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Abstract
The Chinese swamp buffalo (Bubalis bubalis) is vital to the lives of small farmers and has

tremendous economic importance. However, a lack of genomic information has hampered

research on augmenting marker assisted breeding programs in this species. Thus, a high-

throughput transcriptomic sequencing of B. bubalis was conducted to generate transcrip-

tomic sequence dataset for gene discovery and molecular marker development. Illumina

paired-end sequencing generated a total of 54,109,173 raw reads. After trimming, de novo
assembly was performed, which yielded 86,017 unigenes, with an average length of 972.41

bp, an N50 of 1,505 bp, and an average GC content of 49.92%. A total of 62,337 unigenes

were successfully annotated. Among the annotated unigenes, 27,025 (43.35%) and 23,232

(37.27%) unigenes showed significant similarity to known proteins in NCBI non-redundant

protein and Swiss-Prot databases (E-value < 1.0E-5), respectively. Of these annotated uni-

genes, 14,439 and 15,813 unigenes were assigned to the Gene Ontology (GO) categories

and EuKaryotic Ortholog Group (KOG) cluster, respectively. In addition, a total of 14,167

unigenes were assigned to 331 Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

ways. Furthermore, 17,401 simple sequence repeats (SSRs) were identified as potential

molecular markers. One hundred and fifteen primer pairs were randomly selected for ampli-

fication to detect polymorphisms. The results revealed that 110 primer pairs (95.65%)

yielded PCR amplicons and 69 primer pairs (60.00%) presented polymorphisms in 35 indi-

vidual buffaloes. A phylogenetic analysis showed that the five swamp buffalo populations

were clustered together, whereas two river buffalo breeds clustered separately. In the pres-

ent study, the Illumina RNA-seq technology was utilized to perform transcriptome analysis

and SSRmarker discovery in the swamp buffalo without using a reference genome. Our

findings will enrich the current SSR markers resources and help spearhead molecular

genetic research studies on the swamp buffalo.
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Introduction
The water buffalo (Bubalus bubalis), which belongs to the Bubalus genus of the Bovidae family,
is an economically significant livestock that has been used as dairy, meat, and source of draught
power [1]. These animals are typically found in tropical and subtropical regions, wet grasslands,
marshes and swamps. The domestic water buffalo in Asia is generally classified into two major
subspecies based on body size, outward appearance, biological characteristics, and chromosome
karyotype, namely, the river buffalo (2n = 50) and the swamp buffalo (2n = 48) [2]. In China,
the native buffaloes are of the swamp type, and are mainly distributed in 18 provinces of central
and southern China, and have been divided into 18 local breeds based on regional distribution
[3, 4]. In the past, swamp buffaloes were mainly raised by small-scale farmers for draught power
for agricultural production. However, considering its economic importance as the provider of
milk, meat, horns and even skin, extensive efforts on the genetic improvement of the dairy buf-
falo were conducted for several decades in China using a crossbreeding system. The milk yield
of crossbreeds Murrah F1 and F2 reached 1,240.5 kg and 1,423.3 kg respectively, which were
13.5% and 30.2% higher than that of selected local buffaloes (P< 0.01). The milk yield of cross-
breeds Nili-Ravi F1 and F2 reached 2,041.2 kg and 2,351.3 kg respectively, which were 86.8%
and 115.2% higher than that of selected buffaloes (P< 0.01) [5]. Although milk yield perfor-
mance has markedly improved in crossbreeds compared to indigenous buffaloes, the average
milk yield per lactation of crossbreeds is still far lower than that of purebred Murrah, Nili-Ravi,
and Mediterranean buffaloes [6, 7]. One of the main long-term hindrances in the buffalo indus-
try in China is the lack of breeds with high milk and reproductive performance.

With the purpose of increasing the size of the dairy buffalo herd and improving the produc-
tion performance of dairy buffalo, previous studies have mainly focused on reproductive tech-
nologies [8, 9], the identification of genes and molecular markers that were associated to
desirable traits [10–12], genetic relationships, and genetic variations [13, 14]. To date, informa-
tion on the technology for buffalo genetic breeding in China is limited, particularly relating to
molecular breeding methods. One key impediment is lack of genomic information on the buf-
falo, which could be utilized in development of molecular markers for its selection and breed-
ing. Several research groups have conducted genomic studies on the buffalo [15, 16], which has
recently resulted in the release of the draft genome of the river buffalo [17], and is expected to
play an important role in promoting the genetic improvement of the dairy buffalo. However,
no published genome sequence is currently available for the swamp buffalo, which in turn may
hinder molecular genetic studies on buffalo breeding.

