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Diverse epistatic effects in barley-powdery
mildew interactions localize
to host chromosome hotspots

Valeria Velásquez-Zapata,1,2,8 Schuyler Smith,2 Priyanka Surana,3 Antony V.E. Chapman,4,5 Namrata Jaiswal,6

Matthew Helm,6 and Roger P. Wise1,2,4,7,9,*
SUMMARY

Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR)
receptors that specify recognition to diverse cereal diseases.We exploited time-course transcriptome dy-
namics of barley and derived immunemutants infected with the powdery mildew fungus, Blumeria hordei
(Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blu-
fensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1DKL308-309). Interactions ofMla6 and Bln1 re-
sulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseu-
domonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468
barley NLRs, 115 were grouped under different gene effect models; genes classified under these models
localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into
nine co-expressed modules, linking differential expression with pathogen structures, signifying that dis-
ease is regulated by an inter-organismal network that diversifies the response.

INTRODUCTION

Plant pathogenic fungi are among the greatest deterrents to crop production worldwide.1–3 Obligate biotrophs, such as mildews and rusts,

are unable to survive autonomously, and as such, present an ideal opportunity to examine interdependent gene regulation between disease

agents and their hosts.4,5 Yet, much remains to be discovered regarding the temporal and spatial control of these interconnected pro-

cesses.6,7 We have used the association between the powdery mildew fungus, Blumeria hordei (Bh), and its diploid host plant, barley (Hor-

deum vulgare L.) to tease apart the complex genetics underlying their interaction. Subsequent to the germination of haploid conidia and

appressorial penetration of the host cuticle, Bh secretes effector proteins into epidermal cells via haustorial feeding structures.8,9 These ef-

fectors allow the fungus to evade host immune responses and acquire nutrients to support colonization.10–17 Disease is blocked by immune

receptors encoded by host resistance (R) genes,18 designated by the prefix Ml (for mildew resistance19–24).

Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are encoded by some of the largest gene families in plants,

with 5408 in the pan-genome of rice,25 up to 7780 in the pan-NLRome of wheat,26,27 468 in barley,28 and 265 in Arabidopsis.29,30 These often

occur in clusters throughout their respective genomes,31,32 and once activated and translated, interact directly or indirectly with effector pro-

teins secreted by pathogens.18,33 The barley MLA (NLR-type) immune receptor family and its orthologs impart recognition to many cereal

diseases, including powdery mildew, stem- and stripe rust, rice blast, and spot blotch.34–41 In some cases, the identical MLA host protein de-

termines recognition specificity to effectors from evolutionary diverged pathogens, for example, the adapted ascomycete Bh vs. the non-

adapted (stripe rust) basidiomycete, Puccinia graminis striformis,39 Bh and Magnaporthe oryzae, the causal agent of rice blast,40 or Bh

and the necrotrophic spot blotch pathogen, Cochliobolus sativus.41

To facilitate their function, host NLR immune receptors are often stabilized by additional proteins, for example, heat shock protein 90

(HSP90), required forMla12 resistance1 (RAR1), and suppressor of the G2 allele of SKP1 (SGT1)21–23,42–44 as well as interacting with and acti-

vating each other.18,29,45–48 On the pathogen side, coding sequences (CDS) for 534 candidate secreted effector proteins (CSEPs) have been
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identified from 893 secreted proteins encoded in the Bh genome.14,49–52 A small subset of these CSEPs have been functionally characterized

by the identification of their host targets, cellular localization, and/or gene silencing.53–60

Metatranscriptomes between host and pathogen can be used as a testingmodel to evaluate the cellular response of each organism and its

genetic effects. If data from both progenitor and isogenic mutants are available, we reasoned that different gene effect models could explain

the types of interactions between the mutated genes. Of these, one of the most utilized involves the estimation of epistasis, where gene ef-

fects are classified as additive or the product of gene interaction(s).61,62 When single mutants of two genes are associated with a phenotype

whose sum differs from the double mutant, this non-additivity indicates that epistasis is present (the two genes interact genetically). In this

regard, RNA sequencing (RNA-Seq) can be used as a proxy for gene expression as a quantitative phenotype to perform gene effect ana-

lyses.63 Gene expression is also heritable and linked to phenotypic variation at the microscopic and macroscopic levels.64

In this report, we used a dynamic transcriptome collected from the interaction between CI 16151 barley and a set of derived isogenic mu-

tants infectedwithBh to explore genetic effects governed by theNLR-typeR-gene,Mla6, and two additional genes involved in host immunity,

Required for Mla6 resistance 3 (Rar3; identified as Sgt1)43 and Blufensin1 (Bln1).65–67 Two epistasis models were inferred in the host; and in

parallel, temporally associated co-expression modules were used to investigate the effects of the host environment on the pathogen.

Genomic location is proposed as a possible mechanism of host gene effects by associating chromosome hotspots with the different genetic

effect models. Results from this analysis point to a large perturbation network of host and pathogen arsenals under different genetic mech-

anisms that diversify expression patterns and increase the robustness of the response.
RESULTS
Barley-Blumeria hordei transcriptome dynamics enable the dissection of genetic interactions among Mla6, Bln1, and Sgt1

Here, we discuss how to model a host-pathogen metatranscriptome. Two main components are presented, the first regarding the genetics

of the barley host, and the second, how Blumeria hordei (Bh) responds to the host environment through co-expression networks. Our panel

of barley wildtype and isogenic immune mutants enabled us to define gene effect models for the Mla6 NLR gene, which confers resistance

to Bh isolates that secrete the AVRA6 effector; Bln1, an R-gene independent regulator of immunity65–67; and Sgt1, which is required for

Mla6-mediated hypersensitive response and generation of H2O2.
43 As shown in Figure 1A and Figure S1, five genotypes were included

in the design. The wild-type progenitor, CI 16151, contains the Mla6 NLR gene, the susceptible mla6-m18982 mutant contains 168 sin-

gle-nucleotide polymorphisms (SNPs), and 2 x 3-nucleotide indels in the Mla6 coding sequence, resulting in 85 amino acid changes

(Figures S2A–S2C). The resistant bln1 mutant, bln1-m19089, contains a deletion of the gene (Figures S2D and S2E) and exhibits enhanced

defense to compatible Bh isolates. The susceptible double mutant, (mla6+bln1)-m19028, contains both the bln1 and mla6 variants. Lastly,

the susceptible rar3-m11526 mutant contains an in-frame Lys-Leu deletion in the SGS domain of the co-chaperone SGT1, which interacts

physically with MLA.21,43,44

First leaf seedlings inoculated with fresh Bh conidiospores were sampled at 0, 16, 20, 24, 32, and 48 h after inoculation (HAI), covering Bh

appressorium formation (0–16 HAI), penetration of epidermal cells (16–20 HAI), and development of haustorial feeding structures (24–48 HAI).

Bulk RNA-Seq reads fromboth barley andBhwere processed, and transcript counts were analyzed to characterize gene expression (see STAR

Methods). As shown in Figure 1B, a principal component analysis (PCA) was performed over the complete transcriptome and then plotted by

timepoint to facilitate visualization. This analysis indicated that samples clustered by timepoint and genotype. The initial time point (0 HAI) is

separated from the rest in the PC1 axis, which comprises 43% of the variance. The PC2 component contained 16% of the variance. When the

PCA was separated by barley and Bh (Figure S3) we could observe that the Bh dataset is divided by disease phenotype, a pattern that is re-

inforced at later time points.

Differentially expressed genes (DEGs) were identified per timepoint taking as reference the wild-type progenitor CI 16151 and comparing

across mutant genotypes (Table S1). As illustrated in Figure 1C, all susceptible mutants showed a peak in the number of barley DEGs at Bh

penetration (20 HAI), with the (mla6+bln1)-m19028 double mutant exhibiting the highest number of DE genes. In contrast, the resistant bln1-

m19089 mutant, had a low number of DEGs across the time course, without a peak as seen in the susceptible mutants. We also observed a

considerable number of DEGs at 0 HAI, which could be due to low gene counts that were artificially inflated in the normalization process. We

also expect that some of these DEGs can be explained by instantaneous transcriptional responses to Bh inoculation. This is reminiscent of the

rapid response observed in barley-stem rust interactions. The RPG1 resistance protein is phosphorylated and degraded in response to avir-

ulent, but not virulent isolates of Puccinia graminis f. sp. tritici,68 as early as within 5 min after contact, and this is due to the action of two

effectors that act cooperatively with RPG1 before haustoria formation.69 Thus, depending on the particular interaction, it appears that

some genes are dynamically expressed very early, and some act later.

Bhdisplayed different expression patterns from those found in the host.Most BhDEGswere associatedwith the development of haustoria

(32 and 48 HAI), startingwith almost no DEGs at the penetration of barley epidermal cells (16 HAI) and gradually increasing over time.We also

observed that the number of Bh DEGs in the resistant bln1-m19089 mutant were almost non-existent across the time course. These obser-

vations indicate that the host environment perceived by Bh and specifically the plant disease phenotype is the main determinant of Bh gene

expression. At 0 HAI we also observed a high number of DEGs with Bh as compared to barley. Note here that there is a massive difference in

sample abundance between the host and pathogen, and this could bias the effect of low read count inflation in the Bh analysis. Also, as an

obligate biotroph, it could be possible thatBh is predisposed to interactingwith its host, and that this is revealed in the susceptiblemla6+bln1

genotype.
2 iScience 27, 111013, October 18, 2024



Figure 1. A dynamic barley-Bh transcriptome of immune mutants

(A) Wild-type progenitor CI 16151, carrying the Mla6 gene conferring resistance to AVRa6 Bh isolates, and four isogenic mutants derived by fast-neutron

mutagenesis of the CI 16151 progenitor were used to investigate the effects of the functionally connected, but physically unlinked, Mla6, Bln1 and Sgt1.

