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Abstract

Motor-learning literature focuses on simple laboratory-tasks due to their controlled manner

and the ease to apply manipulations to induce learning and adaptation. Recently, we intro-

duced a billiards paradigm and demonstrated the feasibility of real-world-neuroscience

using wearables for naturalistic full-body motion-tracking and mobile-brain-imaging. Here

we developed an embodied virtual-reality (VR) environment to our real-world billiards para-

digm, which allows to control the visual feedback for this complex real-world task, while

maintaining sense of embodiment. The setup was validated by comparing real-world ball

trajectories with the trajectories of the virtual balls, calculated by the physics engine. We

then ran our short-term motor learning protocol in the embodied VR. Subjects played billiard

shots when they held the physical cue and hit a physical ball on the table while seeing it all in

VR. We found comparable short-term motor learning trends in the embodied VR to those we

previously reported in the physical real-world task. Embodied VR can be used for learning

real-world tasks in a highly controlled environment which enables applying visual manipula-

tions, common in laboratory-tasks and rehabilitation, to a real-world full-body task. Embod-

ied VR enables to manipulate feedback and apply perturbations to isolate and assess

interactions between specific motor-learning components, thus enabling addressing the cur-

rent questions of motor-learning in real-world tasks. Such a setup can potentially be used for

rehabilitation, where VR is gaining popularity but the transfer to the real-world is currently

limited, presumably, due to the lack of embodiment.

Introduction

Motor learning is a key feature of our development and our daily lives, from a baby learning

to crawl, to an adult learning crafts or sports, or undergoing rehabilitation after an injury or

a stroke. It is a complex process, which involves movement in many degrees of freedom

(DoF) and multiple learning mechanisms. Yet the majority of motor learning literature

focuses on simple lab-based tasks with limited DoF. The key advantage of these tasks (which

made them so popular) is the ability to apply highly controlled manipulations. These
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manipulations can be a haptic perturbation, where the robotic manipulandum pushes the

subjects in a different direction from their intended movement, such as force-field adapta-

tion [e.g. 1–4]. Alternatively, it can be a visual manipulation where the object that represents

the subject’s end effector is moving in a different direction, speed, or magnitude than the

end effector itself, such as in visuomotor rotation adaptation [e.g. 5–9]. Additionally, visual

manipulations can be applied to the feedback, by adding delays [10–13], or showing online

feedback of the full movement trajectory versus only the end-point for knowledge of results

[e.g. 14–16]. These manipulations allow to isolate specific movement/learning components

and establish causality.

In contrast to lab-based tasks, real-world neuroscience approaches study neurobehavioral

processes in natural behavioural settings [17–20]. We recently presented a naturalistic real-

world motor learning paradigm, using wearables for full-body motion tracking and EEG for

mobile brain imaging, while making people perform actual real-world tasks, such as playing

the competitive sport of pool-table billiards [21, 22]. We showed that short-term motor learn-

ing is a full-body process that involves multiple learning mechanisms, and different subjects

might prefer one over the other. While the study of real-world tasks takes us closer to under-

standing real-world motor-learning, it is lacking the key advantage of lab-based toy-tasks,

highly controlled manipulations of known variables.

To mechanistically study the human brain and cognition in real-world tasks we have to be

able to introduce causal manipulations. This motivated us now to develop and evaluate a

real-world motor learning paradigm using a novel experimental framework: Using Virtual

Reality (VR [23, see review 24]) to apply controlled visual manipulations in a real-world task.

VR has clear benefits such as ease of controlling repetition, feedback, and motivation, as well

as overall advantages in safety, time, space, equipment, cost efficiency, and ease of documen-

tation [25, 26]. Thus, it is commonly used in rehabilitation after stroke [27, 28] or brain

injury [29, 30], and for Parkinson’s disease [31, 32]. In simple sensorimotor lab-based motor

learning paradigms, VR training showed to have equivalent results to those of real training

[33–35], though adaption in VR appears to be more reliant on explicit/cognitive strategies

[35].