Transcriptome studies have become an important method to obtain large amounts of
sequence data that could enrich the genome resource for the non-model animals [18]. RNA
sequencing (RNA-seq) is a high throughput technology that has been effectively utilized in
transcriptional analysis, gene discovery, and development of molecular markers in various spe-
cies such as human [19], cattle [20], sheep [21], goat [22] and pig [23]. The genetic relationship
and diversity among different buffalo breeds have been mainly investigated using restriction
fragment length polymorphism (RFLP) [24], random amplified polymorphic DNA (RAPD)
[25], single nucleotide polymorphism (SNP) [26], and simple sequence repeat (SSR) [27]
markers. SSR markers have been demonstrated to be an extremely useful tool for investigating
population clustering, genetic divergence, parentage testing, and genetic resource conservation
[28–30]. Sarika et al. [31] developed the first microsatellite database of the water buffalo, Buff-
SatDb (http://cabindb.iasri.res.in/buffsatdb/), which is a web-based relational database of
910,529 microsatellite markers that was generated by in silicomicrosatellite mining and has
helped in resolving the presence of degenerate bases in the current buffalo assembly. However,
SSR markers that have been used in the analysis of genetic relationships and genetic variations
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of different buffaloes were mainly derived from other domesticated bovids [32–34], and no
SSR markers of the swamp buffalo have been developed and reported to date. Specifically, suit-
able SSR markers that could be used to improve the production performance of dairy buffalo
are very scarce, and have yet to be developed. Therefore, a large-scale and low-cost approach is
required to develop SSR markers for the swamp buffalo. In the present study, we performed
Illumina paired-end sequencing of pooled tissues of the swamp buffalo to generate a set of uni-
genes that were used to develop SSR markers. Then, we identified novel SSR markers in the
swamp buffalo which can be utilized for marker identification, parentage testing, genetic
resource conservation, and molecular breeding.

Materials and Methods

1. Ethics statement
All animal procedures and study design were conducted in accordance with the Guide for the
Care and Use of Laboratory Animals (Ministry of Science and Technology of China, 2006) and
were approved by the Animal Ethics Committee of the Buffalo Research Institute, Chinese
Academy of Agricultural Sciences.

2. Animal materials and RNA extraction
Two swamp buffaloes (male and female) were obtained from the Buffalo Research Institute,
Chinese Academy of Agricultural Sciences (Nanning, China) and slaughtered by exsanguina-
tion. Fresh tissue samples were collected, including the heart, brain, lung, kidney, fat, liver,
spleen, uterus, testis, ovary, and gland, immediately frozen in liquid nitrogen and stored at
-80°C until use.

Total RNA was extracted from each collected tissues sample using the TRIzol reagent fol-
lowing the manufacturer’s specifications (Invitrogen, Guangzhou, China). The quality and
quantity of each RNA sample was measured by using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). A total of 16.5 μg of RNA was equally pooled from the
collected tissues for cDNA library preparation.

3. Transcriptome sequencing
The mRNAs were isolated from total RNA using a Dynabeads mRNA DIRECT Kit (Invitrogen,
Guangzhou, China) and fragmented into short fragments with a fragmentation buffer. By
using these short fragments as templates, random primers, and SuperScript double-stranded
cDNA synthesis kit (Invitrogen, Guangzhou, China), double-stranded cDNA was synthesized.
The ligated fragments were then generated by a series of reaction processes that included puri-
fication of PCR products, end repair, dA-tailing, and ligation of Illumina adapters. After aga-
rose gel electrophoresis, suitable fragments were selected for PCR amplification. An Illumina
HiSeq™ 2000 sequencing platform was employed to sequence the cDNA library (BerryGe-
nomics, Beijing, China).

4. Data filtering and de novo assembly
We filtered the raw data to generate clean data via a process that included the removal of
adapter sequences, reads with ambiguous sequences “N”, and low-quality sequences (the per-
centage of low quality bases of quality value _5 was>50% in a read). After obtaining clean
data, de novo transcriptome assembly was conducted with the short reads assembly program in
the Trinity software using default parameters [35, 36]. Only assembled transcripts with lengths
of>300 bp were included in subsequent analyses.
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5. Functional annotation
To annotate the assembled unigenes, all unigenes were analyzed by using the EMBOSS soft-
ware [37] package to generate putative protein sequences. For the putative protein sequences,
we performed the BLASTx search against the NCBI Nr (http://www.ncbi.nlm.nih.gov/
genbank/), Swiss-Prot (http://www.uniprot.org/), and KEGG pathway (http://www.genome.jp/
kegg/pathway.html) databases, with an E-value cut-off of 1E-5. To further analyze the annota-
tion results, Blast2GO [38] was conducted to obtain the GO functional classification of the uni-
genes according to molecular function, biological process, and cellular component ontologies
(http://www.geneontology.org/). All assembled unigenes were also aligned to the KOG data-
base (http://genome.jgi.doe.gov/) to predict and classify possible functions. The KEGG annota-
tion was performed using the software, KOBAS v2.0 [39].