Lineages used in each of the Mla6, Bln1 and the Mla6, Sgt1 models are boxed.

(B) PCA analysis of the RNA-Seq samples obtained from the immune mutant panel, colored by genotype, and separated by timepoint.

(C) Number of DE genes per timepoint in barley or Bh, separated bymutant and foldchange (overexpressed in wild-type or in the mutant). Significance cutoffs for

DE genes were determined at adjusted p-values of 0.001 (barley) and 0.003 (Bh).
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Global and gene-wise epistasis indicate that Mla6 and Bln1 interact genetically

Using gene expression as a phenotype, we calculated the genome-wide epistatic effects of Mla6 and Bln1, using a global index defined by

Angeles-Albores and colleagues.63 Predicted additive effects of these genes were calculated, separating the data for each timepoint.

Observed genetic effects per timepoint were compared to the predicted additive effects (see STAR Methods). Figure 2A shows the

genome-wide comparison between the predicted additive and the deviation from the observed genetic effects of Mla6 and Bln1, for

each timepoint. From this plot, we can estimate the global epistasis index as the slope of the line. According to this model, a slope of

zero indicates no epistasis, and deviations from zero indicate global epistasis. Subsequently, we calculated the range at each timepoint,
iScience 27, 111013, October 18, 2024 3



Figure 2. Global and gene-wise epistasis between Mla6 and Bln1

(A) Global epistasis betweenMla6 and Bln1 in the Bh-induced barley transcriptome. The expected additive fold change between the single and double mutant

and the observed deviation is plotted and separated by organism and timepoint.

(B) Proposed gene-wise epistasis model between Mla6 and Bln1 applied to the Bh-induced barley transcriptome. Additive and epistasis effects are separated

and then the epistatic effects are classified into six categories.

(C) Distribution of the Mla6 and Bln1 epistatic classifications for the Bh-induced barley transcriptome.

(D) Gene Ontology (GO) enrichment analysis of the barley epistatic patterns applied to the transcriptome across time.

(E) Enriched chromosomal locations of the barley genes under theMla6, Bln1 epistatic model. Each barley chromosome is shown, and colored areas correspond

to the different genetic patterns that are significantly enriched (adjusted p-value<0.005). Morex V3 centromere positions70 are indicated by double ended red

arrows.
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obtaining values of �0.78 to �0.62. These values (different than zero) indicate symmetric epistasis betweenMla6 and Bln1, and stronger ge-

netic effects of Mla6 (negative slope values) on barley gene expression.

To explore the transcriptional effects ofMla6 and Bln1 at the gene level, we applied an epistasis classification model. As illustrated in Fig-

ure 2B, the model includes additive and interaction effects, and those patterns with non-additive effects are further classified into six
4 iScience 27, 111013, October 18, 2024
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Figure 3. Genetic effects model of Mla6 and Sgt1

(A) Proposed effect model between Mla6 and Sgt1 in the Bh-induced barley transcriptome. Effects are separated into dominant effects where only one of the

mutant genotypes has significant differences; equal effects where both mutants have the same effects and predominant effects where the strength of the

differences is higher in one of the mutants.

(B) Distribution and (C) GO enrichment across time of the model classifications for the Bh-induced barley transcriptome.

(D) Enriched chromosomal locations of the barley genes under theMla6, Sgt1 epistatic model. Each barley chromosome is shown, and colored areas correspond

to the significantly enriched genetic patterns (adjusted p-value<0.005). Morex V3 centromere positions70 are indicated by double ended red arrows.
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categories.62,71 These include symmetric epistasis, where both single and double mutants have the same effect; masked and suppression

epistasis where the expression of the double mutant is equal to one of the single mutants (mla6-m18982 and bln1-m19089, respectively);

pseudo masked epistasis, where the expression of the double mutant is between the two single mutants. Two additional classes were found

where the double mutant has a higher (positive epistasis) or lower (negative epistasis) expression than the single mutants.

These classifications were applied to our RNA-Seq dataset, separated by timepoint. To generate a consensus of the epistasis patterns

across time, we used the most frequent classification across all timepoints for each gene (excepting 0 HAI), and then summarized the results

as shown in Figure 2C (full list in Table S2). We determined that the 0 HAI timepoint introduced error into the consensus because of artificially

low read counts, resulting in large differences observed in the PCA analysis with other timepoints (Figure 1B).72 Subsequently, the ensuing

dataset would have a higher false positive rate for mining DEGs. Most of the barley genes had an additive effect between Mla6 and Bln1,

whichmeans they did not go through epistasis. Among the epistatic genes, we found that most had a symmetric pattern followed bymasking

and suppression. These results coincide with what we observed in the genome-wide epistasis analysis presented in Figure 2A. Smaller sets of

genes presented pseudo masked, positive, and negative epistasis.

We then performedGeneOntology (GO) analysis to describe the biological functions of the genes under each epistasis pattern, as shown

in Figure 2D. Additive effects of Mla6 and Bln1 targeted genes involved in intracellular and membrane transport, MAP and receptor kinase,

response to stimulus, chloroplast, and carbohydrate binding. These additive effects were found across the entire time course, with higher

frequency at 16 and 48 HAI, which are associated with the Bh penetration and formation of haustoria, respectively. Among epistatic patterns,

symmetric epistasis was associated with genes at 20 HAI, which are involved in the ribosomal, photosynthetic, and extrinsic components of

themembrane. Pseudo-masked and suppression epistasis influencedgenes at 32HAI, whichwere involved in the phosphorylation and recog-

nition of pollen. Lastly, masked epistasis presented an influence across the time course, and the genes under this pattern were associatedwith

oxidoreductase activity, peroxisome, translation, fatty acid, and acyl CoA metabolism.

Epistasis effects cluster at chromosome hotspots

After finding evidence of genetic interaction betweenMla6 and Bln1, we explored possible mechanisms of the regulation of such patterns by

looking for an association between the genes under each pattern and their genomic location (see STAR Methods). Taking genome windows

of 1 Mb, 10 Mb, 100 Mb, and the complete chromosome we tested for the enrichment of genes classified in each of the categories for each

model while correcting for the gene density in each bin. We found significant genomic hotspots associated with each epistasis category as

shown in Figure 2E and Table S3, distributed across chromosomes 1H–3H and 5H–7H. Genes under symmetric epistasis were concentrated in

chromosomal 100 Mb windows 2H.6 (designating chr 2H, positions 600–700 Mb), and 5H.5 (chr 5H, positions 500–600 Mb). Masked epistasis

had effects on genes concentrated in the regions 1H.3 (chr 1H, positions 300–400 Mb), 3H.4 (chr 3H, positions 400–500 Mb) and 7H.0 (chr 7H,

positions 0–100Mb) whereas genes under suppression were associatedwith regions 2H.0, 2H.6 and awide range on chromosome 5 from5H.0

to 5H.2. Lastly, genes under negative epistasis were enriched to regions in chromosome 7 (7H.0 and 7H.6). The distribution of the hotspots

was diverse, showing high location specificity with two exceptions: region 2H.6 and 7H.0 that were enriched in two epistatic patterns.

In previous work, we presented a protein-protein interaction (PPI) network associated with MLA (MLAInt.73; Cross-referencing with these

earlier analyses revealed that about half of the nodes in the MLAInt networks overlap with genes under epistasis in the current report. As

shown in Table S3, we observed enrichment in MLAInt of genes under symmetric epistasis at hotpots 2H.6 and 5H.5, as well as genes under

masked epistasis at locations 1H.3, 3H.4 and 7H.0. Examples of such genes include kinases (2H.6, 3H.4), aWRKY transcription factor (3H.4) and

proteasome-associated genes (2H.6, 5H.5, 7H.0).

Design of a Mla6, Sgt1 gene effect model

Weproposeda secondclassificationmodel for geneexpressionassociatedwithMla6andSgt1whichdid not require adouble-mutant dataset.

However, it should be noted that the MLA6 protein requires SGT1 to function properly, i.e., express resistance to AVRa6 containing Bh iso-

lates.43,44 For this second model (Mla6, Sgt1), we could not separate additive from epistatic effects, but we could compare the strength of

the contributionof eachgene to thewild-typegenotype.Toaccomplish this,weuseda classificationof five categoriesby separating theeffects

ofMla6 and Sgt1 into dominant, predominant, and equal effects (Figures 3A and 3B).We defined dominant effects as those where only one of

the singlemutants is differentially expressedas compared to thewild type. For example,genesunderdominant effectsofMla6werecalculated

as those that were not DE between the wild-type and rar3-m11526 (= Sgt1DKL308-309), and DE when the wild-type was compared to mla6-

m18982. Then, we further separated the shared effects (genes that are DE in both single mutants), into predominant and equal effects. Pre-

dominant effects have significantly higher expression in one of the singlemutants as compared to the other one.Wedefinedgenes under pre-

dominant effects ofMla6 as those whose expression was higher in rar3-m11526 as compared tomla6-m18982, as the first contains a wild-type

version of the gene, indicating its stronger effect. Lastly, equal effects ofMla6 and Sgt1 have the same expression level in both mutants.
6 iScience 27, 111013, October 18, 2024
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Figure 3B shows the distribution of these classifications for the barley transcriptome and the full list is reported in Table S2. Results indicate

that most of the DE genes in the barley transcriptomewere under equal gene effects ofMla6 and Sgt1, followed by those under the dominant

effects ofMla6 and Sgt1.GO enrichment analysis of the genes associated with each classification showed that the expression of genes under

the same effects ofMla6 and Sgt1 were involved in diverse biological processes across the time course (Figure 3C). Among them, we found

serine/threonine and tyrosine kinase, intracellular and vesicle�mediated transport, peroxisome, pyruvatemetabolism, phenylalanine ammo-

nia�lyase, response to biotic stimulus and cinnamic acid biosynthesis. Dominant effects ofMla6were associated with the expression of genes

involved in transmembrane transporter, potassium ion binding, cinnamic acid process, phenylalanine lyase, and phenylpropanoid meta-

bolism. Dominant effects of Sgt1were associatedwith the expression of geneswith functions such as L�phenylalanine catabolism and cellular

amino acid metabolism.

