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Quantitative assessment of the intracellular oxidative stress level is a very important

problem since it is the basis for elucidation of the fundamental causes of metabolic

changes in diseased human cells, particularly cancer. However, the problem proves to

be very challenging to solve in vivo because of the complex nature of the problem. Here a

computational method is presented for predicting the quantitative level of the intracellular

oxidative stress in cancer tissue cells. The basic premise of the predictor is that the

genomic mutation level is strongly associated with the intracellular oxidative stress level.

Based on this, a statistical analysis is conducted to identify a set of enzyme-encoding

genes, whose combined expression levels can well explain themutation rates in individual

cancer tissues in the TCGA database. We have assessed the validity of the predictor by

assessing it against genes that are known to have anti-oxidative functions for specific

types of oxidative stressors. Then the applications of the predictor are conducted to

illustrate its utility.

Keywords: oxidative stress, genomic mutation, transcriptomic data, cancer, TCGA data analysis, computational

prediction

INTRODUCTION

Oxidative stress has long been recognized as a cellular stress associated with cancer formation and
development (Cerutti and Trump, 1993; Wangpaichitr et al., 2009; Bellezza et al., 2010; Chan et al.,
2010; Conti et al., 2010; Dayem et al., 2010; Gibellini et al., 2010; Henkler et al., 2010; Karlenius
and Tonissen, 2010; Massi et al., 2010; Ortega et al., 2010; Pizzimenti et al., 2010; Reuter et al.,
2010; Schultz et al., 2010; Soory, 2010; Sun et al., 2010; Valle et al., 2010; Gorrini et al., 2013; Sosa
et al., 2013; Leone et al., 2017). It refers to the gap between the intracellular oxidizing power and
the anti-oxidation capacity in a human cell. Numerous authors have pointed out that oxidative
stress may be responsible for the induction of a variety of altered metabolisms in cancer, which
include (i) considerably increased lipid metabolism (Santos and Schulze, 2012; Zhang and Du,
2012; Alfaradhi et al., 2014; Zhang et al., 2014), (ii) altered metabolisms of sulfur-containing amino
acids (Schulz et al., 2000; Zhang et al., 2012; Campbell et al., 2016; Martínez et al., 2017), (iii)
reprogrammed sugar metabolisms (Takeyama et al., 2000; Wu et al., 2009; Dewald et al., 2016),
among other reprogrammed metabolisms. Increased genomic mutations in cancer have also been
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attributed to oxidative stress (Limoli and Giedzinski, 2003;
Doudican et al., 2005; Slane et al., 2006; Xu et al., 2014;
Fitzgerald et al., 2017; Markkanen, 2017; Rao et al., 2017;
Tubbs and Nussenzweig, 2017). However, it has proven to be
very challenging to accurately estimate the level of intracellular
oxidative stress (Selvaraj et al., 2002; Farah, 2005). Because
existing techniques are mostly designed to detect quantitatively
specific oxidizing molecular species (e.g., H2O2 and O2) rather
than detecting the overall level of oxidative stress. Computational
techniques could potentially play a key role in estimating the
quantitative level of oxidative stress.

Unlike hypoxia or acid-base imbalance whose related stress
can be measured/estimated in terms of the concentration of
one or a few molecular species such as O2 or H+, there are
many types of oxidizing molecules such as reactive oxygen
species (Barash et al., 2010; Reczek and Chandel, 2017), reactive
nitrogen species (Fionda et al., 2016; Kruk and Aboul-Enein,
2017), reactive lipid species (Higdon et al., 2012; Graham,
2016) among others. Furthermore, to estimate the stress level,
it also requires to know the total cellular reducing capacity.
This is also challenging since human cells not only have a
basic set of anti-oxidation (or reducing) capacities consisting
of (1) glutathione and associated enzymes (e.g., glutathione
transferase and peroxidase), (2) vitamin A, C, E and derivatives
like beta-carotene, and (3) anti-oxidation enzymes like SOD
(superoxide dismutase), PRX (periaxin), and TRX (thioredoxin)
(Chang et al., 2008; Mantovani et al., 2010), but also rely on anti-
oxidation capacities of various other molecules including some
enzymes and fatty acids. Among them, the main functions of
the enzymes may not be for anti-oxidation (Osmundsen et al.,
1982; Wieczorek et al., 2017), while the anti-oxidative properties
of fatty acids have long been well-established (Richard et al., 2008;
Freitas et al., 2017). All these make it very difficult to pin down on
what molecular species should be used when assessing the level of
oxidative stress.

