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Engram-specific transcriptome profiling
of contextual memory consolidation
Priyanka Rao-Ruiz 1,2, Jonathan J. Couey1, Ivo M. Marcelo1,3, Christian G. Bouwkamp1, Denise E. Slump1,

Mariana R. Matos2, Rolinka J. van der Loo2, Gabriela J. Martins3,4, Mirjam van den Hout 5,

Wilfred F. van IJcken 5, Rui M. Costa3,4, Michel C. van den Oever 2 & Steven A. Kushner 1

Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally

implicated in the encoding of contextual fear memories. However, engram-specific molecular

mechanisms underlying memory consolidation remain largely unknown. Here we perform

unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to

identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit

a highly distinct pattern of gene expression, in which CREB-dependent transcription features

prominently (P= 6.2 × 10−13), including Atf3 (P= 2.4 × 10−41), Penk (P= 1.3 × 10−15), and

Kcnq3 (P= 3.1 × 10−12). Moreover, we validate the functional relevance of the RNAseq

findings by establishing the causal requirement of intact CREB function specifically within the

DG engram during memory consolidation, and identify a novel group of CREB target genes

involved in the encoding of long-term memory.

https://doi.org/10.1038/s41467-019-09960-x OPEN

1 Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam 3015 GD, The Netherlands. 2 Department of Molecular and Cellular
Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The
Netherlands. 3 Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal. 4 Department of
Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York 10027 NY, USA. 5 Center for Biomics, Erasmus MC University
Medical Center, Rotterdam 3015 GD, The Netherlands. Correspondence and requests for materials should be addressed to M.Oever. (email: michel.vanden.
oever@vu.nl) or to S.A.K. (email: s.kushner@erasmusmc.nl)

NATURE COMMUNICATIONS |         (2019) 10:2232 | https://doi.org/10.1038/s41467-019-09960-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9504-1427
http://orcid.org/0000-0001-9504-1427
http://orcid.org/0000-0001-9504-1427
http://orcid.org/0000-0001-9504-1427
http://orcid.org/0000-0001-9504-1427
http://orcid.org/0000-0003-2412-7631
http://orcid.org/0000-0003-2412-7631
http://orcid.org/0000-0003-2412-7631
http://orcid.org/0000-0003-2412-7631
http://orcid.org/0000-0003-2412-7631
http://orcid.org/0000-0002-0421-8301
http://orcid.org/0000-0002-0421-8301
http://orcid.org/0000-0002-0421-8301
http://orcid.org/0000-0002-0421-8301
http://orcid.org/0000-0002-0421-8301
http://orcid.org/0000-0001-5523-8612
http://orcid.org/0000-0001-5523-8612
http://orcid.org/0000-0001-5523-8612
http://orcid.org/0000-0001-5523-8612
http://orcid.org/0000-0001-5523-8612
http://orcid.org/0000-0002-9777-3338
http://orcid.org/0000-0002-9777-3338
http://orcid.org/0000-0002-9777-3338
http://orcid.org/0000-0002-9777-3338
http://orcid.org/0000-0002-9777-3338
mailto:michel.vanden.oever@vu.nl
mailto:michel.vanden.oever@vu.nl
mailto:s.kushner@erasmusmc.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fear memories are encoded and stored in the brain by sparse
ensembles of neurons collectively termed as memory
engrams or traces. Selective ablation1 or optogenetic silen-

cing2 of engram neurons results in a deficit of conditioned fear
responding, while targeted activation of molecularly tagged
engrams is sufficient to elicit memory expression3. In particular,
the dentate gyrus (DG) of the hippocampus is critical to the
encoding of the contextual representation associated with fear
memories, wherein an estimated 2–4% of DG neurons exhibit
modulated activity during retrieval of contextual fear memories4.

The cellular mechanisms of memory allocation to engram cells
has been carefully investigated, revealing the intrinsic excitability
of dentate neurons as a critical determinant underlying their
recruitment into a memory engram5,6. Once allocated, the suc-
cessful consolidation of memory requires a dynamic time-
dependent process of gene transcription7 and protein transla-
tion8. Recent technological advancements have made it possible
to examine early transcriptional changes in sparsely distributed
ensembles due to the rapid expression of immediate early genes
(IEGs) after an activity-inducing experience9. However, the
enduring molecular dynamics necessary for memory consolida-
tion within engram cells encoding contextual fear memories have
yet to be revealed due the transient nature of most IEGs.

Here, demonstrate that the IEG, Activity Regulated Cytoskele-
ton Associated Protein (Arc), is selectively and persistently
expressed in DG engram cells after fear conditioning. This sus-
tained expression of Arc enabled us to examine the differential
transcriptional profile of DG memory-trace neurons compared to
their nonactivated neighbors, 24 h after fear conditioning. Our
findings revealed genome-wide alterations in the neuronal tran-
scriptome of engram cells during contextual fear memory con-
solidation. In particular, unbiased upstream analysis revealed the
CREB network to be activated exclusively in engram neurons
after fear conditioning (FC), a finding causally validated by
manipulating CREB function specifically in engram neurons.

Results
Sustained activation of Arc after fear conditioning. In order to
visually label neurons activated during the encoding of a fear
memory, we made use of the Arc::dVenus mouse line10. In this
system, the expression of a destabilized fluorescent reporter
(dVenus) is coupled to the promoter of the IEG Activity Regu-
lated Cytoskeleton Associated Protein (Arc)10 (Supplementary
Fig. 1a), a well-established marker of recent neuronal activity11.
FC leads to the formation of a robust contextual fear memory
(Supplementary Fig. 1b, c) with concordant dVenus expression in
a sparse population of neurons distributed along the rostrocaudal
axis of the DG (Supplementary Fig. 1d), consistent with prior
observations of Arc expression in the DG following novel
experience12. We observed high co-localization between endo-
genous Arc protein, the Arc::dVenus reporter, and the proto-
oncogene c-Fos 90 min after FC (P[Fos+|Arc+]= 85.2 ± 1.3%, P
[Arc+|Fos+]= 96.3 ± 0.7%, P[Fos+|dVenus+]= 82.1 ± 2.6%, P
[dVenus+|Fos+]= 82.7 ± 4.1%) (Supplementary Fig. 2), con-
firming that Arc and Fos tag a highly overlapping population of
DG engram neurons.

We next aimed to characterize the temporal activation profile of
DG memory engram neurons by quantifying Arc::dVenus expres-
sion at successive time-points after FC (Fig. 1a). The number of
dVenus+ cells exhibited a rapid (within 1 h) and sustained (up
to 24 h) increase following training (baseline: 10.54 ± 1.96 cells per
1.3 mm2, 1 h: 30.13 ± 0.69 cells per 1.3 mm2, 5 h: 34.96 ± 1.66 cells
per 1.3 mm2, 8 h: 29.26 ± 1.48 cells per 1.3 mm2, 14 h: 31.99 ±
1.91 cells per 1.3 mm2, 24 h: 36.98 ± 4.14 cells per 1.3 mm2)
(Fig. 1b, c). This sustained hippocampal Arc::dVenus activation

was specific to the DG and not observed in the CA1 or
CA3 subregions, in which dVenus+ cells were robustly observed
at 5 h, but no longer at 24 h after training (Supplementary Fig. 3).

Next, we explored whether the temporal stability over 24 h in
the number of DG dVenus+ cells resulted from the recruitment
of a stable ensemble with sustained dVenus+ expression, or
whether the population of dVenus+ cells—although maintained
as a constant overall number—is dynamically changing. In order
to distinguish between these possibilities, we performed in vivo
microendoscopic imaging to monitor dVenus expression in DG
cells over the 24 h time course (Fig. 1d). Consistent with a largely
stable population, we found that dVenus+ cells exhibited
persistent expression over time (Fig. 1e–g). In particular, 79.8%
of dVenus+ neurons at 5 h were also dVenus+ at 24 h (Fig. 1e).
Conversely, 73.5% of dVenus+ cells at 24 h were also dVenus+ at
5 h (Fig. 1f). Finally, we confirmed that the sustained expression
of Arc::dVenus at 24 h was due to enduring expression of
endogenous Arc by performing a double immunostaining. As
expected, we observed a higher level of co-localization between
Arc and dVenus in the DG of FC animals compared to home-
cage (HC) or no-shock (NS) controls (P[Arc+|dVenus+]; HC:
36.5 ± 12.4%, NS: 58.8 ± 2.1%, FC: 84.10 ± 1.3%) (Fig. 1h, i).
Lastly, we performed a longitudinal series of quantifications of the
co-localization between endogenous Arc and Arc::dVenus
reporter after conditioning (P[Arc+|dVenus+]; 1 h: 81.3 ± 1.7%,
5 h: 71.6 ± 0.5%, 14 h: 83.7 ± 0.9%) (Supplementary Fig. 4).