When the Mla6, Sgt1 classification model was analyzed for associations with genomic location, we found the enrichment of genes asso-

ciated with dominant effects of Mla6 and equal effects of Mla6 and Sgt1 (Table S3). Genes associated with dominant effects of Mla6 were

enriched to several regions across six out of seven barley chromosomes (Figure 3D) including 1H.0, 2H.6, 3H.5, 5H.0, 6H.0, 7H.0 and 7H.6.

Genes whose expression was equally affected by Mla6 and Sgt1 were enriched to three chromosomal regions: 1H.4, 3H.4 and 4H.0. These

results indicate that the hotspots associated with dominant effects of Mla6 were shared with the epistatic patterns in the Mla6, Bln1 model

while other locations were enrichedwhen genetic effects ofMla6 and Sgt1were analyzed. For example, regions 1H.4, 3H.5, and chromosome

4 were only enriched in genes under this type of classification. These results indicate different pathways of each interaction withMla6. At the

protein level, MLA and SGT1 interact physically, therefore the MLAInt network contains the signaling associations to both proteins. Enrich-

ment genes under equal effect of both Mla6 and Sgt1 were found enriched in MLAInt, including those located to hotspots 1H.4, 3H.4, and

4H.0. Genes under dominant effects ofMla6were also enriched and linked to the hotspots 3H.5 and 7H.0, as shown in Table S3. These findings

indicate that there is an overlap between the genetic and protein networks that control Mla6-specified resistance.
Nucleotide-binding leucine-rich repeat receptor expression is subject to epistatic effects

We explored the effects of epistasis on transcript accumulation that encodes NLRs, key proteins that determine the outcome of barley-Bh

interactions. The 468 NLRs annotated for the Morex V3 assembly28 were filtered under each gene effect model. Of these, 366 were present

in our expression dataset and 115 were classified under at least one of themodels (103 for theMla6, Bln1 epistasis model and 90 for theMla6,

Sgt1 gene effect model). Figure 4 depicts a heatmap for these 115 NLRs across time and genotypes; Data S1 shows the time-course expres-

sion graphs of all the expressedNLRs in the CI 16151 progenitor and derivedmutants. Using hierarchical clustering we grouped the NLRs and

annotated them using the two gene effect models. First, for theMla6, Bln1model we observed that themost common pattern within the NLR

group was additive effects followed by symmetric, suppression, and masked epistasis. Forty-four NLRs under additive effects were scattered

across the heatmap with four subgroups of more than two members which presented co-expression. The additive epistasis group included

NLR genes with very diverse expression patterns.Mla6 (r3.1HG0012670) belongs to this group, displaying diminished expression in themla6

single and mla6 + bln1 double mutant (Figure S2).

Similarly, symmetric epistasis was observed in 30 NLR, with a diverse set of expression patterns. We highlight the examples as

r3.5HG0526160, where plants harboring single and double mutants of mla6 and bln1 were down-regulated as compared to rar3 or CI

16151; or r3.5HG0526460 with the opposite pattern. Masked epistasis (16 NLRs) had one co-expressed subgroup including representative

genes such as r3.7HG0640630 where mla6 and bln1 single mutants had intermediate expression, or where in r3.7HG0634870 only the bln1

mutant had expression counts above zero. Lastly, we also found NLRs whose expression pattern fit suppression (9 NLRs), positive (1 NLR),

and negative (3 NLRs) epistasis. Most genes under suppression epistasis showed no significant transcript accumulation in the mla6 single

mutant, including NLRs such as Pbr174,75; by contrast, r3.2HG0216800 was not expressed in all other genotypes, except the mla6 single

mutant. One NLR presented positive epistasis (r3.2HG0095950) which did not show significant transcript accumulation except in the (mla6+

bln1)-m19028 double mutant. Three NLRs presented negative epistasis (r3.7HG0744510, r3.6HG0629180, r3.7HG0744530), and their expres-

sion patterns showed higher expression in the single mutants as compared to the double mutant.

When classifications of theMla6 and Sgt1models were analyzed, we found that the clustering separated the dominant effects ofMla6 and

equal effects, while the dominant effects of Sgt1were more scattered. We also noticed that the dominant effects of Sgt1 coincided with sym-

metric epistasis in theMla6, Bln1model. Among them, we highlight Rp1-like r3.6HG0594450, an NLR whose expression is significantly higher

for rar3-m11526 (Mla6, Bln1, Sgt1DKL308-309) over the rest of the genotypes. Equal effects of Mla6 and Sgt1 were associated with expression

patterns where the susceptible genotypes had low transcript levels while the resistant genotypes presented peaks across the time course. In

contrast, the group of NLRs that were classified under dominant effects of Mla6 exhibited expression patterns where rar3-m11526 had a

similar expression to the resistant genotypes while themla6-m18982 mutant was significantly different from them, grouping with the double

mutant or separating from all the other genotypes.
Differential immunity to Pseudomonas syringae pv. phaseolicola expressing AvrPphB associates with suppression epistasis

of HvPbr1, and masked epistasis influences bln1-coupled responses to powdery mildew

Suppression- and masked-epistasis are particularly intriguing in terms of their effects on immunity. In suppression epistasis, gene expression

is affected by themla6mutation only in combination with the unlinked wild-type Bln1 gene. Generally, most barley genes under suppression

epistasis are downregulated in themla6mutant, when compared with themla6 + bln1 doublemutant (Figure 4) and are primarily clustered at
iScience 27, 111013, October 18, 2024 7



Figure 4. Heatmap of the barley NLRs classified in the Mla6, Bln1 or Mla6, Sgt1 gene effect models

Time-course expression of barley NLRs were hierarchically clustered and plotted with a heatmap. Annotation ofMla6, Bln1, andMla6, Sgt1models are shown at

the right and left of the heatmap, respectively. Lastly, examples from each group were plotted with expression patterns as indicated by legend color. An adjusted

p-value cutoff of 0.001, as designated by lower case letters a, b, and c, was used to assign significant differences in expression.
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the telomeric ends of chromosome 2H, and the top half of chromosome 5H (Figure 2E). This is exemplified by the barley NLR, AvrPphB

Response 1 (HvPBR1), which specifies recognition to the effector protease AvrPphB from P. syringae pv. phaseolicola.74

We tested the suppression epistasis effect on immunity by challenging the wild-type progenitor CI 16151 (Mla6), the two single mutants

mla6-m18982 and bln1-m19089, as well as the double mutant (mla6 + bln1)-m19028, by the infiltration of P. syringae expressing AvrPphB. As

illustrated in Figure 5B and Figure S4, CI 16151 elicits a weak chlorotic response (LC) when challenged with AvrPphB, as documented previ-

ously by Carter and colleagues74 and encircled by a magenta box. In addition, the loss-of-function mla6 mutant exhibited no response to

AvrPphB (N), which associates with the lack of observed Pbr1 transcripts in this genotype (Figure 5A). However, themla6+ bln1doublemutant

displayed an equivalent response (LC) to the CI 16151 wildtype. The bln1 single mutant also displayed an LC response, which would be ex-

pected since this genotype also containsMla6. Taken together, these immune responses to the effector AvrPphB are consistent with suppres-

sion epistasis manifested by the genetic interactions of mla6 and bln1 on Pbr1 transcript accumulation.

Then, to test mla6 and bln1 influenced epistasis on immunity to powdery mildew, we challenged plants with CC148, a non-Mla6 recog-

nizing isolate of Bh. CC148 is virulent on CI 16151 progenitor plants, and accordingly, allowed us to view Bh infection independent of
8 iScience 27, 111013, October 18, 2024



Figure 5. Differential immunity of barley to P. syringae pv. phaseolicola expressing AvrPphB associates with suppression epistasis of HvPbr1

(A) Time-course expression of HvPbr1 transcripts as determined by the RNA sequencing of CI 16151 and derived mutants (see STAR Methods). Significant

differences, as designated by lower case letters a and b, were determined by a p-value cutoff of 0.001.

(B) P. syringae DC3000 D36E uniquely expressing the effector AvrPphB was syringe-infiltrated into the adaxial surface of the L2 leaf of 10-day-old barley. After

3 days, infiltrated leaves were harvested, photographed under white light, and scored according to Carter and colleagues74 using a predefined scale: no immune

response (N), low chlorosis (LC), chlorosis (C), high chlorosis (HC), or hypersensitive reaction (HR).

(C) Bh CC148 inoculation of first leaf seedlings ofmla6 and bln1 single and double mutants, and progenitor CI 16151. Plants were photographed at 6 days after

inoculation (DAI) along with their designated macroscopic phenotype and sporulation score. An infection type of 0 is resistant (no sporulation), 1–2 is considered

resistant, but with minor Bh colonization (sp), and an infection type of 3–4 is susceptible (abundant sporulation). 1n, few small necrotic flecks (0.5 mm); 1–2n,

significant small necrotic flecks (1 mm); 2N, abundant cell death (>2 mm); c, limited chlorosis; C, abundant chlorosis.

