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Cancer metastasis, a typical malignant biological behavior involving the distant migration of
tumor cells from the primary site to other organs, contributedmajorly to cancer-related deaths
of patients. Although constant efforts have been paid by researchers to elucidate the
mechanisms of cancer metastasis, we are still far away from the definite answer. Recently,
emerging evidence demonstrated that cancer metastasis is a continuous coevolutionary
process mediated by the interactions between tumor cells and the host organ
microenvironment, and epigenetic reprogramming of metastatic cancer cells may confer
them with stronger metastatic capacities. The lymph node served as the first metastatic niche
for many types of cancer, and the appearance of lymph node metastasis predicted poor
prognosis. Importantly, multiple immune cells and stromal cells station and linger in the lymph
nodes, which constitutes the complexity of the lymph node microenvironment. The active
cross talk between cancer cells and immune cells could happen unceasingly within the
metastatic environment of lymph nodes. Of note, diverse immune cells have been found to
participate in the formation of malignant properties of tumor, including stemness and immune
escape. Based on these available evidence and data, we hypothesize that the metastatic
microenvironment of lymph nodes could drive cancer cells to metastasize to further organs
through epigenetic mechanisms.

Keywords: lymph node, tumor evolution, epigenetic reprogramming, immune escape, PD-L1, stemness,
tumor metastasis
INTRODUCTION

Lymph node metastasis served as the most common metastatic manner for many tumor types, such as
bladder cancer, breast cancer, melanoma, and colorectal cancer (1–4). In many cases, the lymphatic
system was the first receiving station for the metastatic tumor cells, and the presence of lymph node
metastasis has been recognized as an effective predictor for the further metastasis to other organs and the
poor prognosis of cancer patients (5, 6). With regard to the mechanisms of lymph node metastasis,
multiple studies have been conducted to demonstrate that the properties of lymph node metastasis for
some cancers were related to the upregulation of lymphangiogenic growth factors, higher lymphatic
invasiveness, and increased density of lymphatic vessels (7, 8). In addition, due to the massive
enrichment of diverse immune cells within the lymph nodes, the active or suppressive immune status
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of the lymph node microenvironment is also found to mediate the
elimination or protection of cancer cells within the metastatic niche
of lymph nodes (9–11). However, a definite theory to elucidate the
mechanism of lymph node metastasis remains unclear.

In recent years, the rapid innovation and progress of tumor
lineage tracking technology and cancer sequencing techniques
enabled us to reconstruct and detect the phylogenetic and
evolutionary process of the distinct clonal populations of
cancer cells. Multiple studies have demonstrated that
metastases are derived from distinct clonal groups from the
primary tumor, including “monoclonal seeding” and “polyclonal
seeding.” Tumor heterogeneity is originated from continuous
mutations produced mainly during cell division, and the
subsequent formation of multiple subpopulations provided the
raw material for the secondary environmental selection. A
comparative analysis performed on the whole-exome sequence
expressed between paired primary tumor and metastasis samples
showed that the clonal selection on a major subpopulation from
the primary tumor is more limited to a single major clone and
harbored fewer metastasis-driven specific mutations than
expected across several cancer types (12). However, this clone-
selective pressure could be amplified by treatment, which
resulted in evolved drug resistance instead of metastasis
capacities (13). Nevertheless, these observations are based on
retrospective analysis on the static gene expression profile, which
largely limited the resolution and accuracy. To overcome this
problem, Simeonov et al. developed a novel single-cell pedigree
localization and tracking approach based on CRISPR-Cas9
technology to reveal the evolutionary history of single-cell
transcriptional states during the process of metastasis in
pancreatic cancer (14). Surprisingly, they found that over half
of the clones of the primary cancer cells were confined to the
primary sites and never metastasize to other sites, while the
dominant clones survived in the metastatic sites with an
enhanced expression of epithelial-to-mesenchymal transition
(EMT) state. In consistency with previous studies, this research
emphasized the domination of advantageous clonal selection in
the metastasis. More importantly, it pointed out the distinct
genetic expression phenotype associated with the highly
metastatic cancer cells, which brought us with several new
questions: (1) Do the genetic mutations related with the
metastatic capacities all derive from the evolutional selection
pressure during metastasis? (2) Could the microenvironment of
the metastasis sites exert regulatory functions on the
disseminated cancer cells to endow them with enhanced
malignant biological characteristics? (3) What factors
determine the tropism of further metastasis of tumor, and is
the dissemination to different organs totally randomized
or programmed?