Taken together, these data confirm that Arc exhibits sustained
expression for at least 24 h in DG fear memory neuronal
ensembles.

The engram has a distinct transcriptome during consolidation.
Memory consolidation is a dynamic process requiring several
waves of gene transcription, with a delayed wave being necessary
for the persistence of long-term memory13. However, investiga-
tions of the molecular underpinnings of memory consolidation in
engram cells have thus far been limited by: (1) the transient
nature of neuronal IEG expression, and (2) the sparse distribution
of the engram. Therefore, the sustained expression of Arc within
the DG engram presented us with the unique opportunity to
query enduring molecular changes. Using fluorescence-guided
cell aspiration, we performed RNA sequencing from neighboring
dVenus+ and dVenus− cells to examine their differential gene
expression profiles 24 h after FC. From each animal, the contents
of 10 dVenus+ and 10 neighboring dVenus− DG cells were
aspirated using a modified approach for pulling nucleated
patches14,15 (Fig. 2a). Full length cDNA was generated from each
ten-cell sample using the SmartSeq 216 protocol. Illumina HiSeq
Rapid v2 sequencing chemistry was utilized to generate a mini-
mum of 10M aligning reads per sample. A total of 16 paired
samples from FC, 4 paired samples from NS and 4 paired samples
from HC were collected, of which 4 FC paired samples and 1 HC
paired sample did not pass quality control and were excluded
from further analyses (Supplementary Data 1). In total, 11,802
genes passed quality control and were subjected to multi-
dimensional scaling and clustering. Regularized log counts of a
panel of known DG granule cell-enriched genes17 further con-
firmed the cell type-specificity (Supplementary Fig. 5). Sample-to-
sample principal component analysis for the top 100 genes across
all conditions revealed that PC1 scores (18% variance)
distinguished samples based on cell activation (dVenus+ vs.
dVenus− neurons) (Fig. 2b, Supplementary Data 2). Moreover,
PC2 scores (11% variance) separated samples based on training
history, with dVenus+ cells from the FC group of 12 independent
replicates splitting away from dVenus+ cells of the NS and HC
groups (Fig. 2b). PCA analysis of the top 500 genes also resulted
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Fig. 1 Activity-dependent, sustained expression of Arc::dVenus in DG granule cells. a Experimental setup. Arc::dVenus mice were fear conditioned and the
number of dVenus+ cells was measured in the DG at successive time-points; 1 h (n= 5), 5 h (n= 7), 8 h (n= 5), 14 h (n= 5) and 24 h (n= 7), after training.
Home-cage (HC) controls (n= 5) serve as a baseline. b Number of dVenus+ cells per 1.3mm2 section in the DG, at specific time-points after fear
conditioning. Analysis of variance: effect of training history over baseline (HC): F(1,33)= 13.102, P= P= 1.0 × 10−5; post hoc LSD: HC vs. 1 h: P= 2.2 × 10−5,
HC vs. 5 h: P= 1.9 × 10−5, HC vs. 8 h: P= 4.0 × 10−5, HC vs. 14 h: P= 6.0 × 10−6, HC vs. 24 h: P= 4.5 × 10−8. c Representative images of the DG from fear
conditioned mice at each successive time-point after fear conditioning. Scale bar: 200 μm. d Animals were implanted with microendoscopes to longitudinally
monitor in vivo dVenus fluorescence in the DG (n= 3). e Percentage of dVenus+ cells at 5 h that also express dVenus 24 h after fear conditioning. f
Percentage of dVenus+ cells at 24 h that also expressed dVenus 5 h after fear conditioning. g Representative microendoscopy images of dVenus+ cells at 5
and 24 h. Colored arrows indicate cells expressing dVenus at both time-points. Scale bar: 100 μm. h Percentage of dVenus+ cells in the DG that also express
endogenous Arc in home-cage controls (HC, n= 4), no shock controls (NS, n= 4) or fear conditioned animals (FC, n= 4). Multivariate analysis of variance:
F(2,12)= 40.2, P= 0.0003, post hoc LSD: HC vs. NS: P= 0.006, HC vs. FC: P= 0.0001, NS vs. FC: P= 0.003. i Representative images demonstrating co-
expression of endogenous Arc and dVenus. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as mean ± SEM. Scale bar: 200 μm. Source data are
provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09960-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2232 | https://doi.org/10.1038/s41467-019-09960-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in a similar distinction of cells based on their activation and
training history, indicative of a transcriptome robustly unique to
fear memory engram cells (Supplementary Fig. 6).

Differential gene expression analysis (DeSeq218) using a group-
wise paired-sample design (dVenus+ vs. dVenus−) revealed
transcriptome changes specific to dVenus+ cells (Supplementary
Data 3) in all three experimental groups (Supplementary
Fig. 8b–d). A total of 1157 genes in the FC group (Fig. 2c), 175
in the NS group (Supplementary Fig. 7a), and 638 genes in the HC

group (Supplementary Fig. 7b) exhibited differential regulation
between dVenus+ and dVenus− neurons (false-discovery rate
(FDR) corrected P value < 0.05 with absolute log2 fold change >
1.0). Of these, 10 genes were differentially expressed in both the
HC and NS groups, 92 genes in both the HC and FC groups, 26
genes in both the NS and FC groups, and 2 genes in all three
experimental groups (Supplementary Fig. 7c–e). Variability
between libraries was addressed using a sample-to-sample
correlation matrix (Supplementary Fig. 8a). Notably, the majority

a

0

A
rc

 

A
tf3

B
dn

f

E
pr

s

K
lf6

P
lk

2
Id

2

–6
–5
–4
–3
–2
–1

0
1
2
3

–7
–8

Actin binding
AMPA receptor activity
Antiporter activity
ATPase activity
Ca2+ Ion binding
Ca2+ channel activity

Cation channel activity
GABA receptor activity
Glycine gated ion channel activity
K+ channel activity
Kainate receptor activity
Protein kinase activity

GO term
Ion channel activity

K
cn

n3

K
cn

t2

K
cn

j9

K
cn

a4

K
cn

b2

K
cn

c2

K
cn

g2

K
cn

h3

K
cn

ab
2

K
cn

q2

K
cn

q3

K+ channel
activity 

f

0.0 1.0 2.0 3.0 4.0

Protein

ubiquination

GABA receptor

signalling

Adherens

junction sig

PKA

signalling

Gadd45

signalling

FC NS HC

– Log (P value)

FC

NS

FC

HC

FC

NS

HC

FC

HC

FC

e

–6

–4

–2

0

2

4

6

8

10

12

Lo
g 

2 
fo

ld
 c

ha
ng

e 
(d

V
en

us
 +

 v
s.

 d
V

en
us

 –
)

N
pa

s4
D

us
p1

C
dk

n1
a

B
az

1a
P

ga
p1

P
tg

s2
P

op
dc

3
R

gs
2

S
cg

2

S
v2

c
P

cd
h8

H
sd

17
b1

2
F

am
12

6b
G

ra
sp

G
pr

22
T

bc
1d

8b
D

us
p1

4

A
ca

n
N

pt
x2

C
ha

c1
S

em
a3

e
K

cn
a4

In
hb

a
G

ad
d4

5b
R

as
d1

S
gk

1

B
hl

he
40

Rapid
PRGs

Delayed
PRGs

SRGs
Other
IEGs

24 h

No shock (NS)

Fear-cond (FC)

Home cage (HC)

Patch-clamp aspiration of 10 dVenus+
and 10 dVenus– cells per animal,

24 h after conditionig  

 Library preparation RNA-sequencingCell suspension 

b FC
NS
HC

PC1: 18% variance

P
C

2:
 1

1%
 v

ar
ia

nc
e

–20

20

–30 –20 0 20 30

–10

10

–10 10

dVenus + 
cells

dVenus – 
cells

c

d

Padj<0.05

Decreased (766 genes) Increased (391 genes)

–10 –5 0 105

Log2 (fold change)

0

50

10

20

30

40

–L
og

 P
 v

al
ue

Atf3

Blnk
Sorcs3

Sorcs1
Arc

Megf6

Sidt1
Tiam2

Kcnq3
Il20rb

Glt8d2
Ctso

Slc29a4

Differential expression-FC

Cdkn1a
Penk

Lo
g 

2 
fo

ld
 c

ha
ng

e
(d

V
en

us
 +

 v
s.

 d
V

en
us

 –
) 

 

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09960-x

4 NATURE COMMUNICATIONS |         (2019) 10:2232 | https://doi.org/10.1038/s41467-019-09960-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


of genes identified 24 h after FC were not identified in
transcriptomic analyses of (1) whole hippocampus 1 or 24 h after
seizure induction19, (2) activated DG granule cells 1 h after novelty
exposure9, (3) whole hippocampus 5 min, 30min, 1 h or 4 after
FC20, or (4) activated ensembles from the temporal association
cortex 6 h after auditory FC21 (Supplementary Data 4).