(D) Time-course expression of NLR transcripts under masked epistasis as determined by RNA sequencing of CI 16151 and derived mutants. Significant

differences, as designated by lower case letters a, b, and c, were determined by a p-value cutoff of 0.001. Four additional NLRs under masked epistasis (with

significantly higher transcript accumulation in the bln1 mutant; r3.3HG0232120, r3.7HG0634870, r3.7HG0634930, r3.7HG0635110) are shown in Figure 4.
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Mla6-AVRa6 recognition normally seen with Bh 5874. Consistent with the negative regulatory role of Bnl165, we observed that the bln1 single

mutant was less susceptible than the CI 16151 control and similar to previous virus induced gene silencing of Bln1 in compatible interac-

tions.65,66 Interestingly, themla6 + bln1 double mutant had the most severe reaction with the tips of the plants undergoing partial cell death

(Figure 5C). Such differential immune response can be categorized asmasked epistasis, as the bln1mutant differs from the othermutants and

the CI 16151 progenitor.
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Figure 6. The Bh co-expression network is associated with fungal developmental stages

(A) GO enrichment analysis of the significant module-trait associations of the Bh transcriptome co-expression network. Modules associated with phenotypic traits

include developmental stages (spores, appressorium attachment, and hyphal indexes 1–3).

(B) Significantly associated effectors with phenotypic traits, color represents p-value in the hypergeometric test. On the left, the functional prediction of the

effectors in each module; on the right, are expression patterns of the representative effectors per module. An adjusted p-value cutoff of 0.003, as designated

by lower case letters a, b, and c, was used to assign significant differences in expression.
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We hypothesize that the action of one or more NLRs classified under masked epistasis could explain the observed phenotypic response.

For example, in contrast to the Pbr1 experiment that was performed using P. syringaeD36E that expressed only AvrPphB, BhCC148 contains

a large effector repertoire. Moreover, seven NLRs under masked epistasis displayed significantly higher transcript accumulation in the bln1

mutant as compared to the rest of the genotypes (Figure 4 r3.3HG0232120, r3.7HG0634870, r3.7HG0634930, r3.7HG0635110; Figure 5D

r3.7HG0749740, r3.7HG0636050, r3.7HG0640700). As previously reported for rice - M. oryzae interactions,76 these expression patterns are

in agreement with what may be expected for cross-reactivity in an NLR-effector recognition leading to a partial immune response.

Changes in pathogen expression are due to the environment that the fungus perceives, rather than an epistatic effect from

the host genes

Considering that the Bh genotype is constant in the experiment, changes in its transcriptome would be the result of the interaction, which

could be either compatible (susceptible for host, virulent for pathogen) or incompatible (resistant for host, avirulent for pathogen). As we

observe in Figure 1, the Bh-infection transcriptome is associated with the disease phenotype, which led us to select a co-expression network

as the modeling method to explore the pathogen response. This analysis enables the association of the gene expression patterns in clusters

and their functional association with phenotypic traits (in this case, infection structures over time). The Bh co-expression network was con-

structed using WGCNA77 using gene counts for all 90 samples and replicates. We identified nine clusters in the network, designated Bh1

(black; 135 genes), Bh2 (blue; 768 genes), Bh3 (brown; 725 genes), Bh4 (green; 420 genes), Bh5 (gray; 2091 genes), Bh6 (pink; 125 genes),

Bh7 (red; 245 genes), Bh8 (turquoise; 1921 genes), and Bh9 (yellow; 613 genes). For functional characterization, we performed GO analysis

using Interproscan78 and completed an enrichment test for each cluster, as shown in Figure S5.

Among the enriched GO terms per cluster, we found RNA binding for Bh3 (brown); oxidoreductase and lipid metabolism for Bh4 (green);

protein kinase and nuclease activity for Bh5 (gray); transcription for Bh6 (pink), proteolysis and ribosomal for Bh8 (turquoise), and catalytic

activity for Bh9 (yellow). Genes in the co-expression network were then correlated to quantitative differences in fungal development by

WGCNA.77 As documented in Table S4, traits comprised microscopic quantification of fungal structures including attached conidiospores,

appressorium attachment, and hyphal indexes 1, 2, and 3; observed at 16, 20, 24, 28, 32, and 48 HAI.43

At the infection kinetics level, significant differences were only found when resistant vs. susceptible genotypes were compared,43 indi-

cating that theBh phenotype follows a similar response as the transcriptome. However, as shown in Table S5, significant associations between

the co-expression clusters and the phenotypic traits were identified at the gene level. First, spore and appressorium attachment had multiple

associations with several modules, with opposite correlation signs, while the associations with hyphal indexes were more gene specific. Bh5

(gray) and Bh9 (yellow) clusters were exclusively associated with spore and appressorium attachments, while Bh1 (black), Bh3 (brown), Bh7

(red), and Bh8 (turquoise), were associated with other stages.

GO analysis of the genes and clusters associated with each Bh stage is shown in Figure 6A. The number of spores across the time course

was associatedwith actin binding and catalytic activity forBh9 (yellow), translation, protein folding, and ribosome forBh8 (turquoise), and RNA

binding and translation for Bh3 (brown). Appressorium attachments had associations with actin binding for Bh9 (yellow), transcription factor

activity for Bh6 (pink), translation and RNA processing for Bh3 (brown), and metallopeptidase activity for Bh4 (green). Hyphal index 1 was

associated with ATP hydrolysis coupled proton transport for Bh8 (turquoise). Hyphal indexes 2 and 3 had common associations with Bh8 (tur-

quoise), including endopeptidase and oxidoreductase activity, proteasome, and proton transmembrane transporter activity. In addition, hy-

phal indexes had associations with transported activity forBh7 (red) and redox activity for Bh4 (green). Hyphal index 2 was also associatedwith

GTP binding and GTPase activity for the Bh4 (green), and ribonuclease activity for Bh3 (brown).

Effector proteins secreted by pathogens modulate, inhibit, or accelerate host processes to enable nutrient acquisition and coloniza-

tion.79,80 From theBh list containing 893 effectors/secreted proteins, as reported by,49,50 864 were expressed in our dataset.We characterized

these secreted proteins using predicted functions from49,50 and performing hypergeometric tests for enrichment in each of the modules. The

modules that were enrichedwith secreted proteins includedBh7 (red), Bh8 (turquoise) and Bh3 (brown). The Bh7 (red) module was enriched in

predicted effector functions including proteasome, periplasmic binding protein, ribosome, and transcription. In the Bh8 (turquoise) module

we found enrichment for protein transport, gene regulation, and protein binding, while effectors in the Bh3 (brown) module were associated

with gene regulation, de novo protein, hydrolase inhibitor, and immune system.

When effector expression patterns were analyzed, we found they were associated with disease phenotype, with a separation between

resistant vs. susceptible genotypes. We explored the associations between secreted proteins with the phenotypic traits and characterized

them functionally for their role during infection. Figure 6B and Table S5 contain the enriched functions and associations with phenotypic traits.

Here, we highlight effector expression patterns starting with AVRs, e.g., BLGH_00708 [identified as AVRa6 and representing a group of effec-

tors from the Bh8 module (turquoise)], which is significantly associated with attached spores, and hyphal index 1, 2, and 3. Its expression is

significantly higher in susceptible backgrounds after penetration as compared to resistant hosts. Other AVR effectors that fit this expression

pattern includeBLGH_03023 (AVRa1; associatedwith spores, hyphal index 1,2,3), BLGH_05021 (AVRa10/AVRa22; associatedwith spores, hyphal
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index 1,2,3), and BLGH_06689 (AVRa7; associated with spores). BLGH_04994 (AVRa9) was classified in the Bh2 (blue) cluster with a similar

expression pattern but was not associated with any infection kinetics traits.

Among the effectors classified from the Bh9 (yellow) module we identified BLGH_00175 (CSEP0395) and BLGH_06477 (CSEP0041) as asso-

ciated with spores and appressorial attachments; these have lower expression after penetration in susceptible as compared to resistant

genotypes. Lastly, we found an expression pattern consistent with a peak at penetration followed by a drop in either the resistant or the sus-

ceptible background, with significant differences for timepoints after the peak. Examples of this pattern include BLGH_01483 (CSEP0420),

BLGH_03190 (CSEP0219), and BLGH_00369 (CSEP0039) from the Bh7 (red) module and associated with spores and/or hyphal index 2 and 3.
DISCUSSION
Epistasis and nucleotide-binding leucine-rich repeat receptor expression

Quantitative transcriptome data can be used to evaluate a wide variety of biological questions, beyond conventional differential expression

analysis.We utilized our barley immunemutant collection, all derived froma single progenitor, to develop a customanalysis to interrogate the

interactions between barley and powdery mildew from the perspective of gene effect models and co-expression.

The first (Mla6, Bln1) gene effect model leveraged single and double mutants of the NLR-type resistance geneMla619,81 and the cysteine-

rich, Ca2+ influx reducing peptide encoded by Bln1.65–67 Bln1 negatively regulates barley basal defense independent of Mla6-specified

effector triggered immunity (ETI).65 This allowed us to test the genetic interactions between the two individual resistance mechanisms. In

this case, we evaluated epistasis with both a global and a gene-wise estimation. The two analyses were consistent, though, the gene-wise

model facilitated the identification of specific epistasis patterns per gene and the subsequent functional classification and chromosomal loca-

tion of each set. We then found that genes influenced by epistatic interactions at the genetic level overlap with previously discovered PPI

immunity networks73 (Table S3).

In an intriguing example of suppression epistasis, gene expression is modified by the loss-of-functionmla6mutation in combination with

the unlinked wild-type Bln1 gene. Specifically, transcripts encoding the barley NLR, HvPBR1,74 were significantly downregulated in themla6

mutant, but not in the mla6 + bln1 double mutant, nor the other genotypes. We postulate that normal Pbr1 expression is dependent on a

functional Mla, and this is influenced by Bln1. If mla is knocked out, Bln1 has a negative regulatory effect on Pbr1 expression. However, if

bln1 has also lost function, as observed in the mla6 + bln1 double mutant, then Pbr1 transcript accumulation is restored. This hypothesis

is supported by a demonstration of differential PBR1-specified immune response to the effector protease AvrPphB (Figure 5). This also

may explain why barley cultivar Morex also does not respond to the infiltration of P. syringae expressing AvrPphB, since even though it ap-

pears to have a functional Bln1gene,65 itsmla allele, RGH1-bcd, harbors a retrotransposon footprint in the CDS, rendering it non-functional.19

Nine of the 260 expressed genes with a consensus classification under the ‘‘Mla6, Bln1 suppression’’ epistasis pattern were NLRs, with 8

uniquely downregulated in the mla6 mutant, and one significantly upregulated (Figure 4; Data S1; Table S2).