A few proposals have been made regarding possible
biomarkers for intracellular level of oxidative stress such as the
carbonylation level (aldehydes and ketones) of proteins (Dalle-
Donne et al., 2003; Hacişevki et al., 2012; Fernando et al.,
2016), the level of oxidized low-density lipoprotein (Itabe, 2012;
Osman et al., 2016), oxidized products of lipids such as 4-
HNE (4-hydroxynonenal) and MDA (malondialdehyde) (Niki,
2008; Halder and Bhattacharyya, 2014; Teppner et al., 2015),
and protein thiols (Giustarini et al., 2012, 2017). There are two
general issues with these biomarkers: (1) they tend to reflect the
level of oxidation by specific oxidizing molecules; and (2) more
importantly, they are not high-throughput, hence it is impractical
for large-scale analyses, such as analyses of TCGA tissue samples
(https://portal.gdc.cancer.gov/) to elucidate possible causes of
specific metabolic changes in such tissues.

The goal here is to identify a set of genes whose mRNA
expression levels can collectively reflect the overall level of
intracellular oxidative stress present in a cancer tissue. The
strategy is: (1) the somatic point-mutation rate in each cancer
tissue sample is used as an indicator for the level of intracellular
oxidative stress, an idea that has been well-established and
applied (Doudican et al., 2005; Slane et al., 2006; Xu et al., 2014;

Fitzgerald et al., 2017; Markkanen, 2017; Rao et al., 2017; Tubbs
and Nussenzweig, 2017); (2) a few enzyme classes are selected,
which are known to have anti-oxidation activities such as EC
3.1.-, EC 3.6.-, EC 2.4.-, and EC 2.7.- (Kato et al., 1995; Kong et al.,
2007); and (3) a subset of genes are selected from these enzyme
classes, whose combined expressions correlate strongly with the
mutation rates in the matching genomes, determined through
regression analyses. One assumption used in the analysis is that
the oxidative stress levels in cytosol and nucleus are the same,
which is reasonable knowing that the nuclear pores are large
enough to allow most of the oxidizing molecules to go through
freely between the two compartments; and increased mutation
rates in cancer are known to be related to the nucleus oxidative
stress level (Chung et al., 2014; Markkanen, 2017).

By applying this strategy to gene-expression data and
matching genomic mutation data of cancer tissues of 14 cancer
types in TCGA, representing all those with sufficiently large
sample sizes, we have trained a predictor for the intracellular
level of oxidative stress for each of the 14 cancer types. They
are BLCA (bladder urothelial carcinoma), BRCA (breast invasive
carcinoma), COAD (colon adenocarcinoma), ESCA (esophageal
carcinoma), HNSC (head and neck squamous cell carcinoma),
KICH (kidney renal papillary cell carcinoma), KIRC (kidney
chromophobe), KIRP (kidney renal clear cell carcinoma), LICH
(liver hepatocellular carcinoma), LUAD (lung squamous cell
carcinoma), LUSC (lung adenocarcinoma), PRAD (prostate
adenocarcinoma), STAD (stomach adenocarcinoma), and THCA
(thyroid carcinoma). We have then validated the predictor
against data with known oxidative stress related information. A
key advantage in having a gene-expression data-based predictor
is that RNA-seq data tend to be collected in general for cancer
research; and such a predictor does not require a user to know
the mutation rate distribution of the cancer type under study
since such information is already encoded in the predictor for
each cancer type.

