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Cell type prediction is one of the most challenging goals in single-cell RNA sequencing
(scRNA-seq) data. Existing methods use unsupervised learning to identify signature genes
in each cluster, followed by a literature survey to look up those genes for assigning cell
types. However, finding potential marker genes in each cluster is cumbersome, which
impedes the systematic analysis of single-cell RNA sequencing data. To address this
challenge, we proposed a framework based on regularized multi-task learning (RMTL) that
enables us to simultaneously learn the subpopulation associated with a particular cell type.
Learning the structure of subpopulations is treated as a separate task in the multi-task
learner. Regularization is used to modulate the multi-task model (e.g., W1, W2, . . . Wt)
jointly, according to the specific prior. For validating our model, we trained it with reference
data constructed from a single-cell RNA sequencing experiment and applied it to a query
dataset. We also predicted completely independent data (the query dataset) from the
reference data which are used for training. We have checked the efficacy of the proposed
method by comparing it with other state-of-the-art techniques well known for cell type
detection. Results revealed that the proposed method performed accurately in detecting
the cell type in scRNA-seq data and thus can be utilized as a useful tool in the scRNA-seq
pipeline.

Keywords: regularizedmulti-task learning(RMTL), cell type detection, scRNA-seq data, supervised learning, marker
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1 INTRODUCTION

There has been great interest recently in single-cell molecular profiling technologies, particularly
when dealing with rare or highly specific cell types and states. Recent technological advances enabled
us to process tens of thousands of cells per scRNA-seq experiment (Svensson et al., 2018). A
fundamental step in the downstream analysis of single-cell data is to type the individual cells. The
most popular and immediate approach is to identify the cell categories using unsupervised learning
(Gribov et al., 2010; Kiselev et al., 2017), which is further analyzed to determine the cell categories.
This way of analysis for annotating cells has been prevalent for identifying biologically coherent cell
populations in scRNA-seq data so far (Cao et al., 2017; Fincher et al., 2018; Han et al., 2018; Plass
et al., 2018).

Unsupervised (clustering) methods require manual annotation, which imply problems
concerning the resolution of (sub-) types, manpower resources, and bias toward existing human
knowledge. This step escapes the characteristic advantage of scRNA-seq data analysis because of the
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intervention of human manpower. Manual annotation depends
on the prior knowledge of marker genes, which may be obtained
from earlier bulk studies. For this, assigning the biological
meaning of the cell clusters (groups) is not only a complicated
task but also demands a huge amount of time. This problem
becomes even worse when the number of cells and samples
increases which surely prevents fast and reproducible annotation.

To overcome this problem, we need methods that
automatically determine cell labels. With labeled data input,
the supervised learning method (Alquicira-Hernández et al.,
2018; Wagner and Yanai, 2018; Ma and Pellegrini, 2019;
Pliner et al., 2019) can handle automatic and hassle-free cell
type detection. Recently supervised approaches have gained
popularity as they can determine cell types from the data, but
the underlying molecular mechanisms are still not explored fully
(Abdelaal et al., 2019).

There exist several methods which address the problem of cell
type detection in scRNA-seq data using supervised (or
unsupervised) approaches. Abdelaal et al. (2019) present an
excellent review of the different supervised techniques for cell
type detection. The task is to merely learn the cellular identities
from annotated training data to predict the cell type. These
approaches are relatively new compared with the large extent
of methods available for addressing the computational challenges
of a single-cell analysis. Pliner et al. (2019) have devised a method
called Garnett for rapidly annotating cell types in single-cell
RNA-seq data. Garnett operates on four steps: first, it defines
a markup language to determine the cell types, and then, this
language is processed by a parser that identifies representative
cells bearing marker genes. In the third and fourth steps, it
recognizes additional cells to each cell type based on their
similarity to the representative and finally applies a classifier
trained on one dataset. Wagner et al. (Wagner and Yanai, 2018)
have introduced a new method based on a hierarchical machine
learning framework that can construct robust cell type classifiers
from heterogeneous scRNA-seq datasets. Also, Ma and Pellegrini
(2019) have proposed a method ACTINN (Automated Cell Type
Identification using Neural Networks), which utilized a neural
network model with three hidden layers for training the dataset
with predefined cell types. Here, predictions made for other
datasets were based on trained parameters. The unbiased
feature selection method is combined with machine learning
classification to build a powerful method scPred (Alquicira-
Hernández et al., 2018). It brings the advantage of
dimensionality reduction and orthogonalization of gene
expression values for accurately predicting the cell types. Most
of the methods have proposed a model which trains the scRNA
data for prediction or uses some feature selection techniques to
reduce the dimension of the input data before clustering. So the
training process solely depends on the whole data and ignores the
crosstalk between multiple cell populations.