6. SSR mining and primer design
The MIcroSAtellite (MISA, http://pgrc.ipk-gatersleben.de/misa/) was utilized to identify SSR
motifs. We screened for motifs with mono-six nucleotides in size and a minimum of 5 contigu-
ous repeat units. Based on MISA results, primer pairs were designed using the software,
Primer3 v2.23 [40] with default settings, and the size of the PCR products ranged from 100 bp
to 300 bp.

7. Survey of SSR polymorphisms
Thirty-five individual buffaloes from 7 breeds in China (S2 Table) were selected for screening
SSR polymorphisms. The genomic DNA was extracted from each buffalo blood tissue sample
by using the TIANamp Blood DNA Kit (Tiangen Biotech (Beijing) Co., Ltd., Beijing, China),
following the manufacturer’s specifications. The DNA concentration was calculated using stan-
dard protocols. PCR was performed in 20.0 μL reaction mixtures containing 1.0 μL of the DNA
template (10 ng), 1.0 μL of the primer mix (10 μM of each), 10.0 μL of the premixed rTaq solu-
tion, and 8.0 μL of ddH2O. PCR was conducted in an ABI PCR machine using the following
conditions: 3 min at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at 58°C–60°C, and 30 s at
72°C, and a final extension of 8 min at 72°C. After PCR amplification, the size of each amplified
product with 10.0 μL volume was estimated using the LabChip GX instrument (PerkinElmer,
USA).

Seven buffalo breeds were selected to validate the amplification and polymorphism of 115
random SSR markers. The values of the observed number of alleles (NA), expected heterozygos-
ity (HE), observed heterozygosity (HO), and polymorphism information content (PIC) per SSR
locus were calculated using the software, PowerMarker, version 3.25 [41]. An UPGMA hierar-
chical clustering was performed based on the matrix of genetic similarity estimates, following
the procedures of the PowerMarker software.

Results

1. Sequencing and de novo assembly of swamp buffalo transcriptome
To obtain a comprehensive overview of the swamp buffalo (B. bubalis) transcriptome, we per-
formed transcriptome sequencing of pooled RNA samples from 11 different tissues on the Illu-
mina Hiseq 2000 platform. The main steps and bioinformatics tools used for data analysis are
shown in Fig 1. We obtained a total of 54,109,173 raw reads, which after removal of redundant
reads, trimming of adaptors and filtering for low-quality sequences resulted in 52,979,055
high-quality clean reads with 10,595,811,000 bp of sequence data (Table 1). The results of
FastQC v0.11.3 analysis showed that the Q20 percentage and GC percentage were 97.91% and
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49.92%, respectively. Using the Trinity software (Release-20140717), de novo assembly was
performed, which yielded 86,017 unigenes with a mean length of 972.41 bp and an N50 of
1,505 bp, representing a total of 83.65 Mb of genomic sequence. The present study was named
the Transcriptome Shotgun Assembly Project, and the 86,017 unigenes identified in swamp
buffalo were deposited in GenBank under accession number GDJS00000000.1 (http://www.
ncbi.nlm.nih.gov/nuccore/954037469?log$=activity). Of these deposited unigenes, 47,929
(55.72%) unigenes were>500 bp in size, 22,279 unigenes (25.90%) were>1,000 bp in size, and

Fig 1. Flowchart of de novo assemble in swamp buffalo transcriptome and SSR discovery.

doi:10.1371/journal.pone.0147132.g001

Transcriptome Analysis of Chinese Swamp Buffalo and SSR Discovery

PLOS ONE | DOI:10.1371/journal.pone.0147132 January 14, 2016 5 / 20

http://www.ncbi.nlm.nih.gov/nuccore/954037469?log$=activity
http://www.ncbi.nlm.nih.gov/nuccore/954037469?log$=activity


9,969 (11.59%) unigenes were>2,000 bp long. According to a simple principle: the longest one
was extracted when the unigenes had multiple open reading frames (ORFs), 76,703 (89.17%)
unigenes with ORFs were generated using the software, ORF Finder (EMBOSS:6.3.1), which
indicated that 8,740 unigenes had complete ORFs, with an average GC content of 44.5% (data
not shown).