Following these questions, we found quite a few related studies
revealing somewhat different answers. In contrast with the
mainstream cognition that primary lesion is the dominant origin
for further dissemination of metastatic cells to other organs, a range
of studies indicated that most seeding of metastatic cells originated
from metastatic sites rather than the primary tumor (15, 16), which
suggested that the clonal selection from primary tumor may be
Frontiers in Oncology | www.frontiersin.org 2
insufficient to explain the mechanism of cancer metastasis and the
cross-seeding between metastases and secondary metastasis from
distinct organs may have underestimated functions on the
regulation of metastatic cancer cells.

Recently, Zhang et al. utilized the approach of parabiosis and an
evolving barcode system to trace the evolution history of metastasis
in mouse models of prostate and breast cancer, which are all highly
bone-metastatic cancers. Interestingly, they also detected that
majority of the metastases in further organs were from the first
metastatic bone lesions rather than the primary tumor (17). Of note,
this study demonstrated that the bone microenvironment not only
simply served as an early transport station for metastatic cells but
also exerted crucial epigenetic modulatory functions on the
stemness of the cancer cells, which finally enhanced the
metastatic capacities of cancer cells and promoted the further
dissemination to further organs.

In summary, the process of metastasis is not only simply a
unidirectional evolution route under the selective pressure of
different metastatic environments, but rather an active two-way
interactive process, which finally contributed to the evolution and
further dissemination of highly metastatic cancer cell populations.
Notably, the microenvironment of the metastatic sites could initiate a
process of epigenetic reprogramming on the cancer cells, which
explained the enhanced metastatic capacities and increased
mortality after the event of first metastasis. As has been mentioned
before, the lymph node is the first metastatic organ with the greatest
possibility for many cancers, such as bladder cancer and gastric
cancer. Correspondingly, the higher possibility of further
dissemination and a poorer prognosis are found to be significantly
associated with lymph node metastasis. However, there still lacks an
exact explanation for this troublesome clinical problem.
THE HYPOTHESIS/THEORY

We proposed that in those cancers tending to first metastasize to the
lymph nodes, the microenvironment of lymph nodes would
facilitate the cancer cells to undergo secondary metastasis to
multiple further organs through epigenetic regulation or other
mechanisms, which most likely mediated the enhancement of the
immune-escape ability of tumor cells. In particular, the cross talk
between cancer cells and the lymph node metastasis served as a
crucial and indispensable part of the tumor evolution during the
process of metastasis.
JUSTIFICATION OF THE HYPOTHESIS

Cancers With Lymph Node Involvement
Are More Progressive and Malignant
Multiple studies verified that lymph node metastasis was an
independent predictor for the oncological progression and patient
survival in many cancers (1, 18–20). Of note, the probability of
metastasis into other further organs significantly increased along with
the appearance of lymph node metastasis. One of the reasons may be
the route of lymphatic vessels facilitates the migration of cancer cells,
February 2022 | Volume 12 | Article 816506
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which accelerated the speed of tumor dissemination. However, there
still existed several problems remaining to be resolved. For one thing,
under the circumstance of cancer with distant metastases, we are still
unclear about the major origin of the metastatic cells in the distant
organs. According to traditional understanding, the hematogenous
metastasis from the primary tumor should be the “root of all evils” for
the distant metastasis. However, recent studies demonstrated the high
heterogeneity of the tumor population during the process of
metastasis, which indicated the complexity of distribution of tumor
cells and their cloning clustering (14–17). Also, emerging evidence
proved that the major origin of further metastatic tumor cells on
distant organs may not necessarily be the primary tumor, but rather
the first metastatic lesions, such as bones (17). More importantly, the
microenvironment of the bones enhanced the stemness of tumor cells
through epigenetic modulation, which finally contributed to the
further metastasis (17). To some extent, the lymph node shares
many similar characteristics with bone for tumor metastasis, such
serving the most frequent first metastatic niche for multiple cancers
and increased probabilities of further metastasis. Taking these factors
into consideration, we may naturally come to the hypothesis that the
lymph node could also exert crucial functions on the metastatic
tumor cells to enhance their metastatic abilities for further
dissemination. To elucidate this issue, we may firstly trace the
evolutionary process and cloning distribution in the context of
lymph node metastasis. Once we find that most clones of tumor
cells in the further distant organs are derived from the lymph node
metastases rather than the primary tumor, it may be more solid
evidence for our hypothesis.
CLASSICAL IMMUNE PHENOTYPE
ALTERATIONS OF METASTATIC CELLS
IN THE MICROENVIRONMENT OF
LYMPH NODES