While VR is good for visual immersion, it is often lacking the Sense of Embodiment–the

senses associated with being inside, having, and controlling a body [36]. Sense of embodiment

requires a sense of self-location, agency, and body ownership [37–39]. This study aims to set

and validate an Embodied Virtual Reality (EVR) for real-world motor-learning. I.e. VR envi-

ronment in which all the objects the subjects see and interact with are the physical objects that

they can physically sense. This is following the operational definition of embodiment through

behaviour which is the ability to process sensorimotor information through technology in the

same way as the properties of one’s own body parts [40]. Such EVR setup would enable to

apply highly controlled manipulations in a real-world task. We develop here an EVR to our bil-

liards paradigm [21] by synchronizing the positions of the real-world billiards objects (table,

cue-stick, balls) into the VR environment using optical marker based motion capture. To be

clear, our virtual reality environment was presented simultaneously and veridically matched to

the real-world environment, a user looking at the pool table holding a cue, would thus see the

pool table and the cue at the same location in the visual field if their VR headset is put on or

taken off. Thus, the participant can play with a physical cue and a physical ball on the physical

pool-table while seeing the world from the same perspective in VR (see Supplemental Video or

https://youtu.be/m68_UYkMbSk). We ran our real-world billiards experimental protocol in

this novel EVR to explore the similarities and differences in the short-term motor learning

between the real-world paradigm and its EVR mock-up.
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Methods

Experimental setup

Our EVR experimental setup (Fig 1A) merges a virtual environment and real-world environ-

ment which are presented simultaneously and veridically aligned. It is composed of a real-

world environment of a physical pool table, a VR environment of the same pool table (Fig 1B),

and optical motion capture systems to link between the two environments (Fig 1C). The posi-

tions of the virtual billiards table and balls the subjects saw in VR were matched with their

respective real-world positions during calibration, and the cue-stick trajectory was streamed

into the VR. This allowed subjects to physically engage in the VR task and see their real-world

actions and interactions with ball and pool cue stick veridically aligned in VR. This setup

enables to apply experimental trickery (which is common in lab-based task but usually impos-

sible in the real-world) to a real-world task (e.g. scaling, up or down, the ball velocity or the

directional error to target, adding delay, or hiding the ball’s trajectory).

Real-world objects included the same billiards table, cue ball, target ball, and cue stick, used

in our real-world billiard study [21]. Subjects were unable to see anything in the real-world

environment; they could only see a virtual projection of the game objects. They were, however,

able to receive tactile feedback from the objects by interacting with them.

The Optitrack system with 4 Motion Capture cameras (Prime 13W) and Motiv software

were used (all made by Natural Point Inc., Corvallis, OR) to stream the position of the real-

world cue stick into the VR using 4 markers on the pool cue stick (Fig 1A). The position of

each marker was streamed to Unity3d using the NATNET Optitrack Unity3d Client plugin

and associated Optitrack Streaming Client script edited for the application. The positions were

transformed from the Optitrack environment to the Unity3d environment with a transforma-

tion matrix derived during calibration. The cue stick asset was then reconstructed in VR using

known geometric quantities of the cue stick and marker locations (Fig 1B). The placement of

markers on the cue stick, as well as the position and orientation of the cameras, were key to

provide consistent marker tracking and accurate control in VR without significantly con-

straining the subject movement. The rotation of the cue stick or the position of the subject can

interfere with the line of sight between the markers on the cue stick and the cameras. Thus, to

Fig 1. Experimental setup and calibration. (A) 10 right-handed healthy subjects performed 300 repeated trials of billiards shots in Embodied Virtual

Reality (EVR). Green arrows mark the motion capture markers used to track and stream the cue stick movement into the EVR environment (B) Scene

view in the EVR. Subjects were instructed to hit the cue ball (white), which was a physical ball on the table (in A), in attempt to shoot the virtual target ball

(red) towards the far-left corner. (C) For environments calibration, MoCap markers were attached to the HTC Vive controllers which were placed in the

pool-table’s pockets with additional solo marker in the cue ball position.

https://doi.org/10.1371/journal.pone.0245717.g001
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prevent errors in cue tracking, if markers become untracked the cue stick disappears from the

visual scene until proper tracking is resumed.

The head-mounted display used was the HTC Vive Pro (HTC, Xindian, Taiwan). The HTC

Vive system includes two base stations which forms a lighthouse tracking system emitting

timed infrared pulses that are picked up by the headset and controllers. Here, the controllers

were used only for the environment calibration (see below). The frame rate for the VR display

was 90 Hz. The VR billiards environment was built with the Unity3d physics engine (Unity

Technologies, San Francisco, CA). The Unity3d assets (billiards table, cue stick, balls) were

taken from an open-source Unity3d project [41] and scaled to match the dimensions of the

real-world objects. Scripts developed in C# to manage game object interactions, apply physics,

and record data. Unity3d software was used to develop custom physics for game collisions.