As expected, endogenous Arc was highly upregulated in
dVenus+ cells compared to dVenus− cells across all experimental
groups (FC: Log2 fold change= 6.79, P= 2.3 × 10−19, Padj=
4.7 × 10−16, NS: Log2 fold change= 8.40, P= 9.6 × 10−11, Padj=
4.5 × 10−7, HC: Log2 fold change= 8.12, P= 2.3 × 10−13,
Padj= 5.1 × 10−10) (Fig. 2c, Supplementary Fig. 7a, b, Supple-
mentary Data 3). We next asked whether the sustained activation
profile that we observed for Arc was unique to this IEG, or
whether other known activity regulated genes (ARGs) were also
persistently expressed in engram cells. Thirty-four ARGs9,22–25

were differentially expressed (Fig. 2d), of which only Arc was also
regulated in HC and Arc, Dusp14, Nptx2, Inhba, and SgK1 were
also regulated in the NS condition. Eighteen of the 34 activity
related genes identified were delayed primary response genes that
belong to a second wave of plasticity-related genes that require
sustained activity, de novo translation and cell signaling pathway
induction24. In contrast, other well-described learning-associated
IEGs (Fos, Junb, Homer1, Egr1, Erg2, Egr3, Egr4) previously
shown to exhibit prominent upregulation immediately following
salient novel behavioral experience9, were unaltered in DG
engram neurons 24 h after FC (Supplementary Data 3).

The most significantly regulated gene in the FC group was the
transcription factor Atf3 (670-fold upregulated in dVenus+

engram, log2 fold change= 9.38, P= 2.4 × 10−41, Padj= 2.5 ×
10−37) (Fig. 2c), previously implicated in experience-dependent
actin structural plasticity26. Accordingly, we investigated the
longitudinal 24 h time-course of postconditioning Atf3 protein
expression. Bimodal peaks of Atf3+ cells were observed at 5 and
24 h after FC (baseline: 2.43 ± 1.97 cells per 0.6 mm2, 1 h: 4.91 ±
0.33 cells per 0.6 mm2, 5 h: 10.53 ± 0.82 cells per 0.6 mm2, 14 h:
4.33 ± 1.84 cells per 0.6 mm2, 24 h: 11.52 ± 1.77 cells per 0.6 mm2)
(Supplementary Fig. 9a–c), indicative of a dynamic expression
profile consistent with transient waves of structural plasticity
thought to underlie long-term memory formation27,28. Because
few Atf3+ cells were positively labeled, our estimate of the
proportion of dVenus+ cells expressing Atf3 was less reliable
(Supplementary Fig. 9d). The discrepancy between the fold-change
of Atf3 RNA compared to the protein abundance measured by
immunolabeling is likely a technical limitation of the antibody
quality, absolute Atf3 RNA abundance, and/or regulation of Atf3
RNA translation29. Consistent with this view, we consistently
observed, across all experimental conditions, that nearly every
measured Atf3+ cell was dVenus+ (Supplementary Fig. 9e). In

addition, two different vacuolar protein sorting 10 (VPS10)
domain-containing receptor family members, Sorcs1 (Log2 fold
change= 7.77, P= 8.3 × 10−19, Padj= 1.3 × 10−15) and Sorcs3
(Log2 fold change= 7.41, P= 7.4 × 10−27, Padj= 2.6 × 10−23),
vacuolar protein sorting 10 (VPS10) domain-containing receptor
family members with known functions in AMPA receptor
trafficking30,31, exhibited a 220- and 170-fold upregulation
respectively, in dVenus+ engram neurons (Fig. 2c). Penk, encoding
the endogenous opioid polypeptide hormone proenkephalin was
50-fold upregulated (Log2 fold change= 5.66, P= 1.3 × 10−15,
Padj= 1.0 × 10−12). Furthermore Acan, encoding the integral
extracellular matrix protein aggrecan, was also significantly
upregulated by 84-fold, consistent with recent hypotheses about
the function of perineuronal nets in the storage of long-term
memories (Log2 fold change= 6.39, P= 4.5 × 10−17, Padj=
5.2 × 10−14) (Supplementary Data 3).

Ingenuity pathway analysis revealed 3 significantly enriched
pathways (P < 0.01) in the NS (Supplementary Fig. 10a, Supple-
mentary Data 5) and HC groups (Supplementary Fig. 10b,
Supplementary Data 5), and 5 pathways in the FC group (Fig. 2e,
Supplementary Data 5). Furthermore, GO analysis of significantly
regulated genes revealed no overrepresented functional classes in
the HC group or the NS group. In contrast, 2 functional classes
were overrepresented in the FC group, receptor binding (GO:
0005102, P= 8.7 × 10−4) and ion channel activity (GO: 0005216,
P= 2.7 × 10−5). Notably, of the 40 genes identified in the GO
class of ion channel activity, 11 were potassium channels (Fig. 2f)
including the voltage-gated K+ channel Kcnq3, which was 72-
fold downregulated (Log2 fold change=−6.16, P= 3.1× 10−12,
Padj= 1.3 × 10−9) in dVenus+ engram neurons (Fig. 2c, Supple-
mentary Data 3).

A CREB-dependent network is recruited in engram neurons.
Network analysis of the top 50 differentially regulated genes
revealed a CREB-dependent transcriptional network as the pre-
dominant contributor, encompassing 22 of 50 genes (44.0%,
overlap P= 6.2 × 10−13) and enriched specifically in the FC
group (activation z-score= 3.71, P= 1.09 × 10–12) (Fig. 3a,
Supplementary Data 6). Of the 22 genes, 16 were robustly
upregulated in dVenus+ cells; while 6 were downregulated
(Fig. 3b). Using multiplex fluorescent RNAscope in situ hybri-
dizations32, we validated our RNA sequencing results for three of
the top ranked genes identified as part of the CREB network—the
upregulated genes Arc, Atf3, and Penk, and also validated the
expression of the most significantly downregulated gene
(Kcnq3) identified in our screen. Together with the dVenus
reporter transcript, co-expression was quantified in Arc+ cells in
comparison to their nonactivated neighbors 24 h after FC (Fig. 3c,
d). Consistent with the differential gene expression found by

Fig. 2 Fear conditioning induces a unique transcriptional profile in DG engram cells. a Experimental setup. Nucleated patch aspiration was performed 24 h
after fear conditioning (FC, n= 12 biological replicates), context-only exposure (NS, n= 4 biological replicates), or naïve home-cage controls (HC, n= 3
biological replicates). b Sample-to-sample principal component analysis. PC1 scores separated samples by state of activation (dVenus+ [green] vs. dVenus−