RESULTS

Genomic Mutation Profiles
We have calculated and plotted the distribution of the number of
point-mutations in coding regions per genome across all cancer
genomes for each of the 14 cancer types, as shown in Figure 1.
From the figure, LUAD has the highest average mutation rate
at 347.20 per genome, and KICH has the lowest one at 19.75
per genome. The following lists the average numbers of the
remaining 12 cancer types in the descending order: 288.95
mutations in LUSC, 272.02 in COAD, 257.50 in STAD, 234.71 in
BLCA, 213.26 in HNSC, 124.59 in ESCA, 147.65 in LIHC, 303.75
in BRCA, 111.14 in KIPR, 113.94 in KIRC, 138.75 in PRAD, and
134.18 in THCA.

Selection of Antioxidant Enzyme-Encoding
Genes
Some classes of enzymes have long been known to have
anti-oxidative functions as their main function such as the
antioxidant enzymes mentioned earlier while some others have
anti-oxidation as their secondary function such as cytochromes

Frontiers in Genetics | www.frontiersin.org 2 May 2020 | Volume 11 | Article 494

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. Quantitative Estimation of Oxidative Stress

FIGURE 1 | Distributions of the number of point mutations across all samples for each of the 14 cancer types, where the x-axis represents the mutation rate and the

y-axis denotes the frequency of mutation rate across the tissue samples in each cancer type. (A) BLCA; (B) BRCA; (C) COAD; (D) ESCA; (E) HNSC; (F) KICH; (G)

KIRC; (H) KIRP; (I) LIHC; (J) LUAD; (K) LUSC; (L) PRAD; (M) STAD; (N) THCA.

P450 and mitogen activated protein kinases (Limón-Pacheco
and Gonsebatt, 2009). And yet, increasingly more proteins have
been found to have antioxidant roles in addition to their main
functions such as translocases (Tang et al., 2017), hydrolase (Liu
et al., 2018), and hexokinase (Heneberg, 2019).

Based on such information, we have conducted a preliminary
regression analysis of the mutation rates against the expression
data of all the enzyme-encoding genes in the same samples for
each of the 14 cancer types (with a Lasso penalty). Interestingly,
genes that give rise to good regression results across all 14
cancer types generally fall into a small set of enzyme subclasses,
particularly EC 3.- (hydrolases) and EC 2.- (transferases).
Hence, we have conducted a second round of regression against
expression data of genes only in these two EC classes.

From genes selected for each of the 14 regression models,
we note the following: (1) in all 14 cancer types, genes in each
regression model fall into exactly four sub-subclasses of EC 2.-
and EC 3.-; (2) in five cancer types: BLCA, KIRC, KIRP, LUAD,
and LUSC, all the genes fall into four sub-subclasses of EC 3.-;
in three cancer types, BRCA, ESCA and KICH, all genes fall into
four sub-subclasses of EC 2.-; and in the remaining six cancer
types: COAD, HNSC, LIHC, PRAD, STAD, and THCA, all genes
fall into two subclasses of EC 2.- and two subclasses of EC 3.-; (3)
the two most commonly used EC 3.- subclasses are EC 3.4.21.-
and EC 3.1.3.- while the two mostly used EC 2.- subclasses are

EC 2.4.1- and EC 2.7.1.-. Table S1 gives the gene names selected
in the regression model for each cancer type.

Linear Regression Analyses
For each cancer type, a linear regression model is trained to
predict the mutation rate using expression data in the same
cancer sample, of selected genes from some EC subclasses as
discussed above. The detailed objective function is described in
theMethods section. To ensure the quality of each trainedmodel,
we have randomly selected 2/3 of the samples as the training data,
and used the remaining 1/3 as the test data. Figure 2 shows the
predicted values by the best trainedmodel vs. the actual mutation
rates across all samples for each cancer type. Similar plots for the
test samples are given in Figure S1. Table 1 summarizes the level
of contribution by genes of each EC subclass to the regression
result for each cancer type, with the detailed information of the
14 models being given in Table S2.

