across recording sessions) and corresponding neuronal activities were used for analysis in (C). Vertical bars: single-trial choices,

referenced to specific objects (upper versus lower panels); short/long bars: unrewarded/rewarded choices. C, Better relationship between neuronal data on

partner’s trials and partner’s object values, compared to recorded monkey’s object values. Left: linear regression of neuronal responses on partner’s trials on

partner’s object values, calculated across sessions and neurons, for trials with significant difference between partner’s and recorded monkey’s values (blue data

points in (B)). Right: Comparison between regression coefficients calculated for partner and recorded monkey (p < 0.005). The relationship between neuronal

activity on partner’s trials and partner’s object values was not explained by relationship to recorded monkey’s own values. Thus, when subjective values differed

markedly between animals (due to different choice-reward histories), responses on partner’s trials distinctly reflected partner’s values rather than recorded

monkey’s values. D, Population activity separately reflected reward-choice histories of partner and recorded monkey. Neuronal object responses on recorded

monkey’s trials (black) and partner’s trials (magenta) for different numbers of rewards recently received from object choices. Object responses on both partner’s

trials and recorded monkey’s trials were stronger for more frequently rewarded objects. Thus, neurons were directly sensitive to partner’s reward history

separately from recorded monkey’s own reward history. All averages are mean ± s.e.m.



Figure S3. Amygdala Neurons Signal Recorded Monkey’s Decision Processes, Related to Figure 4

A, Single neuron predicting choice for recordedmonkey but not partner. Responses to second object on partner’s trials (left) and recorded monkey’s trials (right),

sorted by forthcoming object choice. B, Neuronal value comparison on recorded monkey’s trials. Population activity of value-coding neurons (N = 107,

Equation 9) during sequential presentation of recorded monkey’s choice objects, sorted according to value of first object. C, Neuronal value slopes on recorded

monkey’s trials indicate mutual-inhibitory value comparison. Left: anti-correlated value slopes for first object at first cue and second cue; value signals changed

sign from first to second cue. Right: correlated values slopes for first and second object. D, Stronger choice signals for easier decisions. Population activity of

choice-predictive neurons on recorded monkey’s trials for easy and difficult decisions (median-split by value difference). E, Single-neuron value-to-choice

transition on recordedmonkey’s trials. Explained variance of value and choice regressors from sliding-window regression. Activity transitioned from coding value

to predicting recordedmonkey’s choice, indicative of decision-making. F, Location of neurons that predicted recordedmonkey’s choices. Diamond: neuron from

(A). All averages are mean ± s.e.m.G, Assessing joint versus separate choice coding for self and other. Numbers of neurons encoding choices for self only (black

circles), other only (magenta circles) or both self and other (overlap) tested for different object pairs. (i) Numbers of choice-coding neurons reported in the main

text (GLM5, Equation 7) for the regressor ‘Object 3 chosen – Object 4 chosen’; these were the critical objects for observational learning as the partner chose them

at session start while the recorded monkey chose them after object switch. (ii) Numbers of choice-coding neurons for the regressor ‘Object 1 chosen – Object 2

chosen’ (GLM5, Equation 7); these objects were initially chosen by the recorded monkey while the partner monkey chose them after object switch. For both

regressors, the proportions of separate choice coding for self and other were significantly higher than those for joint choice coding (z-test for dependent samples;

regressor ‘Object 3 chosen – Object 4 chosen’, self only versus joint: z = 3.48, p = 0.0005, other only versus joint: z = 4.13, p = 0.00003, self only versus other only:

z = 0.73, p = 0.467; regressor ‘Object 1 chosen –Object 2 chosen’, self only versus joint: z = 4.03, p = 0.00005, other only versus joint: z = 2.65, p = 0.0079, self only

versus other only: z = 1.48, p = 0.138). (iii) Numbers of choice-coding neurons specifically for the task period before object switch, which was the relevant task

period for observational learning when the animals were choosing from different picture sets (GLM5, Equation 7): recorded monkey’s choices were modeled by

the regressor ‘Object 1 chosen – Object 2 chosen’ whereas partner’s choices were modeled by the regressor ‘Object 3 chosen – Object 4 chosen’. The pro-

portions of separate choice-coding for self and other were significantly higher than those for joint choice coding (z-test for dependent samples; self only versus

joint: z = 2.65, p = 0.0079, other only versus joint: z = 2.65, p = 0.0079, self only versus other only: z = 0, p = 1.0). (iv) Numbers of choice-coding neurons for

object-independent, order-referenced choices (regressor ‘First object chosen’, GLM5, Equation 7). The proportions of separate choice coding for self and

other were significantly higher than those for joint choice coding (z-test for dependent samples; self only versus joint: z = 3.77, p = 0.0001, other only versus joint:

z = 2.75, p = 0.006, self only versus other only: z = 1.15, p = 0.248). Taken together, these results confirmed that separate choice coding for partner and recorded

monkey was significantly more prevalent in amygdala neurons than joint choice coding.