Cue stick–cue ball collision force in Unity3d is computed from the median velocity and direc-

tion of the cue stick in the 10 frames (~0.11 seconds) before contact. Sensory and auditory

feedback comes from the real-world objects for this initial collision. Cue ball–target ball colli-

sion is hardcoded as a perfectly inelastic collision. Billiard ball sound effect is outputted to the

Vive headphones during this collision. The default Unity3d engine was used for ball dynamics,

with specific mass and friction parameters tuned to match as closely as possible to real-world

ball behaviour. For the game physics validation, the physical cue ball on the pool table was

tracked with a high-speed camera (Dalsa Genie Nano, Teledyne DALSA, Waterloo, Ontario)

and its trajectories were compared with those of the VR ball.

For environment calibration, the ‘y-axis’ was set directly upwards (orthogonal to the

ground plane) in both the Unity3d and Optitrack environments during their respective initial

calibrations. This allows us to only require a 2D (x-z) transformation between environments,

using a linear ratio to scale the height. The transformation matrix was determined by matching

the positions of known coordinates in both Unity3d and Optitrack environments. We attached

markers to the Vive controllers and during calibration mode set them in the corner pockets of

the table and placed a solo marker on the cue ball location (Fig 1C), to compute the transfor-

mation matrix as well as position and scale of the real-world table. This transformation matrix

was then used to transform points from the Optitrack environment into the Unity3d space.

Billiard ball tracking

We validate the reliability of the trajectories of the virtual balls in the EVR, by comparing them

with the trajectories of real balls during the same shot. The movement of the real balls on the

pool table were tracked with a computer vision system mounted from the ceiling (Genie Nano

C1280 Color Camera, Teledyne Dalsa, Waterloo, Canada), with a resolution of 752x444 pixels

and a frequency of 200Hz. Image videos were recorded and analysed with our custom software

written for the real-world paradigm [21, 22]. The ball tracking was used only for the offline val-

idation of the reliability of the trajectories of the virtual balls in the EVR. During the experi-

ment the ball was placed on a marking on the table. The marked location slightly sunken in

the cloth and thus the positioning was highly accurate. We should also note that the accuracy

of the physical ball position was important only for the tactile feedback of the ball and not for

the ball trajectory, which was calculated by the game’s physics engine using the position of the

virtual ball.

Experimental design

10 right-handed healthy human volunteers with normal or corrected-to-normal visual acuity

(4 women and 6 men, aged 24±2) participated in the study following the experimental protocol

from Haar et al [21]. All experimental procedures were approved by the Imperial College
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Research Ethics Committee and performed in accordance with the declaration of Helsinki. All

volunteers gave informed consent prior to participating in the study. The volunteers, who had

little to no previous experience with playing billiards, performed 300 repeated trials in the

EVR setup where the cue ball (white) and the target ball (red) were placed in the same loca-

tions and the subject was asked to shoot the target ball towards the pocket of the far-left corner

(Fig 1B). VR trials ended when ball velocities fell below the threshold value, and the next trial

began when the subject moved the cue stick tip to a set distance away from the cue ball start

position. The trials were split into 6 sets of 50 trials with a short break in-between. For the data

analysis, we further split each set into two blocks of 25 trials each, resulting in 12 blocks. Dur-

ing the entire short-term motor learning process, we recorded the subjects’ full-body move-

ments with a motion-tracking ‘suit’ of 17 wireless inertial measurement units (IMUs).

Movement of all game objects in Unity3d (most notably ball and cue stick trajectories relative

to the table) were captured in every frame in 90Hz sampling.