2. Functional annotation
The assembled unigenes were predicted by using the BLASTx [42] program against the NCBI
non-redundant (Nr) and Swiss-Prot protein databases, with an E-value threshold of 1E-5.
Among the 86,017 unigenes, 27,025 (31.41%) and 23,232 (27.00%) unigenes showed significant
similarity to known proteins in the Nr and Swiss-Prot databases, respectively. Furthermore,
15,813 and 14,167 unigenes could be annotated according to the EuKaryotic Ortholog Groups
(KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [43], respectively
(Fig 2A). The E-value distribution of the hits showed that 70.20% of the unigenes had signifi-
cant homology (< 1E-50) to entries in the Nr database, and nearly 87.69% of the sequences
showed>70.00% similarity (Fig 2B and 2C). The 86,017 unigenes were annotated to 10 top-hit
species, with Bos taurus and B. grunniens accounting for 66.52% of the annotated unigenes (Fig
2D). These results revealed that our transcriptome data on the swamp buffalo was successfully
annotated.

Based on the results of Nr annotation, 14,439 unigenes were assigned to 64 functional
groups in Gene Ontology (GO) [44]. Fig 3 shows that 112,386 (53.04%) unigenes comprised
the largest category, namely, ‘biological process’, followed by ‘cellular component’ (73,975;
34.91%) and molecular function (25,535; 12.05%). The GO terms ‘cellular process’ (12,727;
11.32%) and ‘single-organism process’ (11,225; 9.99%), ‘cell’ (13,314; 18.00%), and ‘cell part’
(13,313; 18.00%), and ‘binding’ (11,917; 46.67%), and ‘catalytic activity’ (6,379; 24.98%) were
the first and second largest groups among the three main categories (‘biological process’, ‘cellu-
lar component’, and ‘molecular function’), respectively. However, a few unigenes were assigned
to ‘virion’ (GO: 0019012), ‘virion part’ (GO: 0044423), ‘morphogen activity’ (GO: 0016015),
and ‘nutrient reservoir activity’ (GO: 0045735).

Table 1. Summary of results of sequence analysis.

Data generation and filtering

Raw reads 54,109,173

Clean reads 52,979,055

Q20 percentage (%) 97.04

GC content (%) 49.92

Assembly statistics

300–500 (bp) 38,088 (44.28%)

500–800 (bp) 19,941 (23.18%)

800–1,000 (bp) 5,713 (6.64%)

1,000–1,500 (bp) 7,916 (9.20%)

1,500–2,000 (bp) 4,393 (5.11%)

>2,000 (bp) 9,970 (11.59%)

Unigenes 86,017

Total length (bp) 83,647,650

N50 length (bp) 1,505

Mean length (bp) 972.41

doi:10.1371/journal.pone.0147132.t001
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In addition, all unigenes were subjected to a search against the KOG database for functional
prediction and classification. A total of 15,813 unigenes showing Nr hits in the KOG database
were functionally classified into 25 molecular families, including four orthology clusters (Fig
4). The orthology cluster described as ‘cellular processes and signaling’ predominated, which
accounted for 41.75% of the annotations, followed by ‘metabolism’ (2,839; 15.92%) and ‘infor-
mation storage and processing’ (2,742; 15.37%); whereas, another clustering was poorly charac-
terized, which included ‘general prediction only’ and ‘function unknown’, which accounted for
26.96% of the annotations.

3. Functional classification using the KEGG pathway
All the assembled unigenes were subjected to KEGG pathway enrichment analysis. A total of
14,167 unigenes (16.47%) could be annotated and assigned to 5 main categories, which
included 331 KEGG pathways (Fig 5, S1 Table). Among the five main categories, the largest
category was ‘human diseases’, which contained 4,868 KEGG-annotated unigenes (26.52%),

Fig 2. Characteristics of the results of homology search for swamp buffalo unigenes. (A) Venn diagram of BLAST hits for unigenes against protein
databases (E-value�1.0e-05). Numbers in the circles indicate the number of unigenes annotated by single or multiple databases, (B) E-value distribution of
BLAST hits for each unique sequence (E-value�1.0e-05). (C) Identity distribution of BLAST hits for each sequence. (D) Species distribution of the top
BLAST hits for the assembled unigenes (E-value�1.0e-05).