As the most widely distributed immune organ in our body, lymph
nodes have unique environmental characteristics. Traditionally,
lymph nodes were viewed as killers against invaded cancer cells.
Resident or recruited cytotoxic immune cells, such as natural killer
cells, CD8+ T cells, and M1-type macrophages, would help
eliminate tumor cells through different mechanisms (21–23).
However, the fact of high incidence of lymph node metastasis
indicated that metastatic tumor cells as well as the
microenvironment of the lymph node must encounter significant
alterations to help the tumor cells escape the immune attack from
immune cells. Recent studies have demonstrated that in the tumor-
involved lymph nodes, a range of immune-suppressive cells and
biological factors would be recruited or activated, which facilitated
the survival and growth of metastatic tumor cells. The mechanisms
include the decrease of CD8+ T cells, myeloid-derived suppressor
cell (MDSC) expansion, and upregulation of regulatory T cells (24–
27). However, the exact alterations of metastatic tumor cells from
primary tumor cells remained unclear. Some studies presented
changes in expressive levels of immune-checkpoint proteins such
as PD-1 and PD-L1 of the lymph node microenvironment and
explored its correlations with prognosis (28–30), but these studies
Frontiers in Oncology | www.frontiersin.org 3
are unable to show the changes in tumor cells themselves. To
explore the alterations in genetics as well as the biological
phenotypes between the primary tumor and the lymphatic
metastases, we performed a bioinformatic analysis to compare the
differential genes and the enrichment of possible pathways from the
Gene Expression Omnibus (GEO) database. The differentiated
expressed genes between primary tumor and lymph node
metastases were extracted from GSE121738 for bladder cancer
and GSE180186 for breast cancer (Figure 1). Surprisingly, we
found that the predicted enriched pathways were focused on the
negative regulation of immune responses, which revealed that the
metastatic cells in the lymph node possessed upregulated immune-
escape characteristics (31). From this result, we may naturally
speculate that those metastatic cells colonized on the lymph nodes
could strive to survive and resist the immune attack from lymph
nodes through acquisition of higher immune-escape capacities.
More importantly, in this way, these metastatic cells would
possess stronger progressive phenotypes, which facilitates them to
metastasize into further organs. The possible immune-escape
mechanisms may include upregulation of immune-checkpoint
proteins, such as PD-L1 and CD47, expression and release of
immune-suppressive cytokines or chemokines, such as TGF-b1,
IL-10 and so on, and abnormal regulation of non-coding RNA
components. Nevertheless, we need to elucidate the origin of the
acquisition and whether strengthening of these immune-escape
abilities is from the natural cloning selection during metastasis or
from the phenotypic regulation of the lymph node environment on
cells or both.
COMPLEXITY AND HETEROGENEITY OF
THE LYMPH NODE MICROENVIRONMENT

In our hypothesis, the complexity of the lymph node
microenvironment and the heterogeneity of its composed cell
populations are the potential inducers or regulators for cancer
second-time evolution with enhanced metastatic capacities.
Therefore, it is essential to carefully review the structural and
compositional properties of lymph nodes, especially in the context
of cancer involvement.

Three main structural elements, including the cortex, paracortex,
and medulla, help constitute the anatomical framework of the
lymph node, and different types of immune cell populations own
their main regional distribution. The cortex, consisting of the
follicle, the interfollicular zone, and the subcapsular sinus, is the
main resident area for B cell and dendritic cells, which regulated
the process of antigen presentation and antibody production, while
the paracortex is mainly distributed with T cells and the medulla is
covered with macrophages (32, 33).

Generally, immune cells are the “flesh” of the lymph node and
the stromal cells are the “skeleton.” Functionally, lymph node
stromal cells not only help form the architecture of the lymph
node but also play important roles in regulating the normal function
of those immune cells mainly by releasing cytokines such as CCL19,
CCL21, and IL17 (33, 34). Similar with previously mentioned
immune cells, lymph node stromal cells also possess strong
February 2022 | Volume 12 | Article 816506
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heterogeneity and regional distribution difference. Based on the
surface biomarker expression and regional location, the lymph node
stromal cells could be mainly divided into four subtypes, including
lymphatic endothelial cells, blood endothelial cells, fibroblastic
reticular cells, and CD31gp38-double negative cells (35).