Prediction Validation
We have conducted the following analyses to provide supporting
data to our prediction model.

Validation Against Fatty Acid Synthesis Genes
It is well-known that fatty acids serve as antioxidants in cancer
and other disease cells (Richard et al., 2008; Freitas et al., 2017).
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FIGURE 2 | Scatter plots for mutation rates vs. predicted values in each of the 14 cancer types. For each panel, the x-axis represents the predicted mutation rates

and the y-axis denotes the actual mutation rates. (A) BLCA; (B) BRCA; (C) COAD; (D) ESCA; (E) HNSC; (F) KICH; (G) KIRC; (H) KIRP; (I) LIHC; (J) LUAD; (K) LUSC;

(L) PRAD; (M) STAD; (N) THCA.

Hence, we anticipate that our predictor should have some level
of correlation with the fatty acid synthesis process. Table 2 shows
the best correlation coefficient between our predictor and one of
the four fatty acid synthesis genes (see Methods) across the 14
cancer types, with Table 3 giving the statistical significance of the
observed correlations.

Validation Against Mucin Genes
Mucins have been found to have elevated levels across numerous
cancer types and are known to have anti-oxidation roles
(Takeyama et al., 2000; Wu et al., 2009; Dewald et al., 2016). We

have examined their expression levels and our predictor. Table 4
shows the best correlation coefficient between our predictor and
one of the mucin genes across the 14 cancer types, with Table 5

giving the statistical significance of the observed correlations.
And the statistical significance of the observed correlations for
each Mucin genes is given in Table S3 in detail.

Validation Against Glutathione Synthesis Genes
Glutathione is a molecule human cells use as a key antioxidant.
We have examined their expression levels and our predictor.
Table 6 shows the R2 values between our predictor and
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TABLE 1 | Estimated contribution by genes in each EC subclass to the linear

model for each of the 14 cancer types.

Cancer name EC subclasses used Contributions by each EC class

BLCA 3.1.1 2.06E-22

3.1.4 2.02E-26

3.4.21 4.88E-13

3.2.1 1.46E-21

BRCA 2.3.1 3.52E-21

2.4.1 2.11E-24

2.7.1 2.41E-14

2.7.7 2.65E-18

COAD 2.7.1 1.18E-14

2.4.1 5.97E-13

3.1.3 2.44E-20

3.4.21 3.02E-16

ESCA 2.1.1 4.55E-71

2.3.1 7.00E-04

2.4.1 5.07E-07

2.6.1 9.62E-22

HNSC 2.7.1 2.94E-13

2.4.1 7.11E-19

3.1.3 5.58E-14

3.4.21 2.51E-16

KICH 2.7.7 2.09E-05

2.1.1 1.78E-16

2.5.1 4.37E-05

2.8.2 6.96E-06

KIRC 3.1.1 1.16E-10

3.1.3 9.65E-17

3.2.1 2.20E-10

3.4.21 5.91E-28

KIRP 3.1.1 8.78E-14

3.1.3 6.68E-07

3.4.21 1.60E-23

3.6.3 6.95E-16

LIHC 2.4.1 1.41E-21

3.1.3 1.44E-12

3.4.21 2.33E-12

2.3.1 6.07E-25

LUAD 3.1.3 1.65E-63

3.1.4 3.48E-07

3.4.21 5.55E-18

3.6.3 5.10E-35

LUSC 3.1.1 5.77E-43

3.1.3 2.09E-24

3.4.21 1.78E-26

3.6.3 8.40E-22

PRAD 2.7.1 2.74E-41

2.4.1 1.66E-11

3.4.21 5.10E-14

3.1.3 5.27E-05

STAD 2.7.1 5.47E-23

2.4.1 1.34E-15

3.1.3 5.06E-16

3.4.21 8.40E-08

THCA 2.7.1 2.27E-31

2.4.1 5.53E-12

3.1.3 6.47E-11

3.4.21 1.05E-06

TABLE 2 | Correlation coefficients between our oxidative-stress predictor and the

fatty acid synthesis gene across 14 cancer types.