doi:10.1371/journal.pone.0147132.g002
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followed by ‘organismal systems’ (4,256; 23.19%), ‘environmental information processing’
(2,904; 15.82%), ‘metabolism’ (2,753; 15.00%), ‘cellular processes’ (1,962; 10.69%), and ‘genetic
information processing’ (1,613; 8.79%). S1 Table shows that the KEGG human diseases con-
tained 10 subcategories, which included Cancers: overview, Cancers: specific types, cardiovas-
cular diseases, Endocrine and metabolic diseases, Immune diseases, Infectious diseases:
Bacterial, Infectious diseases: Parasitic, Infectious diseases: Viral, Neurodegenerative diseases,
and Substance dependence. Furthermore, 415 unigenes were assigned to the subcategory of
Lipid metabolism. Among these, 34, 20, and 21 unigenes mapped to the subcategories of Lino-
leic acid metabolism, Alpha-linolenic acid metabolism, and Biosynthesis of unsaturated fatty
acids, respectively.

4. Development and characterization of SSRmarkers
SSRs are useful molecular markers for genetic research and comparative genome analysis. To
develop SSR markers in swamp buffalo, all assembled unigenes generated in the present study
were used to mine potential microsatellites, which were defined as mono- to hexanucleotide
SSRs that consisted of a minimum of five repeats. Table 2 presents the 18,446 SSRs that were
detected in 17,401 unigenes, of which 2,939 unigenes contained more than one SSR, and 932
SSRs exhibited compound formation. The number of potential SSRs per unigene varied from 1
to 6, with an average of 1.06.

To further assess the mining quality of SSRs in swamp buffalo, we divided the SSRs into
three groups based on the repeat motif classification criteria proposed by Weber [45] (Table 3).
For the perfect repeat motifs (SSRs�15 bp in length), mono-, tri-, and dinucleotide motifs

Fig 3. Gene ontology (GO) classification of assembled unigenes. A total of 14,439 unigenes with significant similarity in NR protein databases were
assigned to GO classifications.

doi:10.1371/journal.pone.0147132.g003
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were placed as top three hits, with distribution frequencies of 38.53%, 36.08% and 22.56%,
respectively, whereas the other motif types only accounted for 2.84% of the repeat motifs.
Under the imperfect SSR category, 10,476 SSRs was detected, which included mono- (8,248;
78.73%) and dinucleotide (2,228; 21.27%) SSR units, and was ranked after the perfect repeat
motifs. For the compound SSR category, all motifs belonged to the perfect type, including the
mono-mono-, mono-di-, mono-tri-, mono-tetra-, di-mono-, di-di-, di-tri-, di-tetra-, tri-mono-
, tri-di-, tri-tri-, tetra-tetra-, and hexa-trinucleotide types. The mono-mono-, di-di-, and tri-tri-
nucleotide types were the most abundant, representing more than 77.04% of the 932 SSRs.

The frequency distribution of the perfect SSRs was also analyzed in the present study, with
the mononucleotide type excluded. The most abundant motif detected in the SSRs was the AC/
GT motif (29.85%), followed by the motifs AGC/CTG (19.26%), CCG/CGG (14.38%), and
AGG/CCT (10.27%). The remaining types of motif accounted for 26.24% of the repeat motifs
(Fig 6).

5. Identification of polymorphic markers
One hundred and fifteen SSRs were randomly selected to estimate the genetic diversity of 7
buffalo breeds (S3 Table). We successfully amplified PCR products using 110 primer pairs, and
69 primer pairs exhibited polymorphisms among the 7 breeds. Of the 69 working primer pairs,
52 PCR products showed specific amplification with the expected sizes, whereas the other 17
PCR products were larger than the expected sizes, suggesting that the amplified regions likely
contained introns. Table 4 shows the average values of the NA, HE, andHO in the 69 SSRs,

Fig 4. EuKaryotic orthologous group (KOG) classification. Approximately 15,813 of the 86,017 unigenes with NR hits were grouped into 25 KOG
classifications.

doi:10.1371/journal.pone.0147132.g004
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Fig 5. Pathway assignment based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). (A) Classification based on cellular processes
categories, (B) Classification based on environmental information processing categories, (C) Classification based on genetic information processing
categories, (D) Classification based on human diseases categories, (E) Classification based on metabolism categories, and (F) Classification based on
organismal systems categories.

doi:10.1371/journal.pone.0147132.g005
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Table 2. Summary of SSRmining results.