Besides the cellular component of the lymph node
microenvironment, the extracellular matrix is an indispensable
constitute for the lymph node. Structural stability and biological
sustainability are ensured by the complex network of the lymph
node extracellular matrix (36).

To conclude, the lymph node microenvironment is a very
complex network involving various cell types and components.
However, it is the great cellular heterogeneity and the structural
complexity that provide the metastatic cancer cells with more
possibilities of multidirectional genetic selective pressure and
more opportunities of cell–cell interactions. In the next section,
we will discuss several potential mechanisms of regulatory roles for
reprogramming metastatic cancers cells in the lymph node
microenvironment, especially based on the possible origin from
the distinct component of the lymph node.
POTENTIAL MECHANISMS OF
REGULATORY ROLES FOR
REPROGRAMMING METASTATIC
CANCER CELLS IN THE LYMPH NODE
MICROENVIRONMENT

Herein, we listed several potential possible regulatory
mechanisms which may explain the enhancement of metastatic
capacities of cancer cells granted by the microenvironment.
Frontiers in Oncology | www.frontiersin.org 4
Potential Regulatory Roles Played by
Lymph Node Stromal Cells
As has been discussed in the previous section, lymph node stromal
cells not only served as major structural participators in the
microenvironment of lymph node but also exerted important
immune-regulatory functions on the immune cells. A previous
study revealed that the lymphatic endothelial cells are the major
source to produce sphingosine-1-phosphate (S1P) to mediate the
emigration of lymphocytes from the lymph node (37, 38). However,
as a pleiotropic bioactive molecule, S1P is involved in multiple
pathological processes, including carcinogenesis. Genetic expression
could be regulated by S1P through histone deacetylase binding,
which may lead to abnormal expression of a series of genes such as
p21 (39). Whether this epigenetic modulation could be utilized by
lymphatic endothelial cells to regulate cancer cell phenotype
alteration warrants further investigations. Also, proliferation
capabilities of a range of tumor cells have been reported to be
upregulated via the S1P–S1PR pathway (40–42). In addition,
invasiveness, which is another key factor for metastasis, has also
been found to be enhanced by S1P activation in glioma, which drove
the malignant behavior (43). What determines our attention is that
S1P-exerted functions are limited not only on the cancer cells but
also on the whole immune environment, including M2
differentiation (44, 45) and Treg accumulation (46), and these
immunosuppressive cells may also play regulatory roles for cancer
cells, which indicated that lymphatic endothelial cells may also
reprogram cancer cells through indirect mechanisms.

Under inflammatory conditions, nitrite oxide (NO) was found
to be produced by lymphatic endothelial cells and fibroblastic
reticular cells as an immune-suppressive pattern to inhibit the
overactivation of T cells in the lymph node (47, 48). However,
this pathway could also be hijacked by metastatic cancer cells for
A B

DC

FIGURE 1 | (A, B) Comparative analysis from the microarray data extracted from the GEO database illustrating the significantly upregulated and downregulated
genes between lymph node metastases and primary tumor. (C, D) Gene-enrichment analysis showing the predicted enriched pathways mediated by the significantly
upregulated genes in the lymph node metastases compared with the primary tumor using Metascape (http://metascape.org/).
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self-evolution. As a powerful deamination agent, NO was found
to cause DNA damage through C–T transformation, which
brought great genotoxicity and negatively influenced the DNA
repair ability (49). This way, naturally we may hypothesize that
the metastatic cancer cells arriving in the lymph node would face
greater possibilities of potential gene mutations, which would
provide a large-scale gene screening pool under the selective
pressure of the lymph node microenvironment and more
possibly evolve into a more malignant phenotype. Notably,
different concentration levels of NO may reprogram the cancer
cells through different oncogenic mechanisms (50). Epigenetic
modulations could also be imposed on the cancer cells by the
stromal cell-secreted NO. The DNA methylation event and
histone acetylation event are the two major epigenetic
regulatory mechanisms for cancer cells (51, 52). What is
interesting is that NO was proved to be able to increase acetyl
events through enhanced production of acetyl CoA induced by
deprivation of aconitase 2 (53). Also, the methylation level of
DNA CpG islands could be upregulated under the condition with
high levels of NO through a direct inhibition of demethylase (54).
In all, epigenetic alterations on the cancer cells could be regulated
by the lymph node stromal cells. Recent studies have indicated
that many crucial oncogenic pathways are mediated by these
epigenetic mechanisms such as immune escape ability (55, 56)
and stemness (57, 58). However, whether similar epigenetic
reprogramming processes would happen in the lymph node
microenvironment to drive the enhancement of cancer cell
malignancy via NO produced by lymph node stromal cells
remains to be elucidated.