Full-body motion tracking

Kinematic data were recorded at 60 Hz using a wearable motion tracking ‘suit’ of 17 wireless

IMUs (Xsens MVN Awinda, Xsens Technologies BV, Enschede, The Netherlands). Data

acquisition was done via a graphical interface (MVN Analyze, Xsens Technologies BV,

Ensched, The Netherlands). The Xsens joint angles and position data were exported as XML

files and analyzed using custom software written in MATLAB (R2017a, The MathWorks, Inc.,

MA, USA). The Xsens full-body kinematics were extracted in joint angles in 3 degrees of free-

dom for each joint that followed the International Society of Biomechanics (ISB) recommen-

dations for Euler angle extractions of Z (flexion/extension), X (abduction/adduction) Y

(internal/external rotation).

Analysis of movement velocity profiles

From the sensor data we extracted the joint angular velocity profiles of all joints in all trials.

We analysed the joint angular velocity profiles instead of the absolute joint angle’s probability

distributions, as the latter are more sensitive to drift in the sensors. We previously showed that

joint angular velocity probability distributions are more subject invariant than joint angle dis-

tributions suggesting these are the reproducible features across subjects in natural behaviour

[42]. In the current task, this robustness is quite intuitive: all subjects stood in front of the

same pool table and used the same cue stick, thus the subjects’ body size influenced their joint

angles distributions (taller subjects with longer arms had to bend more towards the table and

flex their elbow less than shorter subjects with shorter limbs) but not joints angular velocity

probability distributions [21]. We defined the peak of the trial as the peak of the average abso-

lute velocity across the DoFs of the right shoulder and the right elbow. We aligned all trials

around the peak of the trial and cropped a window of 1 sec around the peak for the analysis of

joint angles and velocity profiles.

Task performance & learning measures

The task performance was measured by the trial error which was defined as an absolute angu-

lar difference between the target ball movement vector direction and the desired direction to

land the target ball in the centre of the pocket. The decay of error over trials is the clearest sig-

nature of learning in the task. To calculate success rates and intertrial variability, the trials

were divided into blocks of 25 trials each (each experimental set of 50 trials was divided into

two blocks to increase resolution). Success rate in each block was defined by the ratio of suc-

cessful trial (in which the ball fell into the pocket). To improve robustness and account for
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outliers, we fitted the errors in each block with a t-distribution and used the location and scale

parameters (μ and σ) as the blocks’ centre and variability measures. To correct for learning

which is happening within a block, we also calculated a corrected intertrial variability [21],

which was the intertrial variability over the residuals from a regression line fitted to the ball

direction in each block.

To quantify the within-trial variability structure of the body movement, we use the general-

ised variance, which is the determinant of the covariance matrix [43] and is intuitively related

to the multidimensional scatter of data points around their mean. We measured the general-

ised variance over the velocity profiles of all joints in each trial to see how it changes with

learning in the EVR task relative to the real-world task [21]. To study the complexity of the

body movement which was defined by the number of degrees of freedom used by the subject

we applied principal component analysis (PCA) across joints for the velocity profiles per trial

for each subject and used the number of PCs that explain more than 1% of the variance to

quantify the degrees of freedom in each trial movement [21]. We also calculated the manipula-

tive complexity which was suggested by Belić and Faisal [44] as a way to quantify complexity

for a given number of PCs on a fixed scale (C = 1 implies that all PCs contribute equally, and

C = 0 if one PC explains all data variability).

As a measure of task performance in body space, correlation distances (one minus Pearson

correlation coefficient) were calculated between the velocity profile of each joint in each trial

to the velocity profiles of that joint in all successful trials. The minimum over these correlation

distances produced a single measure of Velocity Profile Error (VPE) for each joint in each trial

[21]. While there are multiple combinations of body variables that can all lead to successful

task performance, this measure looks for the distance from the nearest successful solution used

by the subjects and thus provides a metric that accounts for the redundancy in the body.

Results

Our embodied Virtual Reality (EVR) framework is presented simultaneously and veridically

accurately tracks the real-world environment. We found that players were reliably able to

shoot (and aim) the physical pool ball with the physical cue, while their head and eyes were

covered and saw the physical scene rendered in virtual reality. We describe in the following,

first, how we carried out a validation of the virtual vs physical reality in terms of pool playing

task performance and then, report the results of the short-term motor learning experiments.