[magenta]) across all experimental groups, while PC2 separated samples based on their training history (fear conditioned group [FC] vs. naïve home-cage
[HC] and no-shock [NS] controls). Orange rectangle delineates the corresponding PC1/PC2 isolated quadrant. c Differential expression between dVenus+

and dVenus− cells for all genes with a raw P < 0.05. Dotted line indicates Padj < 0.05 (FDR corrected). Genes that are upregulated in dVenus+ cells are in
red, and genes that are downregulated in dVenus+ cells are in blue . The top 7 up and downregulated genes along with the total number of regulated genes
with Padj < 0.05 are labeled. d Log2 fold change of a panel of known activity regulated genes between dVenus+ and dVenus− cells 24 h after fear
conditioning. PRGs primary response genes, SRGs secondary response genes. Data are presented as mean ± SEM. e Functional pathway enrichment with P <
0.01 of differentially expressed genes in the FC group. The enrichment of these pathways in the NS and HC groups is plotted alongside the FC group. Gray
dotted line indicates significance threshold set at −log10 P > 1.3 (P < 0.05, Fisher’s exact test), and blue dotted line indicates significance threshold set at
−log10 P > 2 (P < 0.01, Fisher’s exact test). f Gene ontology (GO) analysis of molecular function revealed Ion channel activity as overrepresented in the FC
group (GO:0005216, P= 2.7 × 10−5, FDR corrected Fisher’s exact test). Of the 40 genes in this GO class, 11 were K+ channels. The genes of these K+
channels are plotted in the right panel as a log2 fold change between dVenus+ and dVenus− cells. Data are presented as mean ± SEM
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RNA sequencing, Arc (Fig. 3c: Log2 fold change= 3.13, P= 1.9 ×
10−2, Fig. 3d (upper): Log2 fold change= 3.18, P= 7.8 × 10−3,
Fig. 3d (lower): Log2 fold change= 2.37, P= 3.1 × 10−2) (Fig. 3c),
Atf3 (Log2 fold change= 3.02, P= 7.5 × 10−4), dVenus (Log2 fold
change= 5.62, P= 6.0 × 10−6) (Fig. 3c) and Penk (Fig. 3d, upper)
(Log2 fold change= 2.96, P= 2.5 × 10−3) were upregulated, while
Kcnq3 (Fig. 3d, lower) (Log2 fold change= –1.5, P= 6.9 × 10−4)

was downregulated in engram cells. In contrast, unbiased
upstream analysis showed that the CREB network was not sig-
nificantly activated in the NS group (activation z-score of 1.34,
P= 0.18) despite a small but significant CREB transcriptional
network enrichment (10.0%, overlap P= 3.5 × 10−3) (Fig. 3e).
Moreover, with the exception of Arc, no other genes regulated by
CREB were significantly altered in the HC group. Notably, in
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contrast to its downstream transcriptional targets, the expression
of CREB itself remained unchanged across all conditions (Sup-
plementary Fig. 11). Together, these findings suggest that CREB-
dependent transcription functions critically within the DG and
specifically within the sparse population of memory engram cells
during consolidation.

Consolidation requires engram-specific CREB transcription.
Finally, we wanted to validate our RNA-sequencing findings and
evaluate whether the observed CREB network functions causally
within the DG engram during consolidation of contextual fear
memory. In order to disrupt CREB-mediated transcription
exclusively in engram cells, we utilized Fos::tTA transgenic mice3

in combination with adeno-associated virus (AAV)-mediated
gene transfer to selectively express the well-validated dominant-
negative CREBS133A transcriptional repressor33,34 (AAV5-TRE::
EGFP-mCREB) in post-training DG neurons activated during
FC. This approach couples the Fos promoter to the tetracycline-
controlled transactivator (tTA), thereby enabling inducible
expression of EGFP-mCREB restricted specifically to engram cells
(Fig. 4a). In the presence of doxycycline (Dox), tTA mediated
transcription of EGFP-mCREB is prevented, whereas in the
absence of Dox, FC selectively induces EGFP-mCREB expression
in the sparse Fos+ population of DG engram neurons (Fig. 4b, c).
We observed very low expression of EGFP-mCREB in animals
that were maintained on Dox and fear conditioned (on-Dox FC)
or taken off Dox but not trained (Off-Dox HC). In contrast, mice
removed from Dox and fear conditioned (Off-Dox FC) had
robust activation in the DG granule cell layer. Moreover, WT
mice injected with the TRE::mCREB virus and fear conditioned
had negligible expression of EGFP-mCREB in the DG compared
to Fos::tTA transgenic mice (Supplementary Fig. 12), further
demonstrating the tight regulation of mCREB expression.

To validate the efficacy of mCREB in repressing the transcrip-
tion of identified network genes in DG engram cells, mice injected
with either control or EGFP-mCREB vectors were fear condi-
tioned off Dox and the co-expression of Arc, Atf3, and Penk was
evaluated 24 h later in Arc+ (for control vector) or EGFP+ DG
cells, and compared to their nonactivated neighboring cells
(Fig. 4d, e). Consistent with the RNA-seq data, Atf3 (Log2 fold
change= 2.68, P= 3.3 × 10−3) and Penk (Log2 fold change=
3.04, P= 6.2 × 10−4) were robustly upregulated in Arc+ cells of
mice receiving the control vector, along with Arc itself (Arc in
Arc+Atf3: Log2 fold change= 2.29, P= 3.7 × 10−4, Arc in Arc+
Penk: Log2 fold change= 3.67, P= 8.9 × 10−3) (Fig. 4d, e, panels 1
and 3). In contrast, expression of Arc, Atf3, and Penk was strongly

repressed in EGFP-mCREB+ neurons (EGFP-mCREB in Arc+
Atf3: Log2 fold change= 2.98, P= 1.1 × 10−4, EGFP-mCREB in
Arc+ Penk: Log2 fold change= 3.08, P= 6.5 × 10−5) (Fig. 4d, e,
panels 2 and 4), thereby demonstrating their CREB-dependent
transcription 24 h after FC. In addition, at the protein level, the
increase in the number of Atf3+ DG neurons observed 24 h after
FC was abolished in mice injected with EGFP-mCREB (Supple-
mentary Fig. 9), providing further validation of engram-specific
EGFP-mCREB as a robust tool for spatiotemporally-restricted
disruption of CREB transcription in vivo.

In order to test whether CREB function is required in the DG
engram for consolidation of contextual fear memory, mice were
removed from Dox and fear conditioned 48 h later. Immediately
after training, mice were returned to Dox to prevent subsequent
expression of EGFP-mCREB (Fig. 5a). All animals exhibited a
similar increase in freezing after the last US delivery (Fig. 5b).
However, mice injected with the mCREB virus exhibited a
profound long-term contextual memory deficit when tested 72 h
later (Fig. 5c). To examine if mCREB expression in a similar but
random population of DG neurons affects consolidation, mice
injected with mCREB were taken off Dox during exposure to a
novel context, put back on Dox immediately after, and fear
conditioned 24 h later. No deficits in memory were observed
(Fig. 5d, e) even though the same number of DG cells expressed
EGFP-mCREB after either FC or novel context exposure
(FC: 37.36 ± 2.77 cells per 0.6 mm2, NC: 36.79 ± 0.54 cells per
0.6 mm2) (Fig. 5f, g), thereby demonstrating the specificity of
engram-specific CREB-mediated transcription in the consolida-
tion of long-term contextual fear memory. Next, using an
independent group (Supplementary Fig. 13a), we confirmed that
mice receiving the mCREB virus exhibited no impairments in
short-term (5 h) contextual fear memory (Supplementary
Fig. 13b) or long-term (72 h) auditory fear memory (Supplemen-
tary Fig. 13c), further establishing the specificity of DG engram
CREB signaling in the consolidation of contextual fear memory.
Finally, WT mice receiving the mCREB virus exhibited no deficits
in memory (Supplementary Fig. 12a and Supplementary Fig. 13d),
confirming the functional specificity of post-training mCREB
expression.