When we mentioned the term “lymph node stromal cells” under
the context of cancer metastasis, it is natural for us to associate
another well-known term, cancer-associated fibroblasts (CAFs),
which represents a unique stromal cell subpopulation, originated
from preexisting normal stromal cells, which coevolved with the
cancer cells in the tumor microenvironment with a common pro-
tumor capability (59, 60). Similarly, the lymph node stromal cells
seemed to also share these characteristics when they encountered
the arrival of metastatic cancer cells. Nevertheless, existing
investigations still cannot prove that the stromal cells in the
metastatic lymph node micro-environment experienced similar
reprogramming. But we may easily infer that a great possibility
does exist that the lymph node stromal cells may coevolve with the
cancer cells and finally acquire a phenotype similar with CAFs to in
turn exert crucial regulatory functions on the cancer cells to facilitate
their further invasion and metastasis. However, this issue required
further investigations to verify.

Potential Regulatory Roles Played by
Lymph Node Immune Cells
As has been discussed before, in addition to the lymph node
stromal cells, immune cells are the other important cell population
in the lymph node microenvironment. The immune cells mainly
include two subpopulations: myeloid cells and lymphoid cells. The
myeloid cells are composed of dendritic cells and macrophages
while the lymphoid cells include B cells and T cells (22, 61).
During the process of lymph node metastasis, innate and adaptive
Frontiers in Oncology | www.frontiersin.org 5
immune responses would be activated for tumor elimination while
immune escape could also be induced to facilitate cancer
progression. Combining the results of the gene-pathway
enrichment analysis above and the common phenomenon of
cancer immune escape in the lymph node, we assume that the
immune cells in the lymph node may participate in the regulation
of the malignancy enhancement of metastatic cancer cells.

PD-L1 is a classical immune-checkpoint protein mainly
expressed on the cell membrane of tumor cells. By interacting
with PD-1, which is expressed on T cells, PD-L1 induced the
apoptosis and dysfunction of T cells and suppressed the anticancer
immunity (62, 63). In consistency with our previous findings,
many studies have demonstrated that lymph node metastasis in
multiple cancers possessed overexpression of PD-L1. In addition,
the high expression level of PD-L1 in lymph nodes strongly
correlated with the poor prognosis of cancer patients (28, 64,
65). The mechanisms controlling PD-L1 expression covered
different levels including genomic alterations, transcription,
post-transcription, translation, and post-translation. Cha et al.
made a brilliant review summarizing the intricate regulatory
networks of PD-L1 expression (66). Aberrant inflammatory
pathways have been clarified to contribute to loss of
immunosurveillance in the tumor microenvironment, including
transcriptionally upregulating the PD-L1 expression. MYC is a
well-studied oncogenic transcription factor, which has been found
to be able to bind the PD-L1 promoter and subsequently promote
PD-L1 mRNA expression (67), while in the microenvironment of
lymph node metastases, emerging evidence indicates that MYC
expression showed an abnormal upregulation in the metastatic
lymph nodes (68–70). Therefore, it is possible that the lymph node
microenvironment harnessed specific mechanisms to promote
PD-L1 expression of cancer cells through MYC modulation.