Search item Number

Total number of sequences examined 86,017

Total size of examined sequences (bp) 83,647,650

Total number of identified SSRs 18,446

Number of unigenes containing SSRs 17,401

Number of unigenes containing more than 1 SSR 2,939

Number of SSRs present in compound formation 932

Number of mononucleotides 1,0557

Number of dinucleotides 3,580

Number of trinucleotides 2,162

Number of tetranucleotides 149

Number of pentanucleotides 14

Number of hexanucleotides 7

doi:10.1371/journal.pone.0147132.t002

Table 3. Repeat motif type distribution in SSRs� 15 bp in length.

Repeat motif type SSRs � 15 bp in length

Number Frequency (%)

Perfect

Mono- 2,309 38.53

Di- 1,352 22.56

Tri- 2,162 36.08

Tetra- 149 2.49

Penta- 14 0.23

Hexa- 7 0.12

Total 5,993 100.00

Imperfect

Mono- 8,248 78.73

Di- 2,228 21.27

Total 10,476 100.00

Compound

Perfect

Mono-mono- 440 47.21

Mono-di- 77 8.27

Mono-tri- 21 2.25

Mono-tetra- 6 0.64

Di-mono- 78 8.37

Di-di- 218 23.39

Di-tri- 5 0.54

Di-tetra- 3 0.32

Tri-mono- 17 1.82

Tri-di- 5 0.54

Tri-tri- 60 6.44

Tetra-tetra- 1 0.11

Hexa-tri- 1 0.11

Total 932 100.00

Total 17,401

doi:10.1371/journal.pone.0147132.t003
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which were 9.00, 0.74, and 0.18, respectively. The PIC values ranged from 0.33 to 0.91, with an
average value of 0.70, suggesting that those highly polymorphic markers could be used to inves-
tigate genetic diversity in buffalo. The unweighted pair group method with arithmetic mean
(UPGMA) cluster analysis divided 7 breeds into two groups, one representing the river buffalo
types (Murrah and Nili-Ravi), whereas the other comprised all the indigenous breeds (5
swamp types) (Fig 7). For the swamp buffalo group, the DC swamp buffalo was closely related
to the DH swamp buffalo.

Discussion
The Chinese swamp buffaloes have been divided into 14 local types and many populations
based mainly on regional distribution [46]. Not only are they draught animals, but they also
have a tremendous economic importance as dairy and meat in many highly populated coun-
tries [47, 48]. Despite their utility, studies on genomics as a tool for marker assisted cross-
breeding techniques are still lacking in this species because of strategies which were relatively
costly, time consuming and labor intensive [49]. The high demand for low-cost sequencing has
led to the development of high-throughput technologies such as next-generation sequencing
[50]. Transcriptome sequencing is one such powerful and cost-effective tool in generating
large-scale transcriptome data that may be used in developing molecular markers and in identi-
fying novel genes in model [35, 51] and non-model [52, 53] organisms. To our knowledge, the
present study is the first attempt to perform de novo assembly and to conduct a comprehensive
characterization of the comprehensive transcripts of swamp buffalo. We obtained a total of

Fig 6. Frequency of classified repeat types of SSRs. The most abundant dinucleotide and trinucleotide motifs were AC/GT and AGC/CTG.

doi:10.1371/journal.pone.0147132.g006
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Table 4. Characterization of 69 SSRs in the swamp buffalo.