Discussion
Elucidating the mechanisms underlying the successful con-
solidation of memory remains a major goal of neuroscience.
Sparse populations of neurons in the DG are known to be critical
for the consolidation of long-term memories2,3. However, the
molecular mechanisms underlying engram-specific consolidation

Fig. 3 Distinct activation of a CREB-dependent network exclusively in DG engram cells. a Fear conditioning-induced CREB-dependent gene network
activation. Twenty-two of the top 50 significantly regulated genes after FC are part of the CREB network, of which 14 have direct transcriptional regulation.
b Differential expression between dVenus+ and dVenus–cells of the 22 genes identified in the CREB network. Dotted line indicates Padj < 0.05 (FDR
corrected). Red: Genes upregulated, Blue: Genes downregulated, in dVenus+ cells. c Multiplex RNA-scope validates the differential expression pattern of
Arc, Atf3, and dVenus 24 h after fear conditioning. Left: Log2 fold change of fluorescence intensity between Arc+ and neighboring Arc− cells is reported for
each gene (Arc+Atf3+ dVenus: n= 4). Analysis of variance: Arc: F(1,7)= 10.19, P= 1.9 × 10−2, Atf3: F(1,7)= 39.58, P= 7.5 × 10−4, dVenus: F(1,7)= 225.17,
P= 6 × 10−6. Right: Representative images demonstrating positive and negative-control probes as well as co-expression patterns of Arc (green), Atf3 (red),
and dVenus (cyan) in the DG of animals. DAPI (blue) labels all cells. 6×. d Multiplex RNA-scope experiments to validate the differential expression pattern
of Arc, Penk, and Kcnq3 24 h after fear conditioning. Left: Log2 fold change of fluorescence intensity between Arc+ and neighboring Arc− a cell is reported for
each gene (Arc+ Penk: n= 4, Arc+ Kcnq3: n= 4). Analysis of variance: Upper: Arc: F(1,7)= 15.30, P= 7.8 × 10−3, Penk: F(1,7)= 24.91, P= 2.5 × 10−3, Lower:
Arc: F(1,7) = 7.87, P = 3.1 x 10-2, Kcnq3: F(1,7) = 40.86, P = 6.9 x 10-4. Right: Representative images demonstrating co-expression patterns of Arc (green) and
Penk (red), or Arc (green), and Kcnq3 (red) in the DG of animals. DAPI (blue) labels all cells. c, d Double arrows: Arc+ cells, single arrows: neighboring Arc−

cells. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as mean ± SEM. Scale bar: 20 μm. Source data are provided as a Source Data file. e Group-wise
analysis of significantly regulated genes under direct transcriptional regulation of CREB. The overlap P value measures the enrichment of regulated genes
from our data sets, compared to previously identified CREB targets. The activation z-score predicts the activation state of the upstream regulator (CREB in
this case) based on the log2-fold change values of CREB targets. z-scores greater than 2 or smaller than −2 are considered significant
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remain largely unknown. Using differential transcriptome pro-
filing of fluorescently tagged DG engram cells and their non-
activated neighbors, we revealed genes unique to the
consolidation of contextual fear memory. Importantly, using
in vivo imaging we established that our activity-dependent Arc
reporter was persistently expressed within largely the same subset
of DG granule cells for at least 24 h following a single-

conditioning session, thereby validating our approach for tran-
scriptome profiling during memory consolidation. Furthermore,
we also validated the utility of activity-dependent transcriptome
profiling by demonstrating the critical requirement of the iden-
tified engram-specific changes in CREB-dependent transcription
for mediating contextual memory consolidation.
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Memory consolidation is a highly dynamic process requiring
multiple waves of gene transcription and protein
translation13,35,36, in order to stabilize and perpetuate experience-
dependent changes in synaptic strength and connectivity37. The
examination of transcriptome changes in activated ensembles has
previously been limited to the initial hours following a behavioral
experience9,24,38,39, due to the transient nature of most IEGs used
to tag activated neural ensembles. This has limited the identifi-
cation of key molecular players to the first wave of ARGs that are
transcribed rapidly upon stimulation24,37, while potentially
missing out on the identification of downstream gene programs
that are specific to synaptic and assembly consolidation as well as
to memory persistence. However, the sustained activation of Arc
in DG engram cells provided us with the opportunity to identify
molecular adaptations during memory consolidation 24 h after
conditioning, a time-point at which most LTM tests are per-
formed as this is well beyond the window of short-term memory,
IEG activation, and vulnerability to protein synthesis inhibition.
Moreover, using in vivo imaging we also confirmed that the DG
engram neuronal ensemble remained stable throughout the 24 h
consolidation period. Using only two principle components, the
transcriptome profile of DG engram cells recruited during FC
strongly separated from neighboring DG granule cells taken from
the same fear conditioned mice, as well as DG granule cells
(dVenus+ and dVenus−) from NS and HC groups. Cell types in
different brain regions may have vastly different transcriptome
profiles40,41 and only one prior study has looked at gene
expression in activated DG cells granule cells, albeit 1 h following
novel context exposure8. Our findings now significantly expand
this approach by determining sustained alterations in gene
expression during long-term memory consolidation.

In total, we identified 204 differentially expressed genes in the
FC group that surpassed the genome-wide significant threshold of
P < 4.2 × 10−6 (Bonferroni correction of α= 0.05 for the total
n= 11,802 genes that passed QC) and validated the co-expression
patterns of Arc, Atf3, Penk, and Kcnq3, which were identified as
among the most significantly regulated genes in DG memory
ensemble neurons 24 h after FC. Of these 4 genes, only Arc was
identified in 49,19–21 of the 8 other transcriptome profiling screens
we compared our data against (Supplementary Data 4). Given the
well-described immediate early response of this gene42, it is not
surprising that 3 of the 4 screens also identified Arc, as the ani-
mals were sacrificed for RNA extraction within an hour of sti-
mulation. Strikingly, Penk, and Atf3, genes with known functions
in synaptic43 and structural plasticity26, were among the most
robustly upregulated genes in our screen. Conversely, Kcnq3, the
most downregulated gene was one of a group of 11 differentially
expressed K+ channel genes of which 10 were significantly
downregulated, indicative of sustained alterations of DG engram

cell intrinsic excitability during fear memory consolidation, a
mechanism that may serve to bind together experiences acquired
closely together in time10,37,44.

An earlier study examined Pavlovian FC in mice with a global
homozygous germline deletion of Atf326. No differences were
observed for contextual FC, while Atf3−/− knockout mice
showed an enhancement of the strength of auditory FC that is
presumably hippocampal-independent. Our findings of a fear
memory engram-specific upregulation of Atf3 following con-
textual FC, therefore, suggest that germline deletion of Atf3 is
accompanied by homeostatic compensations, at least within the
DG. Moreover, these results also offer an important cautionary
note regarding the predictive validity of global pretraining
molecular genetic deletions compared to region- and engram-
specific post-training manipulations as we have performed in the
current study.

Transcription factor network analysis revealed that 22 of the
top 50 differentially expressed genes were CREB-dependent,
including Arc, Atf3, Penk, Cdkn1a, Sorcs3, and Inhba. The tran-
scription factor CREB has previously been implicated in the (1)
allocation of neurons to a memory trace through modulation of
neuronal excitability1,6,45,46 as well as (2) memory consolidation.
However, most previous studies33,47–52 that have manipulated
CREB function, do so prior to memory acquisition. Moreover,
although these studies have indeed demonstrated a critical role
for CREB in memory, it has been difficult to ascertain whether the
resulting behavioral alterations were due to impairments in
allocation, acquisition, consolidation, or some combination
thereof. Here, using a Fos-driven doxycycline-based inducible
system, we were able to repress CREB-mediated transcription for
a fixed temporal window during consolidation specifically within
the sparse DG engram. Notably, chronic expression of mCREB in
the hippocampus was shown to impair memory 7 days after
conditioning but not at 24 h48, indicative of ongoing transcrip-
tional programs that may be specific to memory persistence.
However, the mechanisms underlying the function of CREB in
engram-specific consolidation and memory persistence has
remained thus far largely unknown. Therefore, our findings of an
active CREB network at 24 h required for contextual fear memory
consolidation firmly establishes the causality of CREB-dependent
transcription specifically within the DG engram. Moreover, these
results also substantially expand our knowledge of the identity of
specific CREB target genes involved in long-term memory.