Here, we presented a framework based on the regularized
multi-task learning (RMTL) approach for automatic cell type
detection in the scRNA-seq datasets. The advantage of our model
is that it can take multiple cell populations as the input, leveraging
simultaneous learning of features. RMTL is already a well-
explored field and is recently gaining popularity for solving

numerous problems in the bioinformatics domain (Zhang
et al., 2018; Dizaji et al., 2020; Wang et al., 2020). The
performance of learning will increase if we learn from multiple
interrelated tasks (Baxter, 1997). The multi-task learning
approach can also tackle the overfitting issue. The crucial task
here was to find out the shared parameters for identifying the
relationship with common features among the tasks (Singh et al.,
2019). Our model took samples of different cellular identities as
reference input data and predicted cell types from query datasets.
Here, we hypothesized that the biological information of cell
samples coming from several cell types was related in some way,
and for this reason, we have to learn all cell samples
simultaneously using multi-task learning. Here, L2,1
regularization is used to smooth the loss function, thereby
minimizing the complexity of the model. We have compared
the proposed method with four state-of-the-art, widely used cell
type detection tasks for scRNA-seq data. The results showed the
proposed method outperformed the other in automatically
detecting the cell types.

2 MATERIALS AND METHODS

2.1 Dataset Description and Preprocessing
The following datasets are used for the experiments:

1. CBMC (Stoeckius et al., 2017): The datasets of cord blood
mononuclear cells produced by CITE-seq contain 8,617 cells
in the RNA UMI matrix, downloaded from https://www.ncbi.
nlm.nih.gov/geo/under the accession no. GSE100866. This
transcriptome comprises 13 cell types over 7,985
transcriptomes.

2. Goolam (Goolam et al., 2016): It has been constructed from
mouse embryos in five stages/levels (2-cell, 4-cell, 8-cell, 16-
cell, and blast). In total, 124 cells with 41,428 genes were
present, downloaded from https://www.ebi.ac.uk/
arrayexpress/files/E-MTAB-3321/E-MTAB-3321.processed.
1.zip

3. Melanoma (Tirosh et al., 2016): The dataset has been
downloaded from https://www.ncbi.nlm.nih.gov/geo/under
the accession no. GSE72056 and contains 23,686 genes with
4,645 cells. Details of datasets, after preprocessing, are given in
Table 1. We adopted the standard pipeline of Seurat v3.
(Stuart et al., 2019) for the preliminary analysis and
preprocessing, particularly quality control, cell and gene
filtering, and normalization.

TABLE 1 | Details of the used dataset.

Dataset No. of cells No. of genes No. of cell types

CBMC 7,895 2,000 13
Goolam 124 40,315 5
Melanoma 5,038 3,546 8
PBMC 32,738 68,793 11
Yan 20,514 90 7
Klein 24,175 2,717 4
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4. Yan (Yan et al., 2013): This is a human preimplantation
embryo and embryonic stem cell dataset. The average total
read count in the expression matrix is 25,228,939 reads. There
are seven cell types, including the labeled 4-cell, 8-cell, zygote,
late blastocyst, and 16-cell type [GEO under the accession no.
GSE36552]. Experiments are performed by high-throughput
sequencing. The authors used the de novo transcriptome
reconstruction software Trinity (Grabherr et al., 2011) and
the eukaryotic genome annotation tool PASA to perform the
de novo assembly of reads.