Unigene Size range (bp) NA HE HO PIC

c100962_g1 179–275 16 0.83 0.69 0.81

c101428_g1 138–220 16 0.89 0.25 0.88

c95720_g2 231–273 8 0.70 0.00 0.66

c86603_g2 223–257 5 0.57 0.04 0.49

c96868_g2 266–290 7 0.70 0.03 0.64

c98098_g9 176–185 7 0.67 0.00 0.62

c97555_g6 174–212 12 0.81 0.03 0.80

c97496_g2 238–241 5 0.72 0.03 0.66

c97325_g1 183–258 5 0.75 0.00 0.71

c90560_g1 272–274 2 0.50 0.00 0.37

c95590_g1 264–269 6 0.66 0.00 0.61

c29117_g1 249–284 11 0.83 0.46 0.81

c3537_g1 235–252 8 0.75 0.10 0.72

c90817_g1 142–147 5 0.71 0.00 0.66

c95357_g1 211–227 10 0.82 0.43 0.80

c95815_g1 296–299 4 0.58 0.00 0.49

c90328_g2 250–279 13 0.87 0.21 0.86

c90309_g3 118–206 7 0.67 0.16 0.61

c90620_g1 255–276 11 0.81 0.43 0.79

c85589_g3 232–272 10 0.82 0.42 0.81

c97420_g2 194–225 15 0.91 0.00 0.90

c30689_g1 205–210 6 0.75 0.00 0.71

c90393_g2 160–256 10 0.83 0.10 0.82

c90478_g1 410–465 15 0.88 0.86 0.87

c90599_g1 208–223 6 0.62 0.11 0.56

c95402_g8 183–197 5 0.66 0.11 0.61

c97823_g8 100–105 6 0.81 0.00 0.78

c56032 144–180 7 0.79 0.39 0.76

c63011_g1 364–375 12 0.88 0.00 0.87

c95392_g3 226–228 3 0.65 0.00 0.58

c95505_g1 269–273 5 0.75 0.00 0.71

c96324_g1 246–274 9 0.74 0.50 0.71

c95394_g1 200–285 6 0.76 0.03 0.72

c99660_g1 142–200 8 0.68 0.45 0.65

c95544_g1 235–237 3 0.44 0.00 0.39

c43761_g2 149–269 16 0.74 0.37 0.71

c97820_g4 236–240 5 0.75 0.00 0.72

c97498_g3 164–168 4 0.59 0.00 0.52

c94999_g1 173–232 10 0.73 0.18 0.69

c96337_g7 246–248 3 0.49 0.00 0.39

c96483_g1 181–207 9 0.76 0.29 0.72

c91113_g1 194–274 14 0.83 0.24 0.81

c90599_g1 238–240 3 0.37 0.00 0.33

c90878_g3 180–272 16 0.89 0.43 0.88

c650_g1 270–274 5 0.73 0.00 0.68

c95889_g10 176–216 13 0.89 0.09 0.88

c90552_g3 127–175 19 0.92 0.63 0.91

(Continued)
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Table 4. (Continued)

Unigene Size range (bp) NA HE HO PIC

c90374_g1 370–390 8 0.60 0.15 0.53

c94121_g3 212–235 8 0.73 0.18 0.68

c90300_g1 157–160 4 0.62 0.00 0.54

c98127_g11 175–204 12 0.85 0.71 0.84

c95978_g1 242–280 11 0.84 0.29 0.82

c92172_g3 201–271 11 0.84 0.03 0.82

c99615_g1 262–277 10 0.79 0.13 0.76

c92254_g5 186–294 13 0.86 0.07 0.85

c29773_g1 252–293 19 0.91 0.57 0.91

c45669_g1 190–194 5 0.78 0.00 0.75

c96108_g12 164–230 17 0.86 0.62 0.84

c91434_g2 171–284 9 0.79 0.51 0.77

c90483_g5 269–290 13 0.80 0.37 0.78

c96873_g3 184–188 5 0.74 0.00 0.70

c97681_g7 158–275 6 0.46 0.03 0.43

c28863_g1 170–226 7 0.69 0.09 0.64

c97995_g3 162–283 7 0.60 0.03 0.56

c98267_g4 160–231 6 0.61 0.09 0.54

c98164_g4 134–200 11 0.67 0.11 0.65

c78294_g2 181–184 4 0.43 0.00 0.41

c90756_g3 154–246 15 0.91 0.03 0.91

c88071_g3 178–264 12 0.88 0.06 0.86

Mean 9 0.74 0.18 0.70

Note: NA, number of alleles; HE, expected heterozygosity; HO, observed heterozygosity; PIC, polymorphic information content

doi:10.1371/journal.pone.0147132.t004

Fig 7. UPGMA dendrogram of the genetic relationships among seven buffalo breeds. The dendrogram
was generated using the Nei similarity coefficient based on 69 polymorphic primer pairs.

doi:10.1371/journal.pone.0147132.g007
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52,979,055 high-quality reads with 97.04% Q20 bases using Illumina paired-end sequencing,
and de novo assembly yielded 86,017 unigenes, which might be useful for further research into
functional genomics in the swamp buffalo. The average length of the assembled unigenes with
an N50 of 1,505 bp was 972.41 bp, which was longer than the results of previous studies [54–
56], suggesting that our transcriptome sequencing data was successfully assembled. The
49.92% GC-content of the swamp buffalo transcriptome was higher than the genome-wide
average GC-content of the river buffalo draft genome (42.20%) and those of other animals
(41.80%–42.30%) [57–60], which might be attributable to the unique tissue-specific transcripts
and experimental designs [61, 62]. These results are indicative that the transcripts generated
from the swamp buffalo were of high quality and may thus be utilized in future studies on gene
cloning, molecular genetics, and transgenesis of the swamp buffalo.