Expression of NLRs in the masked category contrasts with suppression, in that a majority are up-regulated in the bln1 single mutant, as

compared to the mla6 + bln1 double mutant (Figures 4 and 5D); genes in this group are primarily clustered on chromosomes 1H, 3H, and

7H (Figure 2E). This suggests that in this case, the presence of Bln1 is necessary to regulate gene expression, but control is released in its

absence, except in combination with a mutant mla6. Sixteen of the 1,172 expressed transcripts with a consensus classification under the

‘‘Mla6, Bln1masked’’ epistasis model were NLRs, with seven uniquely up-regulated in the bln1mutant, and one significantly down-regulated

(Data S1; Table S2). As demonstrated in Figure 5C, the inoculation of themla6/bln1mutant panel with Bh CC148 resulted in the bln1 single

mutant being less susceptible than either themla6-or themla6 + bln1 mutants. Unique up-regulation of one or more of the seven NLR can-

didates in the masked category (Figures 4 and 5D) may provide mechanistic clues to this non-Mla6 specified partial resistance, as shown

before with interactions of rice withM. oryzae.76 Alternatively, the observed phenotype could be due to a susceptibility gene whose masking

expression pattern is suppressed in the bln1mutant, as compared to the rest of the genotypes. Considering that themla6mutation abolishes

ETI, while the bln1 mutation enhances basal defense,65,66 we would expect that the masking pattern correlates with genes implicated in im-

munity. Indeed, genes under masked epistasis were associated with ‘‘translation’’ and ‘‘oxidation functions’’ (Figure 2D).

The second (Mla6, Sgt1) model uses the mutation of the NLR-type resistance geneMla6 (Halterman et al., 2001), but also takes advantage

of the rar3-m11526 in-frame Lys-Leu deletion of Sgt1, which selectively disrupts race-specific resistance conditioned by the Mla6, Mla7, or

Mla12 alleles, but not Mla1, Mla9, Mla10, and Mla13.43,44 This model is designed to illustrate the interaction between Mla6 and Sgt1 when

data from the doublemutant is not available. It is not an epistasis model; however, it classifies gene expression using the wild-type progenitor

as a reference, and it quantifies the effects of each single mutant. Previous studies have shown that SGT1 is required for the MLA6-mediated

generation of H2O2 and the hypersensitive reaction, and whole-plant resistance to AVRa6 containing Bh isolates.43,44 We separated these ef-

fects into dominant (when changes in expression are only observed in one of the singlemutants; predominant (when there is the effect of both

genes but one of them is larger than the other; and equal effects (when both genes affect equally the gene expression). By applying these

parameters, we could observe that most genes were under equal effects of Mla6 and Sgt1 or dominant effects from Mla6. This is similar to

what was observed from the epistasis model betweenMla6 and Bln1 (symmetric, followed by masked epistasis). As bothMla6 and Sgt1mu-

tations disrupt resistance to powderymildew, a large overlap in the number of geneswith equal effects from these genes is expected. Physical

interaction between the proteins encoded by these genes has been also demonstrated, which is weakened with the mutated SGT1DKL308-309
protein, causing a reduction in MLA6 protein accumulation, and hindering resistance.44 The GO terms ‘‘vesicle-mediated transport,’’ ‘‘S/T

kinase amino acid’’ and ‘‘carbohydrate metabolism’’ were associated with the equal effects of Mla6 and Sgt1, which suggests the presence

of cellular functions that depend on a common transcriptional pathway, where both genes interact at the physical level.
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Genome conformation and gene location

We postulate that chromosomal position is a mechanism for the transcript patterns observed with the different gene effect models. As

illustrated in Figures 2E and 3D, most of the gene effect patterns were enriched in telomere-proximal (TP) and gene-rich interior (GRI) chro-

mosome regions. Likewise, trans-activation of gene expression has been associated with genome conformation and gene location,82 where

transcription factories nucleate related functions.83 Indeed, Baker and colleagues84 used chromatin immunoprecipitation sequencing (ChIP-

Seq) to show that markers of chromatin accessibility, such as H3K27me3 and H3K27me1, were associated with the TP and GRI regions. These

regions also correspond to high confidence gene annotations of the barley genome.84 Thus, the described epistatic patterns could influence

gene expression through chromatin accessibility.

Besides genome accessibility, we also hypothesize that the differential recruitment of transcriptional machinery through cis-regulatory

elements may contribute to the association of gene effect patterns with genome location. Activation of transcription factors may be a key

mechanism that regulates gene expression under the proposed gene effect models, although more in-depth study is necessary to test

this hypothesis. In Mla-based disease resistance, protein interactions have been demonstrated between the MLA protein and several tran-

scription factors including WRKY, MYB, basic-helix-loop-helix (bHLH), and homeobox (HB).73,85–87 These interactions point to a direct mech-

anism of transcriptome regulation that can be modified by the loss-of-function mutations evaluated in the current report.

Co-expression between Blumeria hordei effectors and fungal development

On the pathogen side, we did not find evidence of host-influenced epistasis, but the co-expressed Bh infection transcriptomewas concordant

to disease phenotype.We constructed a Bh co-expression network and then associated it with infection kinetics traits viaWGCNA77 (Figure 6;

Table S4 and S5). This approach was effective in classifying Bh gene expression, as the number of clusters and their separation were well-

defined. Early stages were associated with GO terms ‘‘metabolism,’’ ‘‘translation’’ and ‘‘metallopeptidase activity,’’56,88 whereas later stages

were associated with ‘‘RNA binding,’’ ‘‘GTPase activity,’’ and ‘‘proteasome.’’11,57,89

Secreted proteins were distributed among all co-expression clusters, with significant enrichment in Bh3 (brown; 725 genes), Bh7 (red; 246

genes), and Bh8 (turquoise; 1921 genes). When associations with infection traits were evaluated, we generally observed that the Bh3 (brown;

725 genes), Bh4 (green; 420 genes), Bh5 (gray; 2091 genes) and Bh9 (yellow; 613 genes) clusters were associated with attached conidiospores

whileBh8 (turquoise; 1921 genes) linkedwith hyphal indexes 1–3, indicating that the accumulation of transcripts encoding secreted proteins is

aligned with the development of Bh structures and that these proteins play different roles over time. Finally, previous functional character-

ization of Bh effectors provided another layer of information for our co-expression analysis.53–55,57,58,90,91 For example, effectors with associ-

ations to attached conidiospores and appressoria, including BLGH_00280 (CSEP0079; Bh8, turquoise), BLGH_04692 (CSEP0128; Bh3, brown),

BLGH_01483 (CSEP0420; Bh7, red) and BLGH_00600 (CSEP0422; Bh8, turquoise) were also found to be involved in early fungal aggressive-

ness.56 In addition, BLGH_06477 (CSEP0041; Bh9, yellow) was previously found to be highly expressed in the appressorial germ tube.92

Our analysis of the Bh transcriptome indicates an important role of the effectors associated with hyphal indexes as well, which weremostly

classified in the Bh8 (turquoise) module. This cluster comprisesmost of the reported AVR candidates and other effectors that have some func-

tional characterization. For example, BLGH_07004 (CSEP0139) and BLGH_06939 (CSEP0182) suppress BAX-induced programmed cell death

inN. benthamiana and in barley.91 These two were found to be significantly associated with hyphal indexes 2 and 3, also known as elongating

secondary hyphae (ESH), visual indicators of functional haustoria during development.93 AVRa6 was also classified in the Bh8 cluster. Interest-

ingly, while BLGH_00709 (CSEP0254) has been reported as an AVRa6 candidate, Bh isolates DH14 also contains two near-identical copies,

BLGH_00708 and BLGH_07091.11 However, in Bh 5874, only BLGH_0078 is expressed, and not BLGH_00709 or BLGH_07091. This suggests

that different copies of AVRa6 can be expressed in an isolate-specific manner.

Limitations of the study

This analysis of epistasis in barley immunity used replicated time-course expression profiling comprising Bh appressorium formation, the

penetration of epidermal cells, and the development of haustorial feeding structures on a panel of barley immune signaling mutants. In par-

allel, we quantified Bh infection structures, tested immune activation of PBR1 by infiltration with P. syringae expressing AvrPphB, and assessed

Bh response in bln1 loss-of-functionmutants. This generated a large set of candidate genes that are under diverse epistatic control, nonethe-

less, several questions remain.

1. Do the genes influenced by epistasis, or genes that colocalize to common chromosomal positions, possess shared cis-regulatory el-

ements/modules, or common promoters; and does genome accessibility play a role? These would be interesting and noteworthy areas

for follow-up studies.

2. Genetic studies have indicated that Sgt1 is necessary for Mla7- andMla12-specified immunity, but not Mla1 andMla13.43 What is the

global effect of Sgt1 on transcript accumulation inMla7-andMla12-containing genotypes? To perform these experiments, one would

need an extensive backcrossing program or CRISPR-Cas editing to establish a rar3-m11526-like mutant (Sgt1DKL308-309) mutant in these

backgrounds, since this is the only known non-lethal mutant in Sgt1. Previous investigations have provided data to begin to answer

these questions, but Sgt1DKL308-309 was unavailable when these experiments were completed.94,95,96

3. Could a similar approach be applied to uncover gene interactions in the pathogen? Mutants have been identified by ultraviolet muta-

genesis in bothBh andB. graminis f. sp. tritici (Bgt), and regulators of AVRgenes have been postulated.97,98 A comprehensive genotype

x time infection transcriptome analysis of carefully selected mutants could identify similar patterns of epistasis.63
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Dr. RogerWise (roger.wise@usda.gov).
Materials availability

Mutant barley lines generated in this study and Bh isolates can be obtained upon request to the lead contact.
Data and code availability

� Infection-time-course RNA-Seq datasets are available at the NCBI-Gene Expression Omnibus (GEO) database. Accession number is listed in the key re-
sources table.