5. Klein (Klein et al., 2015): This dataset was generated by the
droplet barcoding method with an average total read count of
20,033.40 reads in the expression matrix. A total of eight
single-cell datasets are submitted: three for mouse embryonic
stem (ES) cells (one biological replicate and two technical
replicates); three samples following LIF withdrawal (days 2, 4,
and 7); one pure RNA dataset (from human lymphoblast K562
cells); and one sample of single K562 cells. The dataset was
downloaded from GEO under the accession no. GSE65525.
The dataset contains 24,175 number of genes and 2,717
number of cells with four cell types. Cells are captured and
barcoded in nanoliter droplets with high capture efficiency.

6. PBMC68k (Zheng et al., 2017): The dataset is downloaded
from the 10x Genomics website https://support.10xgenomics.
com/single-cell-geneexpression/datasets. The data are
sequenced on Illumina NextSeq 500 high output with
20,000 reads per cell.

2.1.1 Preprocessing
In the initial step, we have collected a single-cell RNA count
matrix from different sources. Columns of these matrices contain
cell/sample information, and genes are represented row-wise. The
RNA counts are organized as a matrix Mcl×ge, where cl is the
number of cells and ge is the number of genes. Each element [M]ij
represents the count of the ith cell and the jth gene. If more than a
thousand genes are expressed (non-zero values) in one cell, then
the cell is termed as good. We assumed one gene is expressed if
theminimum read count of it exceeds 5 in at least 10% of the good
cells. The data matrix M with expressed genes and good cells is
normalized using a linear model and normality-based
normalizing transformation method (Linnorm) (Yip et al.,
2017). The resulting matrix (Mcl′×ge’) is then log2 transformed
by adding one as a pseudocount.

2.2 A Short Description on Multi-Task
Learning
Baxter et al., 1997 first introduced the concept ofmulti-task learning
through the theoretical learning of multiple task and describes the
multi-task sampling usage for the Bayesian model. This model was
utilized to know how much information is required by individual
task to learn. Baxter et al., 2000 established the concept of inductive
biases for searching optimal hypothesis in the environment of
multiple related task. Ben and Schuller, 2003 have utilized
generalized VC dimension to derive bounds for each task while
assuming that the learning tasks are related.

The main assumption behind the usage of multi-task learning
(MTL) is that the tasks that comes under different types of
learning are related to each other. Example of learning tasks
may be supervised learning (e.g., classification, regression),
unsupervised learning (e.g., clustering), reinforcement study,
semi-supervised learning, and many more. Among all the
learning tasks, all tasks or a subset of tasks are related to each
another. The motivation behind that simultaneous learning of
related and multiple tasks leads improved performance rather
than learning a single task. The primary intention of usingMTL is
to enhance the generalized performance between related tasks.

The main idea is that given Z learning task, assuming that the
datasets for these tasks are coming from same space of X × Y, the
conditional distribution of the response variable Y; Yz|Xz are
related, where X is the explanatory variable of all the Z tasks. In
particular, given z learning tasks : τzi�1, each task having n data
points: (x1z, y1z), (x2z, y2z), . . . (xnz, ynz), where each data point is
coming from a distribution Pz on X × Y. Here Pzs are different for
each task, however MTL assumes that these are related. Now the
aim is to learn z functions f1,f2 . . . fz each of which corresponds to
a learning task as: fz(xiz)=yiz. For z=1 the problem reduces to
single-task learning. Several setups may also be possible, such as
when the input data xiz are same for all task, but output value yiz
differs from each other. The other scenario may be the case of
having the same output yit for different inputs xit, which
corresponds to the problem of integrating information from
heterogeneous databases Ben-David et al., 2002.