Taken together, we have identified critical molecular
mechanisms that are necessary for the formation of stable
memories by sparse DG engram neurons. Moreover, we
demonstrate that RNA sequencing in combination with activity-
dependent cellular tagging holds considerable promise for elu-
cidating the molecular adaptations following experience-

Fig. 4 Disruption of CREB function prevents regulation of CREB target genes. a Experimental design. Fos::tTA mice were injected with AAV5-TRE::EGFP-
mCREB targeting the DG. b On-Dox FC group remained on Dox throughout the experiment, while the off-Dox (HC and FC) groups were placed back on
Dox immediately after training. Animals were sacrificed 4 h post-training. c Representative images demonstrating expression of EGFP-mCREB in DG
neurons after fear conditioning. FC training on Dox induced very low expression of Fos::tTa driven EGFP-mCREB. Among animals off Dox, fear-conditioned
animals (FC) showed much higher EGFP-mCREB expression than HC controls. Scale bar: 100 μm. d Multiplex RNA-scope experiments validate the use of
mCREB to disrupt the expression of CREB target genes. Log2 fold change of fluorescence intensity between Arc+ and neighboring Arc− cells is reported for
the control vector and EGFP+ vs. EGFP− cells for mCREB injected animals. Analysis of variance: Panel 1 and 2-Control vector (n= 4): Arc: F(1,7)= 51.64, P=
3.7 × 10−4, Atf3: F(1,7)= 22.16, P= 3.3 × 10−3. EGFP-mCREB vector (n= 4): EGFP: F(1,7)= 79.13, P= 1.1 × 10−4. Panel 3 and 4-Control vector (n= 4): Arc:
F(1,7)= 14.45, P= 8.9 × 10−3, Penk: F(1,7)= 42.60, P= 6.2 × 10−4. EGFP-mCREB vector (n= 4): EGFP: F(1,7)= 96.21, P= 6.5 × 10−5. *P < 0.05, **P < 0.01,
***P < 0.001. Data are presented as mean ± SEM. Source data are provided as a Source Data file. e Representative images demonstrating co-expression
patterns of Arc (green) and Atf3 (red) or Arc (green) and Penk (red) in animals injected with the control vector (panels 1 and 3) and EGFP-mCREB (cyan,
panels 2 and 4) in the DG of animals injected with the EGFP-mCREB virus. DAPI (blue) labels all cells. Double arrows indicate Arc+/EGFP+ cells, while
single arrows indicate neighboring Arc−/EGFP− cells. Scale bar: 20 μm
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dependent plasticity with broad applicability throughout the
nervous system.

Methods
Experimental model and subject details. Male Arc::dVenus and Fos::tTa trans-
genic mice backcrossed more than 10 generations into C57BL/6J were single
housed and maintained on a 12 h light/dark cycle with food and water available ad
libitum. Experiments were performed during the light phase using adult mice
(postnatal weeks 8–12). All experiments were performed in accordance with Dutch
law and licensing agreements using protocols ethically approved by the Animal
Ethical Committee of the Erasmus MC Rotterdam and Vrije Universiteit
Amsterdam.

Fear conditioning. Animals explored the conditioning chamber (context A) for
180 s prior to the onset of 3 auditory stimuli (30 s, 5 kHz, 85 dB) that co-terminated
with a mild foot shock (0.75 mA, 2 s)10. The intertrial interval between tone-shock
presentations was 210 s. The conditioning chamber was thoroughly cleaned with
70% ethanol between animals. NS animals underwent the same protocol, but did
not receive any foot shocks. HC controls received no exposure to the conditioning
chamber and remained in standard housing conditions until they were sacrificed.

Context fear memory retrieval: Animals were exposed to the conditioning
context (A) for 180 s at specified time-points after conditioning.

Auditory fear memory retrieval: Animals were exposed to a novel context (B)
for 120 s, followed by presentation of the auditory CS for 60 s. This context was
thoroughly cleaned with 1% acetic acid between animals and differed in shape,
texture, and smell to the conditioning context A.
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Fig. 5 DG engram-specific disruption of CREB function impairs memory consolidation. a Experimental design. Fos::tTA mice were injected with AAV5-TRE::
EGFP-mCREB (n= 8) or control AAV5-TRE::mCherry (n= 7) targeting the DG, and subsequently taken off Doxycycline prior to fear conditioning. Animals were
placed back on Dox immediately after fear conditioning and tested for contextual memory 72 h later. b Freezing levels (%) during the training session, prior to
footshock onset (pre) and following the termination of the last footshock (post). Analysis of variance: Control Pre vs. Post: F(1,13)= 103.4, P= 3.0 × 10−7, mCREB
Pre vs. Post: F(1,15)= 163.8, P= 2.2 × 10−9, Control vs. mCREB (Post): F(1,14)= 1.4, P=0.26. c Mice injected with mCREB exhibited a significant contextual
memory deficit when tested 72 h after training. Analysis of variance F(1,14)= 11.41, P=0.005. d Experimental design. Fos::tTA mice were injected with AAV5-
TRE::EGFP-mCREB (n= 8) or control AAV5-TRE::mCherry (n= 8) targeting the DG, and subsequently taken off Doxycycline prior to exposure to a novel
context. Animals were placed back on Dox immediately after and fear conditioned 24 h later followed by a contextual memory test 72 h after that. e Mice with
mCREB expression in cells active during novel context exposure exhibited no memory deficit when tested 72 h after training. f, g The same number of DG cells
express EGFP-mCREB after exposure to either the fear-conditioning context or a novel context or. f Representative images and g quantification of the number of
EGFP-mCREB cells per 0.6mm2. Scale bar: 200 μm. n.s. not significant, **P < 0.01, ***P < 0.001. Data are presented as mean ± SEM. Source data are provided as
a Source Data file
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mCREB experiments: Off Dox-FC animals were taken off food containing
doxycycline 48 h prior to conditioning and placed on high-Dox food immediately
after. On Dox-FC animals were kept on Dox throughout the experiment. Off
Dox-HC animals followed the same Dox schedule as the Off Dox-FC group, but
remained in their home cage. For the novel context exposure experiment, animals
were taken off Dox food 48 h prior to exposure to a novel context and placed on
high-Dox food immediately after and fear-conditioned 24 h later while on Dox.

Immunohistochemistry. Animals were deeply anesthetized with Pentobarbitol
(50 mg per kg) and perfused with 4% paraformaldehyde (Sigma-Aldrich Chemie
N.V., The Netherlands). Brains were dissected and postfixed in 4% paraf-
ormaldehyde for 2 h at 4 °C and then transferred to phosphate buffer (0.1 M PB,
pH 7.3) containing 10% sucrose and stored overnight at 4 °C. Embedding was
performed in 10% gelatin+ 10% sucrose, followed by fixation in 30% sucrose
containing 10% PFA for 2 h at room temperature. Brains were then immersed in
30% sucrose at 4 °C until slicing. Forty-micrometer coronal sections were collected
serially using a freezing microtome (Leica, Wetzlar, Germany; SM 2000R) and
stored in 0.1 M PB. Approximately, 15 free floating sections at intervals of 160 μm,
across the rostrocaudal axis of the DG were used for immunohistochemistry. For
Arc and c-Fos stainings, antigen retrieval was performed at 80 °C for 1 h in 10 mM
sodium citrate buffer, prior to pre-incubation with blocking solution (0.1 M PBS)
containing 0.5% Triton X-100 (Sigma-Aldrich Chemie N.V., The Netherlands) and
10% normal horse serum (Thermo Fisher Scientific, The Netherlands). Sections
were then incubated in primary antibodies (Arc: 1:200, C-7 sc-17839, Santa Cruz,
Germany, c-Fos: 1:500, antibody (4): sc-52, Santa Cruz, Germany) for 48–72 h at
4 °C followed by incubation with corresponding Alexa-conjugated secondary
antibodies (1:200, Jackson Immunoresearch, Bioconnect, The Netherlands) for 2 h
at room temperature. For Atf3 stainings, sections were incubated with the primary
antibody (1:100, C-19, sc-188, Santa Cruz, Germany) for 24 h at 4 °C prior to
secondary antibody incubation as described above. Both primary and secondary
antibodies were diluted in 0.1 M PBS buffer containing 0.4% Triton X-100 and 2%
NHS. Nuclear staining was performed using DAPI (300 nmol per l, Thermo Fisher
Scientific, The Netherlands) and sections were mounted on slides and coverslipped
using Vectashield antifade mounting medium (H-1000, Vector Labs, USA)

Confocal microscopy and cell counting. A Zeiss LSM 700 confocal microscope
(Zeiss, The Netherlands) was used to make z-stacks of the DG at ×10 or ×20
magnification and 0.5× zoom. Native dVenus, Cy3 or Alexa 555, Alexa647 and
DAPI were imaged using the excitation wavelengths of 488, 555, 639, and 405 nm,
respectively10. The 488, 555, and 639 channels were acquired sequentially so as to
avoid bleed-through, and prevent emission spectral overlap. The DAPI channel was
acquired in combination with one of the other channels.