� Supporting code for the analyses can be found in the GitHub repository https://github.com/Wiselab2/Epistasis.
� Any additional information required to reanalyze the data reported in this article is available from the lead contact upon request.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Hordeum vulgare L. C. I. (Cereal Introduction)

16151, Moseman 197299
CI 16151

H. vulgare mutant line mla6 Kept in lab

Chapman et al. 202143
mla6-m18982

H. vulgare mutant line bln1 Kept in lab

Chapman et al. 202143
bln1-m19089

H. vulgare mutant line mla6, bln1 Kept in lab

Chapman et al. 202143
(mla6 + bln1)-m19028

H. vulgare mutant line sgt1 (Sgt1DKL308-309) Kept in lab

Chapman et al. 202143
rar3-m11526

H. vulgare University of Minnesota

Hemshrot et al. 2019100
Rasmusson

H. vulgare University of Minnesota;

Hemshrot et al. 2019100
Clho15600

H. vulgare Washington State University; Yu et al. 2000101 Morex

Blumeria hordei Danish isolate kept in lab 5874 (AVRa1, AVRa3, AVRa6, AVRa12)

Blumeria hordei U.K. isolate kept in lab CC148 (AVRa1, AVRa7, AVRa9,

AVRa10, AVRa13, AVRa15)

Psuedomonas syringae Cornell University; Carter et al. 201974 DC3000(D36E):AvrPphB

Reagents

54% Phenol (equilibrated to pH 4.3) Fisher BP1751

1.43M Guanidine thiocyanate Fisher BP221-250

1.43M Ammonium thiocyanate Fisher A709-500

0.144M Sodium acetate (pH 5) Fisher BP333-500

0.07% Glycerol Fisher G33-500

Chloroform Fisher C298-4

Isopropanol Fisher BP2632-4

75% EtOH Sigma E7023-500

Recombinant Rnasin Ribonuclease Inhibitor Promega N2515

DNaseI ThermoFisher AM1906

RNeasy Plant Mini Kit Qiagen 74904

CRITERION Protease Peptone No. 3 Hardy Diagnostics Catalog #C6641

Magnesium sulfate heptahydrate Sigma Catalog # 63138

Potassium phosphate dibasic Sigma Catalog #P8281

Glycerol Research Products International (RPI) Catalog #G22025–0.5

Bacto Agar Becton, Dickinson and Company (BD) Catalog # BD214010

Rifampicin Sigma Catalog #R3501-1G

Kanamycin Gibco Catalog # 11815-032

Magnesium chloride Fisher Catalog #M35-500

Needless syringes BD Slip Tip Sterile Syringes Catalog # 14-823-434

Standard Round Planting Pots

(11.43 cm 3 10.16 cm)

Greenhouse Megastore Catalog # CN-STD-0450

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

TruSeq Stranded Total RNA Library

Prep Gold (96 Samples)

Illumina Cat#20020599

Software

nf-core/rnaseq Nextflow DSL2 https://nf-co.re/rnaseq/3.4.0

DESeq2 Love et al. 2014102 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

R v4 The R project103 https://www.r-project.org/

Blast Altschul SF et al. 1990104 https://anaconda.org/bioconda/blast

Bedtools Quinlan and Hall 2010105 https://anaconda.org/bioconda/bedtools

BWA-mem Li and Durbin 2009106 https://bioconda.github.io/

recipes/bwa/README.html

IGV Robinson et al. 2011107 https://igv.org/

Trinity Grabherr et al. 2011108 https://bioconda.github.io/

recipes/trinity/README.html

clusterProfiler Yu et al. 2012109 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

ggplot2 Wickham 2016110 https://ggplot2.tidyverse.org/

GenomicRanges Lawrence et al. 2013111 https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

WGCNA Langfelder and Horvath 200877 https://cran.r-project.org/web/

packages/WGCNA/index.html

Interproscan Jones et al. 201478 https://github.com/ebi-pf-team/interproscan

ggbio Yin et al. 2012112 https://www.bioconductor.org/

packages/release/bioc/html/ggbio.html

multcompView Graves et al. 2019113 https://cran.r-project.org/web/

packages/multcompView/index.html

Deposited data

Morex V3 reference genome USDA GrainGenes database https://wheat.pw.usda.gov/

GG3/content/morex-v3-files-2021

Bh DH14 genome assembly Ensembl database https://fungi.ensembl.org/

Blumeria_graminis/Info/Index

RNA-Seq raw reads GEO database https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE101304
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For each replication of this study, barley was planted in separate 19.53 27.5-cm trays using sterilized potting mix. Seedlings were grown in a

climate-controlled greenhousewith both natural and artificial (HPS 400 bulbs) light using a randomizedblock design. Seven days after sowing,

seedling trays were inoculated at 16:00 with a high density ofBh isolate 5874 (AVRa6) and positioned randomly in a controlled growth chamber

(18�C, 8 h darkness, 16 h light). Rows of seedlings were harvested at the assigned time points, pooled, and immediately placed into liquid

nitrogen.

For the in planta infiltration assay, barley were sown in 4.5in (11.4 cm) plastic pots containing Berger Seed and Propagation Mix supple-

mented with Osmocote slow-release fertilizer (14-14-14) and maintained in a growth chamber with a 16:8 h photoperiod (light:dark) at 24�C
with light and 20�C in the dark, with average light intensities at plant height of 120 mmols/m2/s.

Blumeria hordei (Bh) isolates 5874 (AVRa1, AVRa3, AVRa6, and AVRa12) and CC148 (AVRa1, AVRa7, AVRa9, AVRa10, AVRa13, and AVRa15) were

propagated on barley cv. Morex (C.I. 15773) in a Percival growth chamber (model PGC.15.5) at 18�C with a 16 h photoperiod (01:00 to

17:00 USA Central Standard Time). Light intensity at plant level was 120 mmol m2 s�1. Infection types were checked monthly via inoculation

of a differential set with incompatible and compatible Mla alleles.
20 iScience 27, 111013, October 18, 2024
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METHOD DETAILS

Transcriptome data collection

A temporal transcriptomeof interacting host and pathogenwas obtained from an infection time course of five barley genotypeswithBlumeria

hordei (Bh) isolate 5874 which carries the AVRa6 effector. The barley genotypes consisted of a resistant, wild-type plant (CI 16151) that carries

theMla6 gene and four mutants derived by fast-neutron mutagenesis of the CI 16151 progenitor.43 Plants that carry the bln1mutation (bln1-

m19089) are resistant, while the other three are susceptible; anmla6mutant (mla6-m18982), a sgt1mutant (rar3-m11526= Sgt1DKL308-309), and

the doublemutant (mla6+bln1)-m19028. The split-plot design contained 90 samples, comprised of 5 genotypes, 6 timepoints (0, 16, 20, 24, 32,

and 48 HAI), and 3 independent biological replicates. First leaves were challenged with Bh isolate 587495 and then leaves were collected at

each timepoint, for each genotype and replicate. RNA was extracted with hot (60�C) phenol/guanidine thiocyanate.95,96 Libraries were pre-

pared using the Illumina TruSeq stranded RNA sample preparation kit (Illumina, Inc., San Diego, CA) and sequenced with the Illumina Hi-

Seq2500 system, using a randomized block design with single-end 100-bp reads (Figure S1).

Transcriptome profiling

We utilized the Nextflow DSL2114 nf-core/rnaseq pipeline version 3.4115,116 to align and quantify mRNA sequencing data from barley, Hor-

deum vulgare L., and Bh. The 90 RNA-Seq libraries were deposited to NCBI-GEO system, accession GSE101304. The reads were aligned

and quantified against the Bh DH14 genome assembly (NCBI accession GCA_900239735.1) and annotation from the Ensembl database

(https://fungi.ensembl.org/Blumeria_graminis/Info/Index) obtained from Stefan Kusch at RWTH Aachen University.50 The pipeline for Bh

was run with the additional parameters: ‘‘–skip_multiqc’’. Similarly, all RNA-Seq libraries were aligned against the barley Morex V3 reference

genome and annotation117 obtained from the USDA GrainGenes database.118 The barley pipeline was run with the following parameters:

‘‘–skip_multiqc –bam_csi_index –rseqc_modules ’bam_stat, infer_experiment,junction_annotation, junction_saturation,read_duplication’’’.

The pipeline consisted of adapter and quality trimming using Trim Galore,119–121 read mapping with STAR122 and quantification with

Salmon.123

Differential expression analysis

Read counts were normalized using the taxon-specific method.124 Each raw count table (barley and Bh) was taken and size factors calculated

using median-of-ratios normalization.125 Then, normalized tables were combined and used as input for DESeq2,102 assigning the calculated

size factors to the counts before calculating differentially expressed genes (DEGs). Continuing with the DESeq2 pipeline, DEGs were iden-

tified using amodel with read counts as response variable, and timepoint*genotype terms as explanatory variables. Results from this analysis,

including fold changes and p-values were taken for subsequent analyses. Adjustedp-values126 were used to determineDEGs using <0.001 for

barley and <0.003 for Bh.