2.3 Description of the Proposed
Methodology
We have proposed a supervised model which leverages the
characteristics of the regularized multi-task learning algorithm
for efficiently identifying cell types present in the scRNA-seq
datasets. The overall analysis is shown in Figure 1.

2.3.1 Multi-Task Learning for Cell Type Prediction
A regularization-based approach (Evgeniou and Pontil, 2004) is
proposed to solve the MTL problem, where the regularization
functions are minimized in an analogous way to SVM which is
used in single-task learning. All the algorithms more or less try to
minimize the following function:

∑
t

i�1
L Wi, Ci|Xi, Yi( ) + λ1ω W( ) + λ2‖W‖F2

where L (◦) represents the loss function, ω represents the cross-
task regularization, and λ1 and λ2 are positive regularization
parameters. λ1 signifies the strength of relatedness of all tasks
and is estimated through a cross-validation procedure, whereas λ2
is to introduce the penalty of the quadratic form of W.

The tasks in our case are to learn different subpopulations (S1,
S2, . . . ST) of T cell types. Each task can be represented as Si = {(Xi,
Yi), Xi ∈ Rn×p, Yi ∈ {1,−1}n}, where n represents the number of
samples, and p represents the number of genes in scRNA-seq
data. Assuming the generalized linear model Yit = ft (Wt.Xit) = ft
((W0 + Vt). Xit), for each t ∈ 1,2, T,“.” represents the standard dot
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product in Rd, where Wt = W0 + Vt. Here, the vector Wt

corresponds to the linear model for each task. Vt controls the
task relatedness. Here, we have utilized the RMTL framework,
developed to estimate the parameters W0 and Vt:

minW0 ,Vt ∑
T

t�1
∑
n

i�1
Yit − ft Wt.Xit( )( + λ1‖W0‖2 + λ2 ∑

T

t�1
‖Vt‖2

where the first summation represents the loss over all tasks for
each data point, and λ1 and λ2 positive regularization parameters
trade-off between fitting the data and smoothness of the estimate.

Primarily, the input matrix is randomly partitioned into two
parts: training and test sets (Figure 1). In total, 80% of the data are
randomly selected for training purposes, and the rest 20% are
used for testing. In this model, the number of tasks are presented
as t ∈ 1, 2, . . . T; here, each task represents the learning of
expression data from individual cells.

Here, the reference data are the scRNA-seq expression matrix
over all the cellular identities. We applied the proposed model in
the reference data for training. We tested the accuracy of our
model in the query data. The query dataset is, of course, excluded
from the reference for training. Therefore, we used completely
independent data as references and tested the model with
independent data. The accuracy of the model is calculated
with the percentage of correctly identifying cell types in test data.

3 RESULTS

3.1 Comparisons of the Proposed Method
With State-Of-The-Art Methods
3.1.1 Description of State-Of-The-Art Methods
We have compared the proposed method with the current state-
of-the-art techniques in supervised learning–based single-cell
typing. Supervised learning is advantageous over unsupervised

learning (clustering) because it automatizes the cell typing
procedure instead of manual annotation. Garnett (Pliner et al.,
2019) annotates cell types in single-cell RNA-seq data by defining
a markup language to specify cell types that are subsequently
processed by a parser that identifies representative cells bearing
marker genes. New cells are assigned to cell types based on their
similarity to representative cells. An alternative work presents a
hierarchical machine learning framework that yields robust cell
type classifiers trained on heterogeneous scRNA-Seq datasets
(Wagner and Yanai, 2018). ACTINN (Automated Cell Type
Identification using Neural Networks), presents a neural
network model with three hidden layers, which are trained
and used for prediction in the usual way (Ma and Pellegrini,
2019). scPred combines an unbiased feature selection method
with standard machine learning classification, where
dimensionality reduction and orthogonalization of gene
expression values prove advantageous to accurately predict cell
types (Alquicira-Hernández et al., 2018). CHETAH builds a
hierarchical classification tree from the reference (training)
dataset and classifies unknown samples by computing the
correlation between genes that discriminate the test cell from
the reference dataset (de Kanter et al., 2019). In this work, we have
considered 1) scPred (Alquicira-Hernández et al., 2018), 2)
ACTINN (Ma and Pellegrini, 2019) (Automated Cell Type
Identification using Neural Networks), 3) CHETAH (de Kanter
et al., 2019), and 4)Garnett (Pliner et al., 2019) as the state-of-the-
art methods for comparisons.