For individual counts of dVenus+ cells, 10x images (1.3 mm × 1.3 mm) acquired
from the confocal were imported into ImageJ and the Cell counter plugin (V 2.2)
was utilized to mark and count dVenus+ cells manually in the granule cell layer of
the DG, from 2D projections of the z-stack. The number of Arc-dVenus+ neurons
was counted at 160 µm intervals across the entire rostrocaudal axis of the DG using
coronal brain sections (Supplementary Fig. 1D). The average number of dVenus+
cells per 1.3 mm × 1.3 mm section in the DG is presented throughout the text2. For
Atf3+ cell counts, 20x z-stack images (0.6 mm × 0.6 mm) were acquired and
counted in the same way as described above.

For colabeling experiments, 20x images were imported to ImageJ where they
were digitally merged to form composite images. First, individual cells were marked
and counted in separate channels (e.g., native dVenus fluorescence, Arc labeled with
Alexa 647 and c-Fos labeled with Cy3). Representative images were edited in ImageJ
to generate 2D projections of z-stacks, and all images were treated identically.

Surgeries. All surgeries were performed under stereotaxic guidance using co-
ordinates from the brain atlas53 to target the DG (A/P: –1.9, M/L: +/–1, D/V: –2).
Isoflurane (1–3% inhalant to effect, up to 5% for induction, RB Pharmaceuticals,
UK) was used for general anesthesia and Lidocaine (2%, Sigma-Aldrich Chemie N.
V., The Netherlands) provided topical analgesia for all surgeries. Animals received
peri-operative analgesia (Temgesic, 0.1 mg per kg, RB Pharmaceuticals, UK) and
were closely monitored for postoperative care.

Microendoscopy. Implantation of microendoscopes was performed as described in
Resendez et al.54, with minor modifications. Briefly, animals under isoflurane anes-
thesia were placed on a stereotaxic setup. The skull was cleaned with ethanol (Thermo
Fisher Scientific, The Netherlands), Betadine (Gezondheidswinkel VoordeligVitaal,
The Netherlands), and hydrogen peroxide (VWR international B.V., The Nether-
lands) prior the placement of a skull screw (Selva Benelux, The Netherlands). After
performing a craniotomy of 1mm diameter, a column of tissue just above the selected
co-ordinates was gently vacuum-aspirated with a 30G blunt needle (SAI Infusion
Technologies, USA) and intermittent irrigation using sterile saline. A 1mm GRIN
lens (GLP-1040, Inscopix Inc. USA) was slowly inserted (100–200 μm per min) to
~200 μm above the selected co-ordinates and fixed in place using Vetbond (VWR
international B.V., The Netherlands) and dental cement (Contemporary Ortho-Jet
Powder & Liquid, Lang Dental Manufacturing, USA). Two weeks after lens
implantation, the baseplate (Inscopix Inc., USA) for a miniaturized microscope

(Inscopix Inc., USA) was implanted above the microendoscope lens after determining
the best field of view of landmarks like blood vessels and/or DG neurons.

Viral vectors. The pAAV-TREtight::EGFP-mCREB plasmid was constructed by
replacing hM3Dq-mCherry in pAAV-TREtight::hM3Dq-mCherry (Addgene plas-
mid #66795, gift from William Wisden) with the coding sequence of EGFP-
mCREB from pAAV-mCREB (Addgene plasmid #68551, gift from Eric Nestler)55

using SLiCE56. Viral packaging of pAAV-TREtight::EGFP-mCREB was imple-
mented for AAV2 serotype 5 for in vivo application.

Animals were placed on Doxycline containing food 1 week prior to surgeries57.
Animals under general isoflurane anesthesia and topical lidocaine anesthesia were
placed on a stereotaxic setup and 0.5 μl of virus was bilaterally injected into the
selected co-ordinates using a micro-injection pump58 (CMA 400 syringe pump,
Aurora Borealis Control B.V., The Netherlands) at the rate of 0.1 µl per min,
followed by an additional 10 min to allow diffusion. The wound was closed with a
surgical staple system (Fine Science Tools, Germany) and mice remained in their
HC for 3 weeks prior to the start of experiments.

In vivo imaging of dVenus fluorescence. Animals implanted with base plates
were briefly anesthetized using isoflurane for attachment of miniature microscopes
and imaging. The adjusted field of view was briefly imaged an hour prior to FC.
The same field of view was then imaged 5 and 24 h after FC for a period of 10 s to
minimize photobleaching (Supplementary Fig. 14a). The 5 h time-point was chosen
because (1) previous reports have reported maximal experience-driven Arc::dVenus
expression occurs 4–6 h after stimulation59,60 and (2) our ex vivo imaging studies
demonstrated a consistent proportion of dVenus+ neurons in the DG between 1
and 24 h. Images collected were preprocessed and adjusted to predefined vascular
landmarks using the “Name landmarks and register” plugin in ImageJ (V 2.0.0-rc-
43/1.50i) (Supplementary Fig. 14b).

Mouse brain slice preparation for RNA-Seq. Coronal slices of the hippocampus
were prepared from fear conditioned, NS or HC control Arc::dVenus mice. Mice
were deeply anaesthetized, transcardially perfused, and decapitated before the brain
was dissected from the skull. The brain was subsequently mounted and sliced in
oxygenated ice-cold slicing medium containing (in mM): N-methyl-D-glucamine
93, KCl 2.5, NaH2PO4 1.2, NaHCO3 30, HEPES 20, glucose 25, sodium ascorbate
5, sodium pyruvate 3, MgSO4 7, CaCl2 0.5, at pH 7.4 adjusted with 10M HCl.
Following the cutting procedure, the slices were maintained on ice in the oxyge-
nated slice medium until the end of the experiment.

Fluorescence-guided nucleated patch aspiration for RNA-seq. Individual
dentate gyrus granule cells were collected for sequencing using a modified meth-
odology for pulling nucleated patches14. Briefly, green (dVenus+) and nongreen
cells (dVenus−) were visualized using IR-DIC (Olympus BX51, Olympus Neder-
land B.V.) on a patch clamp rig constantly perfused with ice-cold slicing medium
(temperature in recording chamber was 6 °C). Individual boroscilicate glass pip-
ettes (3–4MΩ) with maximum 5 µL of filtered slicing medium were brought into
close proximity of the target cell somata. Identical to whole-cell patch clamp
recording techniques, during approach a small voltage step (−5 mV, 500 ms) was
used to monitor the formation of a giga-ohm seal after contact using fine pressure
control. Once a stable giga-ohm seal formed between the soma and the pipette, the
contact patch was broken using a brief suction pulse combined with a brief 500 mV
voltage step (100–500 µs via EPC10 HEKA amplifier in whole-cell configuration).
Series resistance was not constantly monitored after break-in because low access
resistance was not strictly required. After patch opening, a small constant negative
pressure (maximum 50mBar) was applied and slowly increased until the cellular
contents could be observed moving into the pipette (or the volume of the cell was
observed to decrease). As soon as the cell soma began to shrink in volume, the
negative pressure was no longer increased but was maintained until the pipette
containing the targeted cell was removed from the holder. Typically the nucleus
was clearly visible and began blocking the pipette tip within 45 s of applying
constant negative pressure. The recording pipette was then slowly retracted out of
the tissue to draw the cell contents out of the slice. During retraction, if the giga-
ohm seal was lost, the cell was considered compromised and the pipette and its
contents were discarded (10% of cells). Once clear of the slice but still in the bath,
the negative pressure in the collection pipette was increased to approximately
100mBar and the pipette quickly cleared of the bath. Upon successful removal, the
extreme end tip of the pipette and its contents were immediately broken off into
the bottom of an Eppendorf tube containing 3.4 μl of ice-cold lysis buffer with 0.2%
Triton X-100 (molecular biology grade, Sigma-Aldrich Chemie N.V., The Neth-
erlands) and RNAse inhibitor. Great care was necessary to break off the tip suf-
ficiently above the waiting lysis buffer mixture to avoid capillary action drawing the
reaction medium and any previously collected material back into the broken
pipette. The collection tube was spun briefly after each cell was inserted to help
assure harvested material (including pipette glass) reached the cold lysis buffer.
Any pipette solution remaining in the pipette was not aspirated out of the pipettes
to avoid unnecessarily diluting the lysis reaction. Two or three cell pairs (dVenus+/
dVenus−) were collected from each slice to minimize the tissue time at
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temperatures above 4 °C. Ten pairs (dVenus+/dVenus-) of DG granule cells were
collected from each mouse and pooled for each sequencing experiment.