Mutant characterization

Fast-neutron mutants ofMla6 and Bln1were identified and distinguished by genetic complementation followed by differential expression, first

by Affymetrix Barley1 GeneChip analysis,65,66 and more recently, by RNA-Seq read mapping between wild-type progenitor and each single

mutant (Figure S2). The sgt1mutation was previously characterized43 as an in-frame Lys-Leu deletion in the SGS domain of Suppressor of the

G2 allele of SKP1 (Sgt1DKL308-309). As outlined in,43 susceptiblemutantm11506, containingmla6 andbln1mutations, wasbackcrossed and selfed

twice to CI 16151 to select homozygous singlemutantsm18982 (mla6, Bln1, Sgt1), m19089 (Mla6, bln1, Sgt1), and doublemutantm19028 (mla6,

bln1, Sgt1). Similarly, rar3-m11526 (Mla6, Bln1, Sgt1DKL308-309), was made homozygous following two backcrosses to CI 16151 with selection.

To map the extent of themla6 and bln1mutations, several regions from the barley Morex V3 genome117 were extracted as follows: 1) We

analyzedMla (HORVU.MOREX.r3.1HG0012670) and flanking genes in its proximity that had differential expression between the wild-type and

the mla6-m18982 mutant; we also included all the genes in the Mla locus as reported by Wei and colleagues19; lastly, all the genes without

mapped reads inmla6-m18982 were added to the list. 2) Bln1was not annotated in theMorex V3 assembly. To identify the bln1mutation, we

used BLAST with the Bln1 sequence (NCBI ID FJ156737.1) against the Morex V3 genome to identify its coordinates and then extracted differ-

entially expressed genes between wild-type and bln1-m19089 mutant in the Bln1 vicinity. In addition, we added all the genes without reads

mapped in the bln1-m19089 mutant. To all these lists we added 1000 bp at the 50 and 30 ends.
The genomic coordinates were used to extract the corresponding sequences using bedtools.105 After extracting the regions of the candi-

date genes, wemapped the RNA-Seq reads back to them from thewild-type, single and doublemutants for the timepoints 16 and 20HAI.We

used BWA-mem106 for mapping and IGV107 for visualization. The bam files were used for a reference-guided assembly using Trinity.108 We

compared the mappings and assemblies to identify differences between wild-type progenitor and mutants. Consensus gene candidates

across samples were analyzed to identify the effects of the mutations.

In planta infiltration assay

Pseudomonas syringae DC3000 D36E uniquely expressing the effector AvrPphB [P. syringae D36E (AvrPphB)] was generated in a previous

study.74 P. syringae D36E (AvrPphB) was cultured using King’s B media supplemented with 50 mg/mL kanamycin and 50 mg/mL rifampicin

for 2 days at 28�C. Bacteria were resuspended in 10 mM MgCl2 to optical density (O.D.) at 600 nm (OD600) of 0.5. Bacterial suspensions

were syringe-infiltrated into the adaxial surface of the L2 leaf of 10-day-old barley. Three days following Pseudomonas infiltration, infiltrated
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leaves were harvested and photographed under white light. Blind ratings were independently assessed by three individuals based on a pre-

defined scale according to Carter and colleagues74 encompassing no immune response (N; Morex), low chlorosis (LC; CI 16151, CIho15600),

chlorosis (C), high chlorosis (HC), or hypersensitive reaction (HR; Rasmusson).

Gene effect models

We designed two methods for evaluating the gene effects of the Mla6, Bln1 and Sgt1 genes.

Model Mla6, Bln1

The first model (Mla6, Bln1) is a full epistasis design as we had data from single and double mutants. Let E(G) be the log of the global gene

expression levels of a plant with the genotype G. For analyzing the effects of the pairMla6, Bln1 we write the global expression equation for

each genotype. If DB is defined as the Defense Background genotype, the collection of genes in G involved in defense responses and com-

mon to all the genotypes:

EðMla6;Bln1Þ = Mla6+Bln1+Mla6 � Bln1+Mla6 � DB+Bln1 � DB+DB
EðMla6;bln1Þ = Mla6+Mla6 � bln1+Mla6 � DB+DB = Mla6+Mla6 � DB+DB
Eðmla6;Bln1Þ = Bln1+Bln1 � DB+DB
Eðmla6;bln1Þ = DB

Wecan calculate differentially expressedgenes among a pair of genotypes (DEG(G1/G2)) as the difference between their expression E(G1)

– E(G2). For example, DEGs between CI 16151 (WT) and each of the mutants:

DEGðMla6;Bln1 =Mla6;bln1Þ = EðMla6;Bln1Þ -- EðMla6;bln1Þ = Mla6+Bln1

+Mla6 � Bln1+Mla6 � DB+Bln1 � DB+DB -- ðMla6 + Mla6 � DB + DBÞ

= Bln1+Mla6 � Bln1+Bln1 � DB
DEGðMla6;Bln1 =mla6;Bln1Þ = EðMla6;Bln1Þ -- Eðmla6;Bln1Þ = Mla6+Bln1

+Mla6 � Bln1+Mla6 � DB+Bln1 � DB+DB -- ðBln1 + Bln1 � DB + DBÞ

= Mla6+Mla6 � Bln1+Mla6 � DB
DEGðMla6;Bln1 =mla6;bln1Þ = Mla6+Bln1+Mla6 � Bln1+Mla6 � DB

+Bln1 �DB+DB -- ðDBÞ = Mla6+Bln1+Mla6 � Bln1+Mla6 � DB+Bln1 � DB
And with the double mutant as reference:

DEGðMla6;bln1 =mla6;bln1Þ = Mla6+Mla6 � DB
DEGðmla6;Bln1 =mla6;bln1Þ = Bln1+Bln1 � DB
DEGðMla6;Bln1 =mla6;bln1Þ = Mla6+Bln1+Mla6 � Bln1+Mla6 � DB+Bln1 � DB
We assigned DEG() = 0 as a fold change equal to zero, i.e., there are no significant differences. DEG()s0 means there are significant dif-

ferences and considering all values of the p-value and fold change. DEG()>0, DEG()<0 indicate significant differences and the sign of the fold

change in the comparison. To declare a significant difference a p-adjusted value of 0.001 was applied. Additionally, a change in the fold

change proportion in the top 20% of the significant differences based on p-adjusted was considered epistatic. Genes whose expression devi-

ated from the expected value were classified as epistatic while the ones that fitted the expected value were considered additive.

1) Epistatic effects, Epi(Mla6, Bln1):

DEG(Mla6, Bln1/mla6, bln1) – DEG(Mla6, Bln1/mla6, Bln1) – DEG(Mla6, Bln1/Mla6, bln1)s0

= Mla6 + Bln1 + Mla6 � Bln1 + Mla6 � DB + Bln1 � DB -- ðMla6 + Mla6 � Bln1

+ Mla6 � DB + Bln1 + Mla6 � Bln1 + Bln1 � DBÞs0 / Mla6 � Bln1s0
22 iScience 27, 111013, October 18, 2024
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2) No epistasis, additive effects of Mla6 and Bln1, Addi(Mla6, Bln1):

DEGðMla6;Bln1 =mla6;bln1Þ -- DEGðMla6;Bln1 =mla6;Bln1Þ -- DEGðMla6;Bln1 =Mla6;bln1Þ = 0
/Mla6 � Bln1 = 0

Epistatic genes were further classified in five categories and by comparing each single mutant to the double mutant. First, genes under

symmetric epistasis were calculated as those which have no significant differences between each singlemutant and the doublemutant, which

implies thatMla6 and Bln1 have the same effects on the gene expression. Masked epistasis (Mla6 counteracts the effect of Bln1) was defined

for those genes where there were no significant differences between the mla6 mutant and the double mutant but the comparison between

the bln1mutant and the doublemutant was significant. Similarly, suppression epistasis (Bln1 counteracts the effect ofMla6) was calculated for

those whose expression is the same between the bln1 and the double mutant, while different between the mla6 and the double mutant.

3) Symmetric epistasis:

Epi(Mla6, Bln1) X [DEG(Mla6, bln1/mla6, bln1) = 0 X DEG(mla6, Bln1/mla6, bln1) = 0]

= Mla6 � Bln1s0;Mla6+Mla6 � DB = 0;Bln1+Bln1 � DB = 0
/Mla6 � Bln1s0 AND Mla6 + Mla6 � DB = Bln1+Bln1 �DB

4) Masked epistasis:

Epi(Mla6, Bln1) X [DEG(Mla6, bln1/mla6, bln1) s 0 X DEG(mla6, Bln1/mla6, bln1) = 0]

= Mla6 � Bln1s0;Mla6+Mla6 � DBs0;Bln1+Bln1 � DB = 0
/ Mla6 � Bln1s0 AND Mla6 + Mla6 � DBs0

5) Suppression epistasis:

EpiðMla6;Bln1ÞX½DEGðMla6;bln1 =mla6;bln1Þ = 0XDEGðmla6;Bln1 =mla6;bln1Þs 0�
= Mla6 � Bln1s0;Mla6+Mla6 � DB = 0;Bln1+Bln1 �DBs0
/Mla6 � Bln1s 0 AND Bln1 + Bln1 � DBs0

The next set of patterns include pseudo masked, positive and negative epistasis. Pseudo masked epistasis was calculated for the genes

whose expression in the doublemutant was between themla6 and the bln1mutant. There are two scenarios where this is fulfilled, either when

the expression is higher in the bln1 mutant and lower in the mla6 mutant or vice versa. In positive epistasis, the expression of the single mu-

tants is less than the observed in the doublemutants, while in negative epistasis the doublemutant expression is less than for any on the single

mutants.