3.1.2 Training and Test Data
Each scRNA-seq dataset is divided into training and test data at a
ratio of 8:2. The performance of each competing method is
evaluated by determining the average test accuracy and the
corresponding standard errors over 100 runs. To know how
the different methods react to reducing the training data, data
were subsampled at rates ranging from 20 to 100% in steps of 20%

FIGURE 1 | Workflow of the methodology: the proposed approach for cell type identification—the data are randomly divided into training and test sets. The cell
types present in training sets are used to train the multi-task learning classifier with cross-validation. Then, the learnt model is tested with test datasets, and accuracy is
measured with a confusion matrix.
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TABLE 2 | Prediction accuracy on test data for different datasets and different methods. Results refer to integrated data representations for all datasets. The test accuracy is
displayed as mean ± standard deviation, referring to 100 randomly initialized training runs. Percentages refer to the relative amount of training data used during training.
Maximum values for means and minimum values for standard deviation of the test accuracy are highlighted in bold.

Method 40% 60% 80% 100% 40% 60% 80% 100%

CBMC Klein

scPred 71.87 ± 0.29 77.92 ± 0.20 84.81 ± 0.09 90.26 ± 0.01 61.25 ± 0.31 69.32 ± 0.20 75.46 ± 0.21 78.71 ± 0.10
ACTINN 70.78 ± 0.25 81.80 ± 0.18 92.29 ± 0.15 96.03 ± 0.10 62.14 ± 0.35 68.42 ± 0.31 73.81 ± 0.22 77.85 ± 0.10
CHETAH 66.97 ± 0.11 73.71 ± 0.15 87.91 ± 0.10 94.34 ± 0.01 68.91 ± 0.30 72.34 ± 0.15 77.63 ± 0.11 81.29 ± 0.10
Garnett 69.75 ± 0.28 79.68 ± 0.19 85.59 ± 0.19 96.01 ± 0.18 64.81 ± 0.30 75.75 ± 0.31 77.84 ± 0.18 81.61 ± 0.10
RMTL 70.23 ± 0.03 80.53 ± 0.01 89.58 ± 0.06 97.05 ± 0.01 69.31 ± 0.03 70.34 ± 0.03 76.85 ± 0.02 81.72 ± 0.02

Melanoma PBMC68k

scPred 60.29 ± 0.31 68.91 ± 0.30 79.10 ± 0.25 83.57 ± 0.19 65.86 ± 0.05 69.87 ± 0.17 71.48 ± 0.13 78.25 ± 0.10
ACTINN 62.30 ± 0.43 67.51 ± 0.35 73.90 ± 0.19 78.31 ± 0.09 63.21 ± 0.31 73.91 ± 0.29 74.56 ± 0.19 81.29 ± 0.19
CHETAH 62.38 ± 0.20 65.19 ± 0.10 77.35 ± 0.11 81.82 ± 0.07 61.37 ± 0.0.28 63.45 ± 0.22 72.71 ± 0.19 81.19 ± 0.10
Garnett 66.27 ± 0.05 68.31 ± 0.05 71.81 ± 0.01 79.72 ± 0.01 68.50 ± 0.10 72.53 ± 0.10 77.81 ± 0.05 82.10 ± 0.01
RMTL 67.18 ± 0.05 69.31 ± 0.05 70.61 ± 0.01 82.12 ± 0.01 64.50 ± 0.10 74.53 ± 0.10 77.92 ± 0.05 82.73 ± 0.01