Cancer name Correlation coefficient Gene name

BLCA 0.77 FASN

BRCA 0.64 ACAT2

COAD 0.89 ACAT1

ESCA 0.99 ACAT2

HNSC 0.92 MCAT

KICH 0.98 ACAT2

KIRC 0.68 ACAT1

KIRP 0.8 ACAT1

LIHC 0.73 FASN

LUAD 0.81 ACAT2

LUSC 0.69 FASN

PRAD 0.72 FASN

STAD 0.66 MCAT

THCA 0.79 ACAT1

TABLE 3 | Statistical significance for the observed correlation coefficient in

Table 2 across 14 cancer types.

Cancer name ACAT1 MCAT ACAT2 FASN

BLCA 1.43E-01 1.44E-01 8.39E-02 4.36E-02

BRCA 2.60E-04 9.02E-02 7.97E-15 1.64E-02

COAD 1.10E-03 2.88E-06 8.34E-05 3.07E-01

ESCA 8.21E-01 8.18E-01 4.84E-01 8.06E-01

HNSC 4.30E-01 1.89E-09 2.43E-01 5.64E-02

KICH 1.29E-01 5.44E-01 8.24E-03 9.24E-01

KIRC 4.27E-03 3.35E-02 2.04E-01 1.42E-01

KIRP 1.55E-03 6.18E-02 7.80E-01 9.07E-02

LIHC 5.70E-02 5.22E-01 4.62E-01 2.81E-04

LUAD 9.87E-01 5.16E-03 5.63E-05 2.12E-05

LUSC 8.29E-01 4.06E-01 4.05E-02 3.48E-02

PRAD 3.38E-02 9.83E-01 9.33E-07 2.02E-01

STAD 8.52E-01 6.19E-04 8.79E-03 7.84E-01

THCA 2.87E-02 2.97E-01 1.60E-01 1.86E-01

the glutathione synthesis genes across the 14 cancer
types, with Table 7 giving the statistical significance of the
observed correlations.

It is noteworthy that our predictor is designed to predict the
level of oxidative stress; and each of the above three groups of
genes is known to be associated with the level of oxidative stress
and not involved in the training dataset. The observed strong
correlations between our predicted oxidative stress levels and the
expression levels of each such group, along with significant p-
values, provide strong support for that our predictor captures
the anti-oxidative level from different independent aspects, hence
indicating the validity of our trained predictor as an indicator for
the level of oxidative stress.

Application
To demonstrate the utility of our predictor, we have calculated
the average oxidative stress levels for each of the four stages
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TABLE 4 | Correlation coefficients between our oxidative-stress predictor and

mucin genes across 14 cancer types.

Cancer name Correlation coefficient Gene name

BLCA 0.69 MUC15

BRCA 0.8 MUC20

COAD 0.75 MUC5B

ESCA 0.87 MUC17

HNSC 0.86 MUC3A

KICH 0.91 MUC12

KIRC 0.83 MUC16

KIRP 0.97 MUC12

LIHC 0.72 MUC20

LUAD 0.94 MUC22

LUSC 0.92 MUC4, MUC20

PRAD 0.76 MUC6

STAD 0.88 MUC7

THCA 0.88 MUC15

TABLE 5 | Statistical significance for the observed correlation coefficients in

Table 4 across 14 cancer types.