Ball trajectories validation

To validate how well the billiards shot in the EVR resembles the same shot in real life, the cue

ball trajectories of 100 shots in various directions (-50˚< ø< 50˚ when 0 is straight forward)

were compared between the two environments. The cue ball angles were perfectly correlated

(Pearson correlation r = 0.99) and the root mean squared error (RMSE) was below 3 degrees

(RMSE = 2.85). Thus, the angle of the virtual ball in the EVR, which defines the performance

in this billiards task, was very consistent with the angle of the real-world ball (Fig 2A). The

velocities were also highly correlated (Pearson correlation r = 0.83) between the environments

but the ball velocities in the VR were slightly slower than on the real pool-table (Fig 2B), lead-

ing to an RMSE of 1.03 m/s.

Short-term motor learning experiment

To compare the learning of the billiards shot in our EVR to the learning in real-life, we ran the

same experimental protocol as in [21] and compared the mean subjects’ performance (Fig 3).

In Fig 3, dashed lines are taken from our non-VR physical real-world study [21] which used
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the identical behaviour protocol, lab environments, table, tracking methods etc, and solid lines

are the EVR data from this work. The data of the physical real-world experiment is presented

to ease a qualitative comparison between the environments, and thus avoided statistical

Fig 2. Ball trajectories validation. With-in shot comparison between real cue ball trajectory (measured with a high-

speed camera) and the virtual ball trajectory (calculated by the VR physics engine). Each one is a shot. A total of 100

billiard shots at various directions (-50˚< ø< 50˚ when 0 is straight forward) are presented. (A) Cue ball angles. (B)

Max velocity of the cue ball during each trial. The regression line is in black with its 95% CI in doted lines. Identity line

is in light gray.

https://doi.org/10.1371/journal.pone.0245717.g002

Fig 3. Task performance in EVR vs real-world. (A) The mean absolute directional error of the target-ball, (B) The

success rate, (C) directional variability, and (D) directional variability corrected for learning (see text). (A-D)

presented over blocks of 25 trials. Solid lines present the performance of 10 subjects in the novel EVR environment.

For compression, dashed lines present the performance of a group of 30 subjects in the same pool paradigm in the real-

world (with no VR) from our previous study [21].

https://doi.org/10.1371/journal.pone.0245717.g003
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comparison between the two. Following [21], the trials were divided into blocks of 25 trials

each (each experimental set of 50 trials was divided into two blocks to increase resolution) to

assess the performance. Over blocks, there is a gradual decay in the mean directional absolute

error (Fig 3A). While this decay in the EVR is slower and smaller than in the real-world task,

over the session subjects did reduce their error by 8.3±2.47 degrees (mean±SD) and this decay

was significant (paired t-test p = 0.008). Accordingly, success rates were increasing over blocks

(Fig 3B). The success rates increase in the EVR was also lower than in the real-world task.

Over the session, subjects improved their success rates by 6.2%±1.78% (mean±SEM) and this

increase was significant (paired t-test p = 0.007).

We also see a decay in inter-subject variability over learning, represented by the decrease in

the size of the error bar of the directional error over time (Fig 3A). These short-term motor

learning trends in the directional error and success rates are similar to those reported in the

real world. Nevertheless, there are clear differences in the learning curve. In the EVR, short-

term motor learning occurs slower than in the real-world task, and subjects’ performance is

worse. The most striking difference between the environments is in the intertrial variability

(Fig 3C). In the real-world task, there was a clear decay in intertrial variability throughout the

experiment, whereas in EVR we see no clear trend. Corrected intertrial variability (Fig 3D),

calculated to correct for learning happening within the block [21], also showed no short-term

motor learning trend.

The full-body movements were analysed over the velocity profiles of all joints, as those are

less sensitive to potential drifts in the IMUs and more robust and reproducible in natural

behaviour across subjects and trials [21, 42]. The velocity profiles of the different joints in the

EVR showed that the movement is in the right arm, as expected. The velocity profiles of the

right arm showed the same changes following short-term motor learning as in the real-world

task. The shoulder velocities showed a decrease from the initial trials to the trials of the learn-

ing plateau, suggesting less shoulder movement; while the elbow rotation shows an increase in

velocity over learning (Fig 4). The covariance matrix over the velocity profiles of the different

joints, averaged across blocks of trials of all subjects, emphasizes this trend. Over the first block

it shows that most of the variance in the movement is in the right shoulder while in the 9th

block (trials 201–225, the beginning of the learning plateau) there is an overall similar struc-

ture of the covariance matrix, but with a strong decrease in the shoulder variance and a strong

increase in the variance of right elbow rotation (Fig 5A). This is a similar trend to the one

observed in the real-world task, and even more robust.