Goolam Yan

scPred 68.29 ± 0.31 72.11 ± 0.30 77.10 ± 0.25 86.57 ± 0.19 77.16 ± 0.05 85.57 ± 0.27 90.68 ± 0.23 97.25 ± 0.10
ACTINN 62.10 ± 0.33 64.51 ± 0.35 68.90 ± 0.19 70.31 ± 0.09 76.11 ± 0.21 88.91 ± 0.29 90.16 ± 0.19 94.29 ± 0.01
CHETAH 60.38 ± 0.20 66.29 ± 0.10 72.15 ± 0.11 85.82 ± 0.07 71.37 ± 0.0.28 78.45 ± 0.22 83.71 ± 0.29 92.29 ± 0.10
Garnett 66.27 ± 0.05 72.21 ± 0.05 78.61 ± 0.01 83.72 ± 0.01 75.50 ± 0.10 82.53 ± 0.10 85.81 ± 0.05 92.10 ± 0.01
RMTL 63.27 ± 0.05 68.31 ± 0.05 72.41 ± 0.01 86.72 ± 0.01 77.50 ± 0.10 80.33 ± 0.10 87.81 ± 0.05 97.10 ± 0.01

The amount of training data used during the training phase (in percentage).
The bold values represent the amount of training data used during the training phase (in percentage).

FIGURE 2 | Prediction results on the Melanoma dataset. (A). Two-dimensional t-SNE plot representing original and predicted labels of melanoma data. (B). t-SNE
visualization of original and predicted labels for individual cells. Each column shows three figures: the first and second one represent original and predicted labels in a two-
dimensional t-SNE embedding, while the third one shows a donut plot proportion of true-positive and false-positive samples of the predicted labels. (C). Proportion of
original cell types within the data is shown in a donut plot. (D). Proportion of predicted labels is shown in a donut plot.
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prior to training. For each of the 100 runs, random subsamples
were drawn independently.

3.1.3 Evaluation
Table 2 displays the corresponding mean accuracy with the
standard deviation for 100 independent runs. It is evident that
the proposed method outperformed the state-of-the-art method
with respect to the accuracy score. It can be noticed that although
for a small number of training samples, the performance is not
much impressive, and the proposed method outperformed others
when sufficient samples are available for training.

To visualize the original and predicted labels, we performed
t-SNE-based embedding of the datasets. Figure 2 shows two-
dimensional t-SNE-based embedding of melanoma data with
its original and predicted labels. The predicted labels are
obtained from the trained model. Figure 2A represents the
t-SNE embedding of melanoma data for original and predicted

labels. Figure 2B demonstrates the comparison between the
predicted and original labels for each individual cell. Of note,
some minor cells such as macrophages (4.47% of the total
cells), endothelial cells (7.15% of the total cells), and NK cells
(1.73% of the total cells) which come with little samples are
also correctly predicted by the proposed method. To show the
false positive of the prediction, bottom figures of Figure 2B
show a set of donut charts that represent the misclassification
of cells. It is evident from the figure that in most of the cases
(except Treg cells), the false-positive rate is extremely low.
Figures 2C,D demonstrate the percentage of original and
predicted cell types present in the melanoma data in two
donut charts, respectively. It can be noticed that CAF
(13.6% of the original cell samples and 13.6% of the
predicted cell samples), CD8 T (32.61% of the original cell
samples and 32.59% of the predicted cell samples), CD4 T
(20.72% of the original cell samples and 19.19% of the

TABLE 3 | Table shows the percentage of correct prediction for all the competing models on CBMC and Melanoma datasets.