As an important part of the immune system, the lymph nodes
basically assumed twomajor rules: one is to eliminate the dangerous
foreign “non-self”, and the other is to recognize the “self” and avoid
the unnecessary harm to the host. In the context of cancer,
interferon-g (IFN-g) plays a central role against cancer
development with its cytotoxic, pro-apoptotic, and immune-
boosting functions. However, in the face of immune attack, tumor
cells are able to hijack the IFN-g pathway to enhance the PD-L1
expression (66, 71, 72), which finally help tumor cells survive the
immune killing and survive. Considering the large enrichment of
killer immune cells in the lymph node metastasis, metastatic cancer
cells would encounter fierce attack in the metastatic niche, which
offered great opportunity for them to evolve in this harsh living
environment, in part through the upregulation of PD-L1membrane
expression. Moreover, other inflammatory cytokines also
participated in the induction of mRNA expression of PD-L1,
including TGF-b, TNF-a, and IL-6 (66, 73–75), and these
cytokines are also important participators in the lymph node
metastases, which may also serve as alternative pathways for the
upregulation of PD-L1 in cancer cells and train them to become
more powerful metastatic cancer cells for further dissemination in
other organs. Seeing that the major origin of these inflammatory
mediators is the immune effector cells, we assumed that the PD-L1
upregulation under the pressure of immune attack from immune
February 2022 | Volume 12 | Article 816506
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cells of the lymph nodemay be a crucial step for the enhancement of
immune-escape ability of metastatic cancer cells. However, this
hypothesis has not been reproduced or confirmed in previous
studies and we still need further experiments to verify this
possibility. Also, the upregulation of PD-L1 as well as other
immune-checkpoint proteins may not only be dependent on the
direct defense mechanism for the cytotoxic immune cells but also
derive from an indirect regulatory direction from other immune-
suppressive cells in the microenvironment of lymph nodes. Multiple
studies suggested that the presence of a high infiltration of Treg cells
in the lymph node is significantly associated with cancer lymph
node metastasis (76–78). As a powerful subpopulation of immune-
suppressive cells, Treg cells would produce immune-suppressive
cytokines, such as IL-10 and TGF-b, for controlling the balance of
immune function (79, 80). However, these immune-suppressive
mediators could also be utilized by metastatic cancer cells for their
self-reinforcement. TGF-b and IL-10 could all serve as upstream
activation factors for PD-L1 expression (66, 75). Similar functions
may also be observed in other immune-suppressive cells, such as
M2 macrophages and MDSCs, via future investigations. In a word,
during the process of reprogramming for metastatic cancer cells, the
driving forces may come from two directions: the direct pro-tumor
regulations from immune-suppressive cells and the resisting self-
defense mechanisms against the immune-killing cytotoxic cells.
This regulatory process could be simultaneous or sequential, but
we assume that the difference of strong and weak is dependent on
the degree of metastasis.

In addition to the upregulation of membrane immune-
checkpoint proteins, the metastatic capacities of cancer cells may
also depend on the epigenetic reprogramming of other key genetic
targets. TGF-b was identified as a powerful oncogenic cytokine
mainly produced and released by tumor cells in the tumor
microenvironment (81, 82). For one thing, TGF-b is able to
promote Treg cell differentiation and recruitment, suppression
of CD8+ T cell function, and MDSC expansion, which focused on
the formation of the immune-suppressive microenvironment (83–
85). For another, TGF-b could directly promote tumorigenesis
through induction of epithelial to mesenchymal transition (EMT)
and angiogenesis (86, 87), which both led to easier and faster
tumor metastasis. Notably, a higher expression of TGF-b1 in the
lymph node is significantly associated with the more malignant
phenotype and poor survival across a range of cancer types (88–
90). Then, we may naturally question whether the interactions
between the lymph node microenvironment andmetastatic cancer
cells could enhance the regulatory function of TGF-b1 in
metastatic cancer cells. MicroRNAs (miRNA) are well-studied
small non-coding RNA molecules widely distributed in our body
(91). By recognizing and binding with the target mRNA with the
complementary sequences, miRNA could then repress the
transcription of the specific RNA, which plays major regulatory
roles in various physiologic or pathologic processes, including
oncology (92, 93). For example, the decrease of the miR-200 family
by TGF-b could promote TGF-b expression in return, which
formed a positive feedback loop to further enhance the oncogenic
function of TGF-b (94, 95). Importantly, a range of crucial tumor-
suppressor miRNAs, including the miR-200 family, was also
Frontiers in Oncology | www.frontiersin.org 6
found to show a dramatic downregulation in the triple-negative
breast cancer type with lymph node metastasis (96), which
indicated that the aberrant expression of specific miRNAs was
significantly associated with the enhanced metastatic capacities of
cancer cells. Nevertheless, whether the miRNA networks regulate
the enhancement of metastatic capabilities of cancer through
modulating the TGF-b pathway remained elusive.