To predict and analyze the biological function of assembled transcripts at the whole-tran-
scriptome level, a sequence similarity search was performed against various protein databases,
which included Nr, Swiss-Prot, GO, KOG, and KEGG. Most of the assembled unigenes
(62,337; 72.47%) showed matches with known proteins in public databases, indicating that
27.53% of the unigenes may represent novel genes whose function has not yet been identified.
In particular, most of unigenes were annotated to the B. taurus and B. grunniens (first and sec-
ond hits) against the Nr database, probably because: (1) it confirmed that the swamp buffalo is
closely related to B. taurus and B. grunniens; (2) The genomes of both B. taurus and B. grun-
niens have earlier been completely sequenced [63, 64]. We mapped 23.16% of the annotated
unigenes to the KOG database and 25.37% to the GO terms, which indicated that our tran-
scriptome data represented a broad diversity of transcripts in swamp buffalo. Similar results
were also reported in other species, such as sheep [65], fish [66], horse [67], rubber tree bark
[68], the Tibetan leguminous shrub Sophora moorcroftiana [69], and the Jerusalem artichoke
[70]. On the other hand, around 26.96% of the annotated unigenes were poorly characterized
to orthologous clusters and thus were described as ‘general prediction only’ and ‘function
unknown’; this occurrence may be due to the absence of a reference genome for the swamp
buffalo. In addition, we also predicted a total of 14,167 unigenes that mapped to 331 KEGG
pathways. Moreover, 70.00% of the top 10 hit pathways were involved in signal transduction,
whereas the others were related to pathways involving cancer, proteoglycans in cancer, and
HTLV-I infection (S1 Table). Notably, some unigenes predicted by KEGG pathways were asso-
ciated with linoleic acid metabolism, alpha-linolenic acid metabolism, and biosynthesis of
unsaturated fatty acids, implying that swamp buffalo milk is very rich in unsaturated fatty
acids and has important economic value and health benefits. These results indicated that the
predicated pathways, together with gene annotation, may be utilized in future investigations on
gene function, which in turn also confirms that de novo transcriptome sequencing is an effi-
cient method for transcriptome characterization and gene discovery in the swamp buffalo.

SSRs that are widely distributed in a genome are important tools for assessing genetic diver-
sity, genetic map construction, comparative genomics, and marker-assisted selection breeding.
To our knowledge, no previous study has identified SSR markers in the swamp buffalo. The
transcriptome data is an excellent source for SSR mining and has been utilized in various spe-
cies [71–74]. In the present study, we identified a total of 17,401 SSRs based on the unigene
data of swamp buffalo and approximately 39.80% of identified SSRs were the perfect repeat
motif type. When mononucleotide repeats were excluded, 48.61% of the 4,616 SSRs were deter-
mined to be trinucleotide repeats, followed by dinucleotide repeats (35.88%) and tetranucleo-
tide repeats (3.25%), as well as pentanucleotide repeats and hexanucleotide repeats, which
accounted for 0.48% of the motifs. The most abundant dinucleotide and trinucleotide motifs
were AC/GT and AGC/CTG (Fig 5), which was in agreement with the findings of previous
reports on other animal species [55, 75, 76], but different from those of plants [68, 77]. Of the
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115 primer pairs randomly selected for PCR validation, 110 (95.65%) produced clear bands,
and 69 (60.00%) exhibited polymorphisms. The high PCR rate of SSR markers in the swamp
buffalo was similar to that obtained in other species [71, 78], but higher than that reported in a
study conducted by Yan [75]. UPGMA dendrogram analysis revealed that the two river buffalo
populations clustered together whereas the five swamp buffalo populations were clustered sep-
arately, which correlated with the geographic origin of the genotypes. The findings of UPGMA
analysis was similar to that observed in previous studies [13, 79, 80]. In sum, the 17,401 poten-
tial SSRs identified in the present study provide a useful resource for future marker assisted
breeding programs in the swamp buffalo.

Conclusions
In the present study, Illumina paired-end sequencing was performed, followed by de novo
assembly and characterization of the transcriptome of the swamp buffalo. Our study generated
a total of 54,109,173 raw reads, which consisted of 86,017 unigenes, of which 62,337 unigenes
were annotated to the four public databases (Nr, Swiss-Prot, KOG, and KEGG), which in turn
identified 17,401 SSRs as putative molecular markers. These findings may serve as a valuable
resource for genetic and genomic studies on the buffalo.
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