Cell
type

#Samples
present
in the
dataset

Methods

RMTL Garnett scPred ACTINN CHETAH

Recall prec recall prec recall prec recall prec recall prec

CBMC

Eryth 105 94 93.1 92.6 86.5 81.8 78.7 93.9 91.8 89.8 84.7
NK 1,089 87.77 94.8 88.7 89.7 84 80.8 89.2 88.1 86 80.3
CD14+ mono 2,293 97.7 99.1 98.8 98.1 93.8 92.7 99 97.5 97.8 96
MK 96 92.1 89.6 85.3 81.2 78.6 71.9 88.1 85.3 83.7 78.9
CD34+ 119 89.04 88.8 87.8 82.9 82.3 81.8 96.4 91.5 84.3 80.2
DC 70 91.1 90.8 82.8 79.8 79 78.6 92.7 90.6 82 80
Memory CD4 T 1,781 97 95.1 97.6 91.6 90 91.7 97 96.4 93.9 90.8
CD8 T 273 90.2 89.7 86 81.8 83.8 79.0 90.4 82.8 89 81.2
CD16+ mono 230 87.7 88.5 90 86.8 80.7 78.4 85.8 80.9 81.8 80
B 350 93.3 91.07 92.7 90.5 88.6 88.1 96 94.6 92.7 89.2
T/mono
doublets

182 92.7 91.5 88.7 81.3 85.1 81.7 97.2 90 91.8 88.3

PDcs 49 91.8 90 93.2 85.5 81.2 75.2 93 88.8 86.5 78.6
Naive CD4 T 1,248 98.2 96.6 97.8 89 88.3 81.8 98 86.7 88 79.1

Melanoma

B cells 729 96.5 93.6 91.8 89 88.3 81.8 95 86.7 88 79.1
Macrophages 225 89.3 88.1 81.7 87.3 86.8 89.1 88.7 81.5 84.7 83.9
NK 87 83.9 85.6 80.9 84.3 80.1 81.9 82.7 82.3 83.6 85.1
CAF 685 95.8 97.7 91.7 95.8 93.2 94.4 96.8 96.9 95.7 93.4
Endothelial cells 360 90.3 92.8 88.8 90.6 90.1 90.5 91.5 91.7 89.4 90.2
CD4 T cells 1,044 98.1 97.3 96.1 97.9 95.8 98.4 98.2 95.1 92.9 95.8
CD8 T cells 1,643 97.1 97.7 95.6 96.3 96.8 92.9 96.1 96.0 93.9 97.1
Treg cells 225 90.6 89.1 88.2 88.1 89.0 86.8 89.2 86.9 87.1 88.9

TABLE 4 | p-value obtained from the Wilcoxon rank-sum test for the five competing methods.

Method CBMC Klein Melanoma PBMC68k Goolam Yan

scPred 2.01E-02 1.09E-03 3.87E-02 4.6E-02 1.87E-03 1.98E-02
ACTINN 1.08E-02 2.8E-03 2.08E-02 2.96E-02 1.09E-03 1.87E-02
CHETAH 1.78E-03 1.6E-02 1.78E-02 2.98E-02 1.98E-03 2.89E-02
Garnett 2.86E-02 1.76E-02 2.10E-02 1.76E-02 1.65E-03 1.87E-02
RMTL 1.05E-03 2.56E-03 1.89E-03 1.87E-02 1.09E-03 1.07E-03
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predicted cell samples), and endothelial (7.15% of the original
cell samples and 7.15% of the predicted cell samples) cells are
predicted with utmost accuracy. A similar conclusion can be
drawn from the CBMC data classification. Supplementary
Figure S1 shows the classification results in detail.