Potential Regulatory Roles Played by
Other Eenvironmental Factors of the
Lymph Node Microenvironment
As has been discussed above, non-coding RNAs (ncRNAs),
including miRNA, circular RNAs (circRNA), long non-coding
RNAs (lincRNA), and tRNA-derived small RNAs (tsRNA), are
pivotal biological molecules exerting powerful epigenetic functions
majorly controlling the post-transcription of a range of crucial
genes during the process of carcinogenesis (97–99). Multiple
studies have demonstrated that tumor cells could influence the
lymph node microenvironment through secretion of individual or
exosome-capsuled ncRNAs, which further facilitate their
dissemination and progression (100–102). However, in the
tumor-involved lymph node microenvironment, the ncRNA
expression profile of the lymph node stromal cells and immune
cells is still unclear to us. Up until now, a series of circular miRNAs,
such as miR-20a, miR-203 (103), and miR-10b (104), have been
identified as potential biomarkers for lymph node metastasis
prediction. However, their exact origin and biological functions
are still unknown. Chen et al. performed a comprehensive
bioinformatic analysis based on a comparative miRNA array
between lymph node metastases and paired primary tumor and
found that miR-10a was significantly upregulated in the lymph
nodes with a further verification by detection of relative cell lines
(105). Then, we may question whether ncRNA secretion from the
immune cells or stromal cells into the metastatic cancer cells could
also epigenetically regulate their phenotype alterations and further
result in their stronger progressive malignancy. Further studies are
required via a finer cell clustering before gene sequencing for the
lymph node metastasis, which may indicate the alterations of the
ncRNA expressive profile under the condition of tumor
involvement and further verify the reaction from the lymph node
microenvironment to the cancer cells.

Hypoxia represented a specific environmental status with a low
oxygen pressure of less than 5–10 mmHg (106). In the context of
cancer lymph node metastasis, hypoxia has been found to be a
factor that cannot be neglected for driving progression and
metastasis (107, 108). The reason for the formation of hypoxia
mainly originated from the oxygen overconsumption and enhanced
metabolism under the pressure of tumor overgrowth. Importantly,
hypoxia along with its induced alterations of a series of key
oncogenes is an indispensable contributory factor for
lymphangiogenesis (109, 110). HIF-1a, which is the major
functional effector in response to hypoxia, could regulate the
remodeling of lymph node endothelial cells (111, 112).
Nevertheless, HIF-1a could also exert key regulatory functions on
the cancer cells. Multiple studies suggested that HIF-1a served as a
key transcriptionally regulatory element for PD-L1 upregulation in
February 2022 | Volume 12 | Article 816506
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a range of cancers (66, 113–115). Therefore, great possibilities exist
that metastatic cancer cells that colonized on the involved lymph
nodes may acquire enhanced immune-escape capacities in response
to the hypoxia status in the lymph node through the HIF-1a
pathway. Of note, hypoxia and HIF-1a pathway-induced
phenotype alterations not only are limited in PD-L1 expression
but alsomay influence other important characteristics and functions
of cancer, such as EMT (116, 117) and glycolysis metabolism
induction (118, 119).

In conclusion, due to the complexity of the components in
the lymph node and the rich changes in face of the tumor
involvement, various subpopulations of the cells and other
environmental elements of the lymph node microenvironment
own the potential to modulate or reprogram the metastatic
cancer cells. The enhanced metastatic capability conferred by
the lymph node microenvironment may not only depend on the
induction of immune escape but also may derive from the other
key oncogenic pathway activation and strengthening, such as
stronger tumor stemness and migratory and invasive abilities.
However, considering the distinct environmental characteristics
of the lymph node, we may prefer the hypothesis that the
enhanced metastatic capabilities conferred by the lymph node
microenvironment largely relied on the stronger immune-
escape ability. The possible regulatory roles played by different
components of the lymph node microenvironment are
summarized in Table 1.
DISCUSSION

Traditionally, tumor metastasis into further organs is identified as
the terminal step of tumor progression, which served as the major
cause of cancer-related death. Rapid development of gene-editing
and sequencing technology allowed us to trace the metastasis
process more precisely. Growing evidence suggested that tumor
metastasis is not a unidirectional and even process originating
from the parental niche but a cross-seeding interactive process
between multiple metastatic environments. Importantly, further
secondary metastasis within further organs is found to be
more homologous with the first metastatic niche rather than
Frontiers in Oncology | www.frontiersin.org 7
the primary tumor, and the microenvironment of the first
metastatic environment could exert epigenetic reprogramming
function on the cancer cells, which strengthened their metastatic
capabilities and facilitate them to further metastasize. Lymph
node metastasis is commonly viewed as a crucial factor of poor
prognosis in cancer patients and served as the first metastatic
niche for many tumor types. The unique state of immune cell
enrichment and inflammatory status determined that potential
training effects could be performed on the cancer cells, involving
upregulation of immune-escape capacities. Thus, we hypothesize
that in those cancers tending to metastasize to lymph nodes first,
the microenvironment of metastatic lymph nodes could
invigorate the cancer cells with enhanced metastatic abilities,
which contributed to the further metastasis.