The generalized variance (GV; the determinant of the covariance matrix [43]) over the

velocity profiles of all joints was lower in the EVR than in real-world but showed the same

trend: increase fast over the first ~30 trials and later decreased slowly (Fig 5B), suggesting

active control of the exploration-exploitation trade-off. The covariance (Fig 5A) shows that the

changes in the GV were driven by an initial increase followed by a decrease in the variance of

the right shoulder. Like in the real-world, in the EVR as well the internal/external rotation of

the right elbow showed a continuous increase in its variance, which did not follow the trend of

the GV.

Principal component analysis (PCA) across joints for the velocity profiles per trial for each

subject showed that in the EVR subjects used more degrees of freedom in their movement

than in the real-world task (Fig 5C and 5D). While in both environments, in all trials, ~90% of

the variance can be explained by the first PC, there is a slow but consistent rise in the number

of PCs that explain more than 1% of the variance in the joint velocity profiles (Fig 5C). The

manipulative complexity, suggested by Belić and Faisal [44] as a way to quantify complexity

for a given number of PCs on a fixed scale (C = 1 implies that all PCs contribute equally, and

C = 0 if one PC explains all data variability), showed the same trend (Fig 5D). This suggests
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that, in both environments, over trials subjects use more degrees of freedom in their move-

ment; and in EVR they used slightly more DoF than in the real-world task.

As a measure of task performance in body space, we use the Velocity Profile Error (VPE),

as in Haar et al [21]. VPE is defined by the minimal correlation distance (one minus Pearson

correlation coefficient) between the velocity profile of each joint in each trial to the velocity

profiles of that joint in all successful trials. Like in the real-world, in the EVR environment we

also found that VPE shows a clear pattern of decay over trials in an exponential learning curve

for all joints (Fig 6A).

Intertrial variability in joint movement was also measured over the VPEs in each block.

Unlike the real-world task, where learning was evident in the decay over learning of the VPE

intertrial variability, in the EVR there was no such decay in most joints (Fig 6B). This is in line

with the lack of decay in the intertrial variability of the directional error (Fig 3C and 3D).

Fig 4. Velocity profiles in EVR vs real-world. Velocity profiles in 3 degrees of freedom (DoF) for each joint of the

right arm joints. Blue lines are the profiles during the first block (trials 1–25), and red lines are the velocity profiles

after learning plateaus, during the ninth block (trials 201–225). Solid lines present the velocity profiles of 10 subjects in

the novel EVR environment. For compression, dashed lines present the velocity profiles of a group of 30 subjects in the

same pool paradigm in the real-world (with no VR) from our previous study [21].

https://doi.org/10.1371/journal.pone.0245717.g004
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Discussion

In this paper, we present a novel embodied VR framework capable of providing controlled

manipulations to better study naturalistic motor learning in a complex real-world setting. By

vertically aligning real-world objects and displaying them into the VR environment, we were

able to provide real-world proprioceptive feedback–which is missing in most VR environ-

ments–which should enhance the sense of immersion and thus, embodiment. We demonstrate

the similarities and differences between the short-term motor learning in the EVR environ-

ment and in the real-world environment. Thus, we can now directly compare full-body motor

learning in a real-world task between VR and the real-world. Before going into a detailed dis-

cussion of our findings, we reiterate the motivation for this work, namely, to develop a frame-

work to allow neuroscience researchers to use our experimental techniques and protocols to

perform in real-world tasks causal interventions by manipulating visual feedback. For exam-

ple, changing the velocity of the virtual reality, manipulating the force perception of the shot,

changing the ball directional error feedback to the subject, by modulating it at will or hiding

the ball completely once it has been touched [e.g. 45]. In the context of rehabilitation, manipu-

lations can purposefully increase task difficulty to enhance transfer [46].

There is considerable evidence that humans can learn motor skills in VR and transfer learn-

ing from the VR to the real-world. Yet, most of these evidences are in simplified movements

[e.g. 47–50] while the successful transfer of complex skill learning remains a challenge.