Sample preparation and RNA sequencing. Full-length cDNA was generated
from 3.4 μl of cell lysate using the Smarter2 protocol12. cDNA quality and quantity
has been checked on Agilent Bioanalyzer, using the high sensitivity DNA assay
prior to amplification and sequencing library preparation (Supplementary Fig. 15).
Sequencing libraries were generated from 500 pg of cDNA with Illumina’s Nextera
XT sampleprep kit (Illumina Inc., USA) and sequenced for single-read 50 bp on
Illumina HiSeq2500 using Rapid v2 sequencing chemistry (Illumina Inc., USA).
Cells from 16 FC animals, and 4 NS and HC were aspirated and used for library
preparation and sequencing. Of these, (1) samples that failed quality control for
sample preparation (poor cDNA quality), (2) samples that failed quality control for
sequencing (very low percentage alignment), or (3) samples that were excluded
from analysis as their paired sample failed quality control, have been listed in
Supplementary Data 1. For each library, only the sequenced fragments that yield
one unique aligment are included in the expression profile. For each library, the
number of detected genes is presented in the Supplementary Data 1. In this table, a
gene is considered detected if at least one fragment aligns on it (count ≥ 1). After
quality control, for the fear-conditioned group, 3 independent technical replicate
experiments were performed (n= 6, n= 4, and n= 2 mice). Sample-to-sample
principal component analysis separated samples on state of activation (dVenus+ or
dVenus−) and not by experiment (Fig. 2b).

Transcriptome analysis. Reads were aligned against the mouse reference genome
(mm10) with tophat2 version 2.0.1361. Read counts per gene were calculated with
htseq-count version 0.6.062 using NCBI transcript annotation. Differential expres-
sion analysis on raw counts was performed in R63 using the DESeq2 package18, in a
paired design. Briefly, The DESeq method uses a Negative Binomial (aka Gamma-
Poisson) distribution to model the counts per gene/sample, in a generalized linear
model. After that, a Wald test was utilized to test for significance of the fitted
parameters in the generalized linear model and multiple testing correction was
performed using the Benjamini & Hochberg (1995) algorithm. Regularized log
counts (log2 scale, normalized with respect to library size) were used for visualization
of data for clustering, box plots and heat maps. GO analysis for molecular function
was performed in PANTHER (V 13.1) against a background of the 11,802 genes that
passed QC, using a Fisher’s exact with FDR multiple test correction64.

For pathway and upstream regulator analysis65 using Ingenuity Pathway
Analysis (IPA, QIAGEN)66, a Fisher’s exact test (right-tailed), where significance
indicates the probability of association of molecules from the dataset with the
canonical pathway by random chance alone, was used to calculate an overlap P
value corresponding to the probability that the dataset genes were drawn from the
same distribution as the genes regulated by a given transcription factor. The
activation score (z-value) is calculated on the basis of experimentally validated gene
regulation by comparing whether an upstream transcription regulator has
significantly more “activated” predictions than “inhibited” predictions (z > 0) or
vice-versa (z < 0), where significance implies a rejection of the hypothesis that
predictions are random with equal probability. z-scores greater than 2 or smaller
than –2 are considered significant65.

RNA-scope in situ hybridization assay and analysis. RNA-scope analysis was
performed as per the manufacturer’s instructions32 (ACD, Bio-techne Ltd., UK).
Briefly, animals were fear conditioned and transcardially perfused with sterile 4%
PFA in 1× PBS, 24 h later. After a 24 h period of post-fixation at 4 °C, brains were
transferred to 10% sucrose in sterile 1× PBS until they sank. This step was repeated
with 20 and 30% sucrose. Brains were then embedded in optimal cutting tem-
perature media (Tissue-Tek, VWR, The Netherlands) and placed in the cryostat at
−20 °C for 1 h to equilibrate the tissue. Sections measuring 10 μm from the hip-
pocampus were then mounted on SuperFrost Plus slides (VWR, The Netherlands)
and allowed to dry at −20 °C for 2 h. Sections were then processed as per the
manufacturer’s instructions which included pre-treatment with hydrogen peroxide
for 10 min and target retrieval at 99 °C for 5 min and treatment with Protease III
for 30 min at 40 °C. Hybridization to probes against Arc (Cat. no. 316911-C3), Atf3
(Cat. no. 426891-C1) and EGFP (also recognizes dVenus, Cat. no. 400281-C2) or
Arc and Penk (Cat. no. 318761-C1), or Arc and Kcnq3 (Cat. no. 444261-C1) was
carried out at 40 °C for 2 h. HRP Signals against each channel (C1–C3) were then
sequentially amplified and developed using TSA Plus fluorophores (Perkin Elmer,
The Netherlands) at a dilution of 1:1500, where TSA plus Cy3 (Cat. no.
NEL744E001KT) was assigned to C1 probes, TSA plus Cy5 (Cat. no.
NEL745E001KT) was assigned to C2 probes and TSA plus Fluorescein (Cat. no.
NEL741E001KT) to C3 probes. Positive- (Cat. no. 320881, PolR2A-C1, PPIB-C2,
and UBC-C3), and negative-control probes (Cat. no. 320871) were included with
every experiment to assess sample RNA quality and optimal permeabilization
conditions. Sections were counterstained with DAPI for 30 s, coverslipped with
ProLong Gold Antifade Mountant and allowed to dry overnight at RT, in the dark.
Four images were taken per section at 60x magnification with each of the four
channels being acquired sequentially so as to avoid bleed-through, and prevent
emission spectral overlap. Images were exported to ImageJ and background sub-
traction was performed after which ROIs were drawn around Arc+ or EGFP+ cells

or their non-activated neighboring cells, counterstained with DAPI and the
intensity of all four channels was measured in arbitrary units for each cell using the
MultiMeasure plugin in ImageJ. Neighboring cells were chosen for analysis to
mimic the paired-design used during patch clamp aspiration for RNA-Seq
experiments. These intensity measurements were then used to calculate Log2 fold
change regulations between neighboring cell pairs for each of the genes/probes
measured. Care was taken to ensure that all sections belonging to the same
experiment were processed and imaged at the same time. For mCREB experiments,
Arc was used to label activated cells in control vector treated animals, while EGFP
was used to identify mCREB expressing cells as these cells expressed negligible
amounts of Arc.

Quantification and statistical analysis. Sample sizes (n), test statistics, degrees of
freedom, and P values are noted throughout in the main text and figure legends,
and in Supplemental Data 3 for RNA-Seq data. No animals were excluded from the
behavioral analysis and no virus misplacements were detected. All statistics were
performed using SPSS statistics (V 22, IBM). Univariate analysis of variance
(ANOVA) was performed to evaluate significance in the temporal expression
profile of dVenus+ cells for both training history (exposure to FC) and time, in
confocal fluorescence imaging and RNA-scope analyses. Univariate ANOVA was
used in the 24 h experiments detailing dVenus expression in different experimental
groups (NS and DS) as well as Arc and dVenus colabeling (HC, NS, and DS).
Repeated measure ANOVA was utilized to determine contextual conditioning in
the mCREB experiments, while a univariate ANOVA was used to evaluate the
effect of treatment at the 72 h retrieval test. Univariate ANOVA was used to
evaluate the results of the short-term contextual memory and long-term auditory
memory tests. Significant differences were followed up by univariate ANOVA or
Fishers least significant difference test when appropriate. The threshold for sta-
tistical significance was considered at α= 0.05 all experiments, with adjustment for
multiple comparisons as specified in the text.

Data availability
All differentially expressed genes with P < 0.05 have been listed in Supplementary Data 3.
RNAseq data has been submitted to the National Center for Biotechnology Information
Gene Expression Omnibus (NCBI GEO Accession GSE129024).
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