As we discussed before, the contributory driving forces for
possible reprogramming regulatory mechanisms on the
malignancy of metastatic cancer cells could be mainly divided
into three branches. The first one is from the lymph node stromal
cells. Under normal physiologic conditions, these stromal cells
are identified as structural supporters as well as regulators or
recruiters of immune cells (33, 120, 121). Nevertheless, their
possible epigenetic modulatory roles on the metastatic cancer
cells should not be ignored. For one thing, NO, as a powerful
genotoxic substance, could be secreted by lymphatic endothelial
cells and fibroblastic reticular cells (47, 48), which may create an
environment for more possibilities of gene mutations and
epigenetic reprogramming in cancer cells. The increased cell
heterogeneity provided primitive accumulation of evolutionary
materials while the epigenetic modifications offered the required
opening and closing of key genes. For another, the S1P–S1PR
pathway could be activated by lymphatic endothelial cells to
promote the enhancement of proliferative and invasive
capabilities of cancer cells, which may explain the reason for
the strengthening of second-metastatic ability (40–42). Notably,
we presented a possibility that the lymph node stromal cells
could experience a phenotype alteration under the invasion of
cancer cells, which may form a positive-feedback loop to lead to
their further negative regulation on the cancer cells.

The second possible regulatory pathway is originated from the
immune cells in the lymph node microenvironment. As is shown
TABLE 1 | Possible regulatory roles played by different components from the lymph node microenvironment for metastatic tumor reprogramming.

Regulators Possible regulatory mechanisms Obtained malignant phenotypes References

Lymphatic endothelial cell S1P–S1PR interaction Enhanced proliferative capabilities; enhanced invasiveness (37, 38,
40–43)

Lymphatic endothelial cell;
fibroblastic reticular cell

NO-induced gene instability and mutations; NO-
mediated epigenetic modulations

Increased probability and directions for evolution; stronger cell
population heterogeneity; increased stemness and immune-escape
ability

(47–49,
51–54)

Cytotoxic T cell IFN-g, TNF-a, IL-6 induced immune-checkpoint
protein expression pathway; PD-L1 upregulation

Increased immune-escape ability (66, 71–75)

Regulatory T cell; MDSC;
M2 macrophage

TGF-b, IL-10-induced immune-suppressive
pathways; induction of EMT

Increased immune-escape ability; enhanced migratory ability (66, 75–78)

Altered expressive profile
of ncRNAs

Epigenetic regulations of key oncogenes Stronger progressive phenotype (100–105)

Hypoxia HIF-1a induced PD-L1 upregulation; EMT
enhancement; glycolytic propensity regulation

Increased immune-escape ability; stronger survivability (111, 112,
116–119)
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in Figure 1, the upregulated genes in lymph node metastatic cells
compared with the primary niche demonstrated significant
enrichment in a range of immune-related pathways, including
the negative regulation of the immune system process, T cell
activation, and immune effector process. Considering the highly
immune-attack pressure in the lymph node, it is reasonable to
hypothesize that the cancer cells may acquire the enhancement of
immune-escape capabilities to adapt to or resist the immune
killing from the lymph node immune cells and further metastasize
into further organs. PD-L1 has been recognized as a significant
biomarker for lymph node metastasis in a range of cancers (28,
64, 65). What is intriguing is that the functional cytokines and
inflammatory mediators produced by those immune-killing cells
may be utilized by cancer cells as upstream factors to in turn
Frontiers in Oncology | www.frontiersin.org 8
upregulate the expression of PD-L1 (66, 71–74). In addition,
the infiltration of immune-suppressive cells, such as Treg cell,
MDSC, and M2 macrophage, could also exert similar functions
(66, 75, 79, 80).

The third possible regulator we hypothesized is the
environmental characteristic of hypoxia in the lymph-node
microenvironment. HIF-1a, in response to the oxygen
concentration in the lymph node microenvironment, could
serve as an important transcriptionally regulatory mediator for
a series of key phenotypes in the cancer cells, such as immune
escape (113–115), EMT (116, 117), and metabolism alteration
(118, 119).

Despite that a few specific alterations along with their regulators
in the lymph node microenvironment have been discussed and
FIGURE 2 | The graphical hypothesis illustrating the regulatory process and potential mechanism throughout the metastasis process.
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hypothesized previously, it is certain that we still cannot include all
the possible regulatory pathways because the co-evolutional process
between the metastatic cancer cells and the lymph node
microenvironment involves constant and complex cell–cell
interactions. Therefore, further investigations are required for
elucidating the exact mechanisms. The hypothesis is shown in
Figure 2, illustrating the whole process and potential mechanisms.
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