Cancer name Statistics significance Gene name

BLCA 2.40E-13 MUC15

BRCA 4.01E-11 MUC20

COAD 2.04E-12 MUC5B

ESCA 8.74E-07 MUC17

HNSC 8.74E-07 MUC3A

KICH 1.10E-04 MUC12

KIRC 3.95E-07 MUC6

KIRP 9.38E-06 MUC12

LIHC 2.96E-08 MUC1

LUAD 6.28E-07 MUC22

LUSC 8.48E-11 MUC1

PRAD 2.85E-04 MUC6

STAD 3.40E-07 MUC17

THCA 2.27E-03 MUC15

vs. the matching controls in each of the 14 cancer types, as
detailed in Figure 3. From the figure, we can see: (1) cancer
tissue cells have elevated oxidative-stress levels than matching
controls in all of 14 cancer types; and (2) the oxidative stress
level tends to progressively increase as a cancer advances from
stage 1 through stage 4, in 10 out of 14 cancer types with at
most one predicted level of oxidative stress being out of order.
This is clearly consistent with our general understanding about
cancer progression.

We have also conducted co-expression analyses to find genes
that strongly correlate with our predictor in each cancer type and
analyzed the pathways enriched by such genes. Table S4 gives the
up-to top 100 enriched pathways with p < 0.05 in each cancer.
We note that the enriched pathways are highly consistent across
different cancer types. Furthermore, we note based on extensive
literature search that amajority of the enriched pathways, marked
in bold letters, is: (1) involved in anti-oxidation activities, (2)

TABLE 6 | Correlation coefficients between our predictor and the glutathione

synthesis genes across 14 cancer types.

Cancer name Correlation coefficient Gene name

BLCA 0.63 GCLM

BRCA 0.57 GCLM

COAD 0.94 GSS

ESCA 0.78 GCLC

HNSC 0.77 GCLM

KICH 0.45 GCLC

KIRC 0.74 GSS

KIRP 0.75 GSS

LIHC 0.66 GCLC

LUAD 0.74 GCLM

LUSC 0.75 GSS

PRAD 0.82 GCLC

STAD 0.79 GCLM

THCA 0.75 GCLC

TABLE 7 | Statistical significance for observed correlation coefficient in Table 6

across 14 cancer types.

Cancer name GCLC GSS GCLM

BLCA 3.56E-01 7.67E-03 1.12E-07

BRCA 3.07E-01 4.49E-01 5.16E-09

COAD 8.20E-01 1.53E-05 3.14E-02

ESCA 3.61E-14 4.09E-01 5.25E-01

HNSC 4.62E-01 3.05E-04 1.47E-06

KICH 1.38E-01 9.81E-01 7.89E-01

KIRC 5.90E-01 3.65E-05 3.67E-03

KIRP 7.88E-01 3.42E-07 7.88E-01

LIHC 5.50E-01 6.13E-06 9.30E-02

LUAD 1.88E-03 3.17E-02 6.50E-02

LUSC 4.62E-02 2.50E-29 3.15E-01

PRAD 1.11E-01 7.47E-02 4.29E-04

STAD 3.24E-04 1.74E-07 1.21E-08

THCA 9.80E-04 1.92E-01 2.08E-02

induced by oxidative stress, (3) induces oxidative stress, (4)
involved in reactive oxidative stress signaling, and/or (5) is
altered by oxidative stress. While these data provide supporting
data to our predictor, pathways not known to be oxidative stress
related may provide useful candidates for elucidation of the
overall oxidative-stress responding mechanisms in cancer cells.

DISCUSSION

Quantitative assessment of the intracellular oxidative stress will
prove to be an invaluable tool for elucidation of the possible
causes of various changes in cancer cells, including extensive
metabolic reprogramming. However, the problem proves to be
very challenging because there are large numbers of contributors
to both the total oxidizing power and the anti-oxidizing capacity
in human cells. Previous studies tend to focus on oxidative stress
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FIGURE 3 | Boxplots of predicted oxidative stress levels across 4 cancer stages (when data are available) along with matching controls for each of the 14 cancer

types. (A) BLCA; (B) BRCA; (C) COAD; (D) ESCA; (E) HNSC; (F) KICH; (G) KIRC; (H) KIRP; (I) LIHC; (J) LUAD; (K) LUSC; (L) PRAD; (M) STAD; (N) THCA.

induced by specific molecular species such as H2O2 or lipid
radicals rather than the overall oxidative stress level. To the
best our knowledge, our work is the first computational tool for
estimating the oxidative stress level. The basic premise of our tool
is that the genomic mutation level is strongly associated with the
overall intracellular oxidative stress level. The second premise is

that many enzymes have anti-oxidation capacity as reported by
numerous authors (Sies, 1997; Rajput et al., 2013).