6) Pseudo Masked epistasis:

EpiðMla6;Bln1ÞX½DEGðMla6;bln1 =mla6;bln1Þ > 0XDEGðmla6;Bln1 =mla6;bln1Þ < 0�
/Mla6 � Bln1s0 AND Mla6 + Mla6 � DB > 0 AND Bln1+Bln1 � DB < 0

OR

EpiðMla6;Bln1ÞX½DEGðMla6;bln1 =mla6;bln1Þ < 0XDEGðmla6;Bln1 =mla6;bln1Þ > 0�
/Mla6 � Bln1s0 AND Mla6 + Mla6 � DB < 0 AND Bln1+Bln1 � DB > 0
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7) Positive epistasis:

EpiðMla6;Bln1ÞX½DEGðMla6;bln1 =mla6;bln1Þ < 0XDEGðmla6;Bln1 =mla6;bln1Þ < 0�
/Mla6 � Bln1s0 AND Mla6 + Mla6 � DB < 0 AND Bln1+Bln1 � DB < 0

8) Negative epistasis:

EpiðMla6;Bln1ÞX½DEGðMla6;bln1 =mla6;bln1Þ > 0XDEGðmla6;Bln1 =mla6;bln1Þ > 0�
/Mla6 � Bln1s0 AND Mla6 + Mla6 � DB > 0 AND Bln1+Bln1 � DB > 0

Model Mla6, Sgt1

The second model (Mla6, Sgt1) was defined taking the wild-type expression as reference, since the double mutant was not available. The

model starts with the definition of the global gene expression and the differentially expressed gene effects:

EðWTÞ = EðMla6;Sgt1Þ = Mla6+ Sgt1+Mla6 � Sgt1+Mla6 � DB+ Sgt1 � DB+DB
EðMla6;Sgt1DKL308 � 309Þ = Mla6+Mla6 � DB+DB
Eðmla6; Sgt1Þ = Sgt1+ Sgt1 � DB+DB

Followed by the differentially expressed genes:

DEGðMla6;Sgt1 =Mla6;Sgt1DKL308 � 309Þ = Mla6+ Sgt1+Mla6 � Sgt1+Mla6 � DB+ Sgt1 � DB+DB

�ðMla6 + Mla6 � DB + DBÞ = Sgt1+Mla6 � Sgt1+ Sgt1 � DB
DEGðMla6; Sgt1 =mla6;Sgt1Þ = Mla6+ Sgt1+Mla6 � Sgt1+Mla6 � DB+ Sgt1 � DB+DB

�ðSgt1 + Sgt1 � DB + DBÞ = Mla6+Mla6 � Sgt1+Mla6 � DB
DEGðmla6;Sgt1 =Mla6;Sgt1DKL308 � 309Þ = Sgt1+ Sgt1 � DB+DB � ðMla6 + Mla6 � DB + DBÞ

= Sgt1 -- Mla6+ Sgt1 � DB -- Mla6 � DB
Thismodel consisted in separating the gene effects by comparing theDEG lists from the comparison of themla6 and sgt1 (Sgt1DKL308-309) sin-

glemutantswithCI 16151 (WT). The intersectionDEG(Mla6, Sgt1/Mla6, sgt1)XDEG(Mla6, Sgt1/mla6, Sgt1) contains the shared effects between

Mla6 and Sgt1. Then, the difference between the DEG of each wild-type and mutant comparison contains the dominant effects of each gene.

1) Shared effects between Mla6 and Sgt1: Shared(Mla6, Sgt1)=

DEGðMla6;Sgt1 =Mla6;Sgt1DKL308� 309Þs0XDEGðMla6;Sgt1 =mla6;Sgt1Þs0
/ Sgt1 + Mla6 � Sgt1 + Sgt1 �DBs0 AND Mla6 + Mla6 � Sgt1 + Mla6 � DBs0

2) Dominant effects of Sgt1:

DomðSgt1Þ = ½DEGðMla6; Sgt1 =Mla6; sgt1Þs0�-- SharedðMla6;Sgt1Þ
/ Sgt1 + Mla6 � Sgt1 + Sgt1 � DBs0 AND Mla6 + Mla6 � Sgt1 + Mla6 � DB = 0
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3) Dominant effects of Mla6:

DomðMla6Þ = ½DEGðMla6; Sgt1 =mla6; Sgt1Þs0�-- SharedðMla6;Sgt1Þ
/Mla6 + Mla6 � Sgt1 + Mla6 � DBs0 AND Sgt1 + Mla6 � Sgt1 + Sgt1 � DB = 0

This intersection DEG(Mla6, Sgt1/Mla6, Sgt1DKL308-309) X DEG(Mla6, Sgt1/mla6, Sgt1) can be split in the genes that have an equal effect

between the two mutants (with the same fold-change and no significant differences when they are compared), or predominant effects when

the wild-type version of each gene (Mla6 or Sgt1) has a greater effect on gene expression.

4) Equal effects between Mla6 and Sgt1:

EqualðMla6;Sgt1Þ = SharedðMla6;Sgt1ÞX½DEGðmla6; Sgt1 =Mla6; Sgt1DKL308� 309Þ = 0�
/ Mla6 + Mla6 � DB = Sgt1+ Sgt1 � DB

5) Predominant effects of Sgt1:

PreDomðSgt1Þ = SharedðMla6;Sgt1ÞX½DEGðmla6;Sgt1 =Mla6;Sgt1DKL308� 309Þ > 0�
/Mla6 + Mla6 � DB < Sgt1+ Sgt1 � DB

6) Predominant effects of Mla6:

PreDomðMla6Þ = SharedðMla6;Sgt1ÞX½DEGðmla6;Sgt1 =Mla6;Sgt1DKL308� 309Þ < 0�
/Mla6 + Mla6 � DB > Sgt1+ Sgt1 � DB

Bh infection kinetics

Data including microscopic quantification of fungal structures was obtained from Chapman et al.43 Quantified structures included attached

conidiospores, appressorial attachment, and hyphal indices 1, 2 and 3. Ten-centimeter (cm) seedlings for the timepoints 16, 20, 24, 32 and 48

HAI were assayed in triplicate. After inoculation with Bh 5874, five leaves assigned to each timepoint were harvested and submerged in

clearing solution (3:1, alcohol: acetic acid) for at least 24 h and then transferred to 70% ethanol for another 24 h and then to 20% ethanol.

Scoring was performed by treating the leaves with Coomassie blue for 2 min to visualize spores and hyphae. After staining, leaves were

trimmed to 5 cm from the tip and structures were counted on both the abaxial and adaxial sides (Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression analysis

Read counts were normalized using the taxon-specific method.124 Each raw count table (barley and Bh) was taken and size factors calculated

using median-of-ratios normalization.125 Then, normalized tables were combined and used as input for DESeq2,102 assigning the calculated

size factors to the counts before calculating differentially expressed genes (DEGs). Continuing with the DESeq2 pipeline, DEGs were iden-

tified using amodel with read counts as response variable, and timepoint*genotype terms as explanatory variables. Results from this analysis,

including fold changes and p-values were taken for subsequent analyses. Adjustedp-values126 were used to determineDEGs using <0.001 for

barley and <0.003 for Bh. Significant differences in figures with time-course expression graphs are designated by lower case letters (a,b,c).

GO analysis

Genes classified under each gene effect model and per timepoint and their consensus were analyzed using GO enrichment. Using cluster-

Profiler109 and the GO terms reported for the barley and Bh annotations50,117 we calculated gene enrichment with a p-value threshold of 0.05.

We used ggplot2110 to graph the functions of the genes under each pattern over time.

Chromosomal position analysis

Gene lists under the consensus of each gene effect classification model were used to perform genomic position analysis. Using

GenomicRanges,111 we binned the genes in the barley genome and then we designed a hypergeometric test to look for regions in the
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genome with enrichment in each gene list. Taking genome windows of 1 Mb, 10 Mb, 100 Mb and the complete chromosome or scaffold we

tested for enrichment of genes classified in each of the categories for each model, by considering the gene density in each bin as the refer-

ence for the test. We then adjusted the p-values using the Benjamini and Hochbergmethod126 and considered significant enrichment using a

threshold of 0.05. Barley genes that were classified in each pattern were plotted for the significant regions using the ggbio package.112 Morex

V3 centromere coordinates (Chr1H 206486643, Chr2H 301293086, Chr3H 267852507, Chr4H 276149121, Chr5H 204878572, Chr6H 256319444,

and Chr7H 328847192) were used for reference as reported in.70
Comparison between genetic and protein interaction networks

Genes classified under each category of theMla6, Bln1 andMla6, Sgt1models were compared with protein interaction networks described in

Velásquez-Zapata et al.73 For each category, a hypergeometric test was performed for the barley predicted interactome (HvInt), the MLA-

associated interactome (MLAInt), the resistant and susceptible coexpressed interactomes and their difference [HvInt(R), HvInt(S) and

HvInt(R-S)]. Significant enrichment was calculated with p-value<0.05.
Nucleotide-binding leucine-rich repeat (NLR) pattern analysis

TheMorex V3 genome-wide barleyNLR list28 was taken to study the gene effects ofMla6,Bln1 and Sgt1. Gene expressionwas clustered and a

heatmap constructed for each group adding two layers of color annotations (one for each gene effect model). Gene expression patterns for

each genewere also generated, calculating significant differences across time for each genotype comparison. These results were summarized

using the package multcompView,113 and using a letter code to show differences. Patterns were manually curated, and examples shown to

characterize the dataset for each of the gene effect models. All NLR time-course expression graphs for CI 16151 progenitor and fast-neutron

derived mutants are provided in Data S1.
Co-expression analysis

Bh normalized gene counts using DESeq2102 were taken for all the replicates, genotypes and timepoints. Genes with complete gene counts

were used to build the co-expression network by following the tutorials presented in the Weighted Gene Co-expression Network Analysis

(WGCNA) R package.77 The clustering was checked for quality and then co-expression clusters were calculated. To characterize these clusters

functionally, we performed GO analysis using a hypergeometric test. GO annotations were obtained using Interproscan78 and functional

annotation for the Bh genome.49,50 GO analysis was performed for the Bh co-expression clusters and enrichment terms (adjusted p-value

<0.05) were reported.

The co-expression network was correlatedwith different phenotype traits including timepoint, disease phenotype and the infection kinetic

structures. Significant associations were calculated at the cluster and gene level. Significant associations were characterized byGOanalysis. In

the case of effectors, a further functional table was obtained to perform the hypergeometric tests.49
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