3.2 Proposed Method Can Identify Poorly
Covered Cell Accurately
In this study, our aim was to see how the poorly covered cell
types, which generally come with little training data, can be
detected by the competing methods. For this, we have applied
the trained model on test data and computed the recall and
precision score for the samples of a particular cell type.
Considering the heterogeneous distribution of cells, we
performed this experiment on CBMC and in Melanoma
datasets. For other datasets, cells have a sufficient proportion
of samples, such as for Klein, and the proportion of samples of
four cell types are type-1 (11.15%), type-2 (25.13%), type-3
(29.37%), and type-4 (34.33%). Table 3 shows the results for
these three datasets. It is evident from the table that the cell type
with the small number of samples (such as pDCs and DC for
CBMC, NK and Treg cells for Melanoma, and dendritic, CD34+,
CD14+ cells, and monocytes for PBMC68k) proposed a method
that outperformed the other models in terms of correct
predictions.

3.3 Stability Performance
To compare the stability in the performance of the four
competing methods, we have carried out a 10-fold cross-
validation analysis for all the datasets. In each fold, we
randomly divided the training data as training: validation in
the ratio 9:1 and computed the validation accuracy. The process

was repeated 100 times for each fold. Thus, in each fold we
obtained 100 validation accuracy and one test accuracy for each of
the competing method. The medians of the validation accuracy
were compared with a Wilcoxon rank-sum test across the folds.
Table 4 shows the p-value for all the competing methods across
all the datasets. Although all methods produce stable results with
low p-values, nevertheless, the proposed method showed a more
stable performance among the other methods. Figure 3 also
shows the test accuracy for all the methods across the folds
for the CBMC dataset (see Supplementary Material for the
results of other datasets). From Table 3 and Figure 3, it is
evident that the proposed method outperformed the others for
producing stable results.

3.4 Execution Time
All experiments were carried out on a Linux server having 50 cores
and a X86_64 platform. To compare the execution time of the
competing methods, we performed an analysis. Four simulated data
[using splatter (Zappia et al., 2017)] are generated by varying the
number of cells and classes as follows: 500 cells with two classes,
1,000 cells with three classes, 1,500 cells with four classes, and 2,000
cells with five classes. All the simulated datasets are generated
keeping equal group probabilities, 2,000 number of features with
a fixed dropout rate as 0.2. In each case, the runtime is compared
with different competing methods (see Table 5).

4 DISCUSSION

Our proposed methodology addresses the cell type prediction
issue by having a vigorous multi-task learning model to predict
the cell types efficiently. This cell type detection is very crucial in
many applications of single-cell RNA sequencing data. The

FIGURE 3 | Test accuracy across all the folds for the five competing methods on CBMC data.
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results demonstrated that the L21 regularization technique helps
in jointly learning the features of cell types.

In experiments referring to six different data sets CBMC
(Stoeckius et al., 2017), Goolam (Goolam et al., 2016),
Melanoma (Tirosh et al., 2016), PBMC (Zheng et al., 2017),
Yan (Yan et al., 2013), and Klein (Klein et al., 2015), we
evaluated how the proposed method was performed in
comparison with other methods (scPred (Alquicira-Hernández
et al., 2018), ACTINN (Ma and Pellegrini, 2019), CHETAH (de
Kanter et al., 2019), andGarnett (Pliner et al., 2019). The proposed
method outperformed the other methods on all datasets utilized in
this study. It also outperformed the others in terms of economic
use of training samples. For example, for the datasets Klein,
CBMC, Melanoma, and Yan, 40% of the training samples are
enough to obtain more than 65% accuracy. Of note, exactly these
advantages meant landmark arguments for regularized multi-task
learning also in their original application.

In summary, we provided a newmethod that implemented the
latest advances in machine learning for the purposes of typing
single cells on basic heterogeneous single-cell RNA sequencing
data. We have demonstrated that the theoretical promises can
indeed be leveraged. In this study, we argued to have pushed the
limits in single-cell typing by a non-negligible amount.

We concluded by acknowledging that also ourmethod, of course,
leaves room for improvement: various open problems are still
awaiting their solutions. For example, one challenge is the fact

that our method, by virtue of being a supervised approach,
requires cell annotations prior to classification. Although an
automated approach is much needed over approaches that
require manual intervention at some point, however, actionable
annotations need to be provided prior running the method.
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