One surprising result in our regression analyses is that
genes in two EC classes, EC 2.- (transferases) and EC 3.-
(hydrolases), specifically four subclasses of these two, can be used
to well interpret the mutation rate in each cancer sample by
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a linear combination of their expressions with high statistical
significance. This strongly suggests that all the enzymes encoded
by these genes play roles in cellular anti-oxidation, which is
clearly a novel discovery and warrants further investigation.
Furthermore, different cancer types tend to use a distinct
combination of genes from four subclasses of enzymes strongly
suggest that these cancer types may encounter different types
of oxidative stress, hence using different combinations of anti-
oxidation enzymes. This also warrants further study regarding
why genes in different enzyme classes show strong correlations
with mutation rates in different cancer types, therefore to
understand the detailed mechanisms of their anti-oxidative
functions possibly for different types of oxidants.

As mentioned in the Introduction, oxidative stress may arise
from different molecular species such reactive oxygen species,
reactive nitrogen species, reactive lipid species and various
free radicals. Different molecular species might be utilized to
consume specific types of oxidizing molecules. By showing
that three independent classes of molecules all have statistically
significant correlation coefficients with our general-purpose
predictor for oxidative stress, we clearly have strong support for
the validity of our predictor.

The availability of this new tool make open new doors
for studying impact of oxidative stress on various chronic
inflamed diseases, including cancer, including (i) elucidation of
all metabolic processes, particularly reprogrammed metabolisms
observed in cancer and other diseases, that are statistically
associated with the level of oxidative stress, hence providing a
new capability for detection of the possible causes of various
altered metabolisms, and (ii) systematic analyses of different
classes of enzymes in terms of their anti-oxidative roles, which
could provide potentially powerful and new targets for treating
various chronic diseases, including cancer.

We anticipate that our predictor will prove a powerful
tool useful for elucidation of causes of variety of systematic
changes, including metabolic reprogramming to gain in-
depth understanding of why specific metabolic pathways are
reprogrammed and certain cellular functions tend to be repressed
or hyper-activated in cancer.

DATA AND METHODS

Gene-Expression Data and Genomic
Mutation Data
Gene expression and genomic mutation data of 14 cancer types:
BLCA, BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, LUSC, PRAD, STAD, and THCA were downloaded from
the TCGA data portal1. The detailed information of these data is
summarized in Table 8.

Genomic mutation data were derived from the whole-
exome sequencing data. Specifically, somatic changes are
identified through comparing allele frequencies in the aligned
DNA sequences of each cancer and the matching normal
samples, using the GDC DNA-Seq analysis pipeline (GDC
DNA-Seq analysis pipeline: https://docs.gdc.cancer.gov/

1TCGA data portal: https://portal.gdc.cancer.gov/

TABLE 8 | Information for 14 cancer types.

Cancer name Number of cancer samples Number of control samples

BLCA 408 20

BRCA 1,092 114

COAD 456 42

ESCA 164 12

HNSC 501 45

KICH 66 25

KIRC 530 73

KIRP 289 33

LICH 371 51

LUAD 515 60

LUSC 501 50

PRAD 495 53

STAD 380 33

THCA 502 59

Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_
Pipeline). MuTect2 (GDC MuTect2: https://docs.gdc.cancer.
gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_
Pipeline/#somatic-variant-calling-workflow) is used to call each
mutation using the default parameters.

Human enzyme information, including gene names and
the relevant enzyme classes, is downloaded from BRENDA
(BRENDA links: https://www.brenda-enzymes.org/).