Accordingly, there is a real need to enhance transfer to make VR useful for rehabilitation and

assistive technology applications [51, for review see 52]. Current thinking suggests that transfer

should be enhanced the closer VR replicates the real-world [33, 52]. The physical interactions

in our EVR are generating accurate force, touch and proprioceptive perceptions which are

lacking in conventional VR setups. This suggests that our EVR framework could thus enhance

Fig 5. Variance and complexity comparison. (A) The variance covariance matrix of the right arm joints velocity profiles in EVR, averaged across

subjects and trials over the first block, second block and the ninth block (after learning plateaus). (B) The trial-by-trial generalized variance (GV), with a

double-exponential fit (red curve). (C) The number of principal components (PCs) that explain more than 1% of the variance in the velocity profiles of all

joints in a single trial, with an exponential fit (red curve). (D) The manipulative complexity (Belić and Faisal, 2015), with an exponential fit (red curve).

(B-D) Averaged across all subjects over all trials. Data is averaged over the performance of 10 subjects in the novel EVR environment. Grey dots are the

trial averages for the EVR data. Solid red lines are curve fits for EVR data. For compression, dashed lines present the curve fits to a group of 30 subjects in

the same pool paradigm in the real-world (with no VR) from our previous study [21].

https://doi.org/10.1371/journal.pone.0245717.g005

PLOS ONE Embodied VR for real-world motor learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0245717 January 27, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0245717.g005
https://doi.org/10.1371/journal.pone.0245717


Fig 6. Learning over joints. Velocity Profile Error (VPE) and Intertrial variability reduction across all joints in the

EVR task. (A) The trial-by-trial VPE for all 3 DoF of all joints, averaged across all subjects, with an exponential fit. The

time constants of the fits are reported under the title. Color coded for the DoF—blue: flexion/extension; red:
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learning and transfer between VR and the real-world. A recent review on learning and transfer

in VR [52] also highlights the fidelity and dimensionality of the virtual environment as key

components that determine learning and transfer, which are also addressed in our setup. In

that sense, EVR mock-up of real-life tasks, like the one presented here, should be the way for-

ward as it addresses all the key components that determine learning and transfer in real-world

tasks. Since both VR and motion tracking technologies are becoming affordable, EVR setups

like the one presented here can potentially be deployed in clinical rehabilitation settings in the

foreseeable future. There is clearly much work to be done to validate these setups and to make

them accessible for deployment (without programming expertise), but the use of affordable

off-the-shelf hardware and open-source gaming engine makes it a relatively low-cost yet high-

performance system.

Limitations

The comparison of the ball trajectories between the EVR and the real-world environments

highlight the similarity in the ball directions, which is the main parameter that determines task

error and success. Nevertheless, there were significant velocity differences between the envi-

ronments. These velocity differences were set to optimize subjects’ experience, accounting for

deviations in ball physics due to friction, spin, and follow-through which were not modelled in

the VR. Due to these deviations, in VR, the cue ball reaches its max velocity almost instan-

taneously while in the real-world there is an acceleration phase. For the current version of the

setup, we neglected these differences, assuming it would not affect the sense of embodiment of

very naïve pool players. Future studies, testing experts on the setup, would require more accu-

rate game physics in the EVR.

Another limitation of the current EVR setup is that subjects are unable to see their own

limbs in the environment, whereas in the real-world the positions of the subject’s own limbs

may influence how the task is learned. We can probably neglect this difference due to the

extensive literature suggesting that learning is optimized by an external focus of attention [for

review see 53]. Thus, the lack of body vision should not significantly affect learning. The lack

of an avatar (a veridical rendering of the person’s body) could also potentially affect VR

embodiment. During a pool shot, most of the body is out of sight and only the hands holding

the cue stick should be visible. While the hands and arms are not visible in our setup, the cue

stick is, and thus there is a multi-sensory correlation between the haptic and proprioceptive

feedback of handling the pool cue as a physical tool and the visual feedback from VR. This

multi-sensory effect replicates the induction of embodiment strategy observed in e.g. the rub-

ber hand illusion, as well as other experiments that measure embodiment through self-location

[54, 55].