Figure S4. Value-Comparison Signals in Social Task and Relative Absence of Value Signals in Non-social Control Task, Related to Figure 4

A,Neuronal value comparison on partner’s trials in a single neuron. Activity of one value-coding neuron during sequential presentation of partner’s choice objects,

sorted according to value of first object. B, C, Comparison between social observational learning task and non-social control task. B, Single neuron encoding

value-to-choice transition on partner’s trials in social task. C, Activity of the same neuron recorded in a non-social control task. The neuron failed to signal value

(reward probability) of conditioned stimuli that predicted reward for the recorded monkey in absence of social partner.D, Value coding in non-social control task.

Histogram of value slopes (b) for 47 responses with significant value coding on other’s trials (Equation 7) that were tested in the non-social control task (black) and

subset of 18 neurons (38%) with common significant value coding across tasks (orange).



Figure S5. Relationships between Simulation Neurons and Observation of Partner’s Choices, Related to Figure 4

A, Neuronal value slopes (unsigned bs) of simulation neurons plotted against the time that the recorded monkey spent looking at partner’s choice objects when

the partner executed the choice. Neuronal bs were obtained from Equation 7 and correspond to single-neuron sensitivities to partner’s forthcoming choice,

measured before partner’s action (N = 205 neurons, across-neuron analysis). Looking durations were measured as the mean duration of the recorded monkey’s

fixations, within a recording session, that fell onto the touch screen area corresponding to partner’s choice objects and action targets (cf. Figure 1A) in the period

from onset of choice-cues in left-right arrangement until onset of reward receipt. The relationship was also significant for fixations specifically of partner’s chosen

object (r = 0.152, p = 0.0299); as a control, the relationship was not found for neuronal encoding of recorded monkey’s own choices (p = 0.563), or for fixations of

partner’s face during action period (p = 0.651) or reward period (p = 0.155).B,Neuronal value slopes for simulation neurons encoding partner’s abstract choices in

an order-based frame of reference (choice of first versus second object), plotted against fixation durations as in (A). C, Relationship between neuronal decoding

accuracy of partner’s forthcoming choices and fixation durations. Leave-one-out cross-validated accuracy of support-vector-machine classifier decoding

partner’s choices from randomly sampled subsets of 20 neurons (5,000 iterations), plotted against mean fixation duration of partner’s chosen objects. Neuronal

activity used for classification was from the period before objects switched between animals and was measured on each trial during sequential object

presentation, i.e., before partner’s action (choice prediction). Fixations were measured during action period as in (A).D, Relationship between neuronal decoding

accuracy of partner’s observed choices and fixation durations. Same analysis as in (C) but neuronal choice decoding was performed during the period when the

partner executed the choice (choice observation).



Figure S6. Amygdala Neurons Encode Action Information for Recorded Monkey but Not for Partner, Related to Figure 7

A, Single neuron signaling recorded monkey’s left versus right arm movements during target presentation. The neuron responded more strongly when the

recorded monkey performed an arm movement toward a touch target on the left side of the monitor compared to movement toward the right side. The neuron

failed to distinguish observed left-right actions on partner’s trials.B,Population data across all recorded neurons. Explained variance by left-right action regressor

during target presentation (sliding-window regression). Significant information about left-right actions was encoded by neurons on recorded monkey’s trials

(black) but not on partner’s trials (magenta). C, Action coding for recorded monkey and partner. A significant number of neurons signaled recorded monkey’s

executed actions; by contrast, few neurons signaled observed partner’s actions and no neuron jointly signaled partner’s and recorded monkey’s actions.

D, Choice-to-action transitions. Left: Some neurons dynamically encoded the recorded monkey’s object choice before encoding the recorded monkey’s action.

Such choice-to-action transitions were entirely absent on partner’s trials. Right: Corresponding data for neurons transition from choice-coding to coding of left-

right cue position. E,Choice-to-action-transition in a single amygdala neuron. On recordedmonkey’s trials, the neuron signaled themonkey’s forthcoming object

choice just before onset of choice targets. Following target presentation, the neuron’s activity began to signal the monkey’s left-right action. All averages are

mean ± s.e.m.
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