Synthesis of Fatty Acids
We have used the four fatty-acid synthesis genes: FASN
(Fatty Acid Synthase), ACAT1 (Acetyl-CoA Acetyltransferase 1),
ACAT2 (Acetyl-CoA Acetyltransferase 2), and MCAT (Malonyl-
CoA-Acyl Carrier Protein Transacylase) to reflect the level of
fatty acid synthesis, and have calculated the Pearson correlation
coefficient between the expressions of one of them and
our predictor.

Mucin Genes
Human has 20 mucin genes, namely MUC1, MUC2, MUC8,
MUC12, MUC13, MUC15, MUC16, MUC17, MUC19, MUC20,
MUC21, MUC22, MUC3A, MUC3B, MUC4, MUC5AC, MUC5B,
MUC6, MUC7, and MUCL1. To assess their overall correlation
with our predictor, we have conducted the Pearson correlation
coefficient between the expression of each mucin gene and our
oxidative stress predictor.

Glutathione Synthesis
We have used the three biosynthesis genes: GCLC (glutamate-
cysteine ligase catalytic subunit), GCLM (glutamate-cysteine
ligase modifier subunit) and GSS (glutathione synthase) to reflect
the level of glutathione synthesis. As above, we have calculated
the Pearson correlation coefficient between the expressions of the
glutathione synthesis genes and our oxidative stress predictor.
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Differential Expression Analyses
We have used edgeR in the R package (edgeR package: https://
www.r-project.org/) to determine if a gene is differentially
expressed in cancer vs. control samples of the same cancer
type. T-test is applied to estimate the statistical significance of
each gene considered as differentially expressed, using 0.05 as
the cut-off.

Linear Regression Analysis
We have conducted a linear regression analysis of the observed
mutation rates, Yn, in n samples of a specified cancer type against
the expressions of m selected genes across n samples,Xn,m, so that
residual ||ε|| is as small as possible as defined below:

Y = XB+ ε

whereBm is a coefficient vector with itsm values to be determined
through solving this optimization problem. To avoid using too
many genes in the regression analysis, we have included a penalty
for penalizing using more variables than necessary.

Y = XB+ ε + λm

where λ is an (adjustable) constant. This problem can be solved
using a least squared regression analyses in the following form:

argmin
BǫRm(Y − XB− λm)2

For each Y , we have retrieved the number of point mutations
per cancer genome. Then for the n cancer genomes of each of
the 14 cancer types, we have n numbers, namely the mutation
number divided by the number of genes (20,000), which gives rise
to the Y . For the ith row of X, we have retrieved the expression
data of m selected genes in the ith sample of the same cancer
type. For each regression analysis, we have used the R package
to solve the minimization problem. The regression result has a p-
value associated with each of the m values of B. We then remove
those genes with insignificant p-values, i.e.,> 0.05, for the second
round of regression analyses mentioned in the Results section.

Correlation Analyses
We have used Pearson correlation coefficient to calculate the
linear correlation between two lists of numbers, with one being
the combined gene-expression data and the other being mutation
rates of the same samples.

Pathway Enrichment Analysis
We have conducted a pathway enrichment analysis over a
given set of genes found to be strongly correlated with
our predictor for oxidative stress using DAVID tool (David

links: https://david.ncifcrf.gov/) against the combined database
of GO/Biological Process, KEGG and Reactome pathways. A
pathway is considered enriched if tits adjusted p < 0.05.

Assessment of the Level of Contribution by
Each Enzyme Subclass in Regression
Model
For each derived regression model against selected enzymes, the
following is used to estimate the level of contribution by each
subclass of enzymes. The package used for linear repression
construction provides a p-value for each selected gene, indicating
the level of the gene’s contribution to the regression result with
smaller p-value representing higher level of contribution. We
then use the product of the p-values of the selected genes from
the same enzyme subclass as the p-value of the subclass.
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