Operating in VR requires acclimatisation and potentially learning a slightly altered visuo-

motor mapping (i.e. motor adaptation). While stereoscopic virtual reality technology seeks to

present a true three-dimensional view of a scene to the user, distortions such as minification,

shear distortion, or pincushion distortion can occur [56]. These distortions are dependent on

the specific hardware setup, and an estimation of egocentric distances in VR may be off by up

to 25% [56]. Moreover, stereoscopic displays induce a conflict between the different cues our

visual system uses to infer depth and distance. Specifically, the mechanism of accommodation

in the eye, which puts an object into focus, is also combined with other cues, such as vergence

(movement of both eyes in opposite directions to maintain a single binocular vision) to

abduction/adduction; green: internal/external rotation. (B) VPE intertrial variability (ITV) over blocks of 25 trials,

averaged across all subjects. Data is averaged over the performance of 10 subjects in the novel EVR environment.

https://doi.org/10.1371/journal.pone.0245717.g006
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estimate the object’s distance. This is an issue in VR as the focus point of all objects is on the

screen immediately at nose-tip distance. This results in the accommodation-vergence conflict

[57, 58]. This conflict alters the visuomotor mapping and is a known cause of visual discomfort

in VR [56, 59, 60]. Latest generation head-mounted displays (like the HTC Vive Pro used

here) do address some of these issues, enable more accurate space perception than other head-

mounted displays [61], and were validated and recommended for use in real navigation and

even motor rehabilitation [62]. Yet, performing a real-world visuomotor task, such as a pool

shot, probably requires some visuomotor learning of the VR environment, in addition to the

motor learning of the task.

Short-term motor learning in the EVR task and the physical real-world task [21] showed

many similarities but also intriguing differences. The main trends over learning that were

found in the physical real-world task include the decrease in directional error, decrease in

directional intertrial variability, decrease in shoulder movement and increase in elbow rota-

tion, decrease in joints VPE, and decrease in joints VPE intertrial variability [21]. In the EVR

environment, we found the same general trends for all these metrics, except for those of the

intertrial variability. We do however see a systematic difference in learning rates between VR

and real-world when comparing the directional error and VPE trends. Across the board, we

see less short-term motor learning in VR compared to the physical real-world. This is presum-

ably due to the additional learning of the altered visuomotor mapping required in VR.

The decay of intertrial variability over trials is a prominent feature of skill learning [63–70],

but not found in motor adaptation experiments. In the physical pool paradigm, we found two

types of subjects that differ in their intertrial variability decay as well as other behavioural and

neural markers [22]. Altogether, this suggested the contribution of two different learning

mechanisms to the task: error-based adaptation and reward-based reinforcement learning,

where the predominant learning mechanism is different between subjects. Here, the lack of

intertrial variability decay and the overall differences in the learning curve between the group

that learned the task in the EVR setting and the group that learned it in the physical real-world

setting, suggests potential differences in the learning mechanisms used by the subjects who

learned the task in the EVR. Presumably, in the EVR environment, the predominant learning

mechanism was error-based adaptation. This may be attributed to the fact that all subjects

were completely naïve to the EVR environment and had to learn not just the billiards task but

also how to operate in EVR.

Like in the physical task, in the EVR setting, we also found the short-term motor learning

to be a holistic process–all body joints are affected as a whole by learning the task. This was evi-

dent in the decrease in the velocity profile error (VPE) and the intertrial variability over learn-

ing (Fig 6). As we highlight in [21], this holistic aspect of motor learning is known in sport

science [e.g. 71–73] but is rarely studied in motor neuroscience and motor rehabilitation,

which are usually using simplistic artificial tasks and measure movement over only one or two

arm joints. This congruence between physical and EVR setting suggests that while there are

clear differences between the environments in the learning and performance in the task level

(as discussed above), there are strong similarities in the body level [74] which can potentially

enhance transfer.

Conclusions

In this study, we have developed an embodied VR framework capable of applying visual feed-

back manipulations for a naturalistic free-moving real-world skill task. We have also demon-

strated in a short-term motor learning paradigm the similarities in learning progression for a

pool billiards shot between the EVR and the real-world and have confirmed real-world
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findings that motor learning is a holistic process which involves the entire body from head to

toe. By manipulating the visual feedback in the EVR we can now further investigate the rela-

tionships between the distinct learning strategies employed by humans for this real-world

motor skill. Our approach can potentially be useful for VR rehabilitation, as it overcomes the

limits of VR immersion. Our work highlights the potential of real world-tasks being used in

VR in rehabilitation, but also in VR based skill training such as biosurgery.
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