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Statistically defined visual chunks engage
object-based attention
Gábor Lengyel 1,2✉, Márton Nagy 1,2,3 & József Fiser 1,2✉

Although objects are the fundamental units of our representation interpreting the environ-

ment around us, it is still not clear how we handle and organize the incoming sensory

information to form object representations. By utilizing previously well-documented advan-

tages of within-object over across-object information processing, here we test whether

learning involuntarily consistent visual statistical properties of stimuli that are free of any

traditional segmentation cues might be sufficient to create object-like behavioral effects.

Using a visual statistical learning paradigm and measuring efficiency of 3-AFC search and

object-based attention, we find that statistically defined and implicitly learned visual chunks

bias observers’ behavior in subsequent search tasks the same way as objects defined by

visual boundaries do. These results suggest that learning consistent statistical contingencies

based on the sensory input contributes to the emergence of object representations.
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Instead of perceiving the environment as continuous parallel
streams of different information flows, our brain organizes the
incoming sensory information into meaningful, distinctive

units, called objects, and events determined by causal relation-
ships between these objects. Thus, forming internal representa-
tions of objects is fundamental to our perception, and
understanding this process is an important step toward devel-
oping abstract concepts in the human brain. Yet, it is still
unknown what object representations are and how they emerge
based on processing and organizing the incoming sensory
information.

There is an intensive debate in the field about the cues that are
necessary and/or sufficient to form the percept of a visual object
dominated by earlier results in object cognition, which demon-
strated that stable boundaries defined by luminance contours are
one of the strongest criteria for visual “objectness”1–3. Indeed, the
traditional definition of object representations starts with seg-
menting the objects from the rest of the input based on boundary
information4–8. However, similarly to segmenting individual
words within a continuous speech during hearing9–11, segment-
ing objects from the background is an unresolved challenge in
vision as most natural experiences contain ambiguous informa-
tion about object boundaries leading to a large number of
potentially correct segmentations12,13. Just as apparent pauses are
bad predictors of word endings in speech14,15, visual edges,
contrast transitions, and changes in surface textures are notor-
iously difficult to identify, and tracking them can lead to false
object boundaries16–18. In real-life situations, relying exclusively
on specific low-level perceptual cues (such as edges) in the sen-
sory input has been proven to be insufficient for finding the true
objects in the environment1,18.

One potential solution to this problem is based on the proposal
that it is not edge boundaries that are required for object defi-
nitions but instead, they manifest just one (albeit important)
example of a more general principle that leads to object repre-
sentations: consistent statistical properties co-occurring in the
input19. Such multi-faceted statistical properties might be more
ubiquitous, more reliable to detect and, instead of being encoded
innately, a large fraction of them can be learned from and tuned
by experience similar to how statistical cues help babies to suc-
cessfully segment speech20,21. While this proposal can explain
why a wide variety of cues (e.g., disparity1,22, symmetry23, or
motion1) were found to be sufficient to elicit the perception of an
object, it has not been systematically evaluated in the past.

To investigate the emergence of object representations and
evaluate the relevance of consistent statistical properties in this
process, we used the following rationale. If consistent statistical
properties acquired by learning are indeed fundamental in
forming object representations, then a set of newly learned
arbitrary statistical contingencies, even if they are not connected
to traditional cues and even if they are learned implicitly, should
manifest the same kind of object-based behavioral-cognitive
effects as true objects do. To test this hypothesis, we started with
an implicit learning paradigm called visual statistical learning
(VSL), which uses a set of artificial shape stimuli to create novel
scenes (Fig. 1a, VSL - Block 1). Crucially, the only relevant sta-
tistical contingencies defining the structure of these scenes are the
co-occurrence statistics of the shapes (i.e., the stable shape-pairs
in fixed spatial relation that form the scenes) with no link to low-
level visual cues24,25. Therefore, the low-level contrast edges,
texture transitions, or Gestalt structures that can be important in
forming classical object boundaries12,17,26 cannot reveal the sta-
tistical structure of the chunks in these scenes. Nevertheless, since
these chunks are defined by stable statistical contingencies,
according to our hypothesis, they qualify as newly learned objects,
and therefore, they should induce object-based perceptual effects.

We measured object-related perceptual effects in our scenes
with statistically defined objects in two paradigms. In the first
experiment, we designed a novel task following previous studies
showing that features within an object are detected better than the
same features across two objects27–31. We tested whether obser-
vers detected a pair of target letters better when they appeared
within a chunk than across two chunks that had been learned
implicitly in a preceding VSL session. In the second experiment,
we used the well-documented object-based attention (OBA)
paradigm32. This paradigm has been used to show that observers
responded faster in a cue-based detection task when the target
appeared within the object that a preceding cue had indicated
compared to when the target appeared on a previously uncued
object32–36. We tested whether the same attentional bias would
also emerge when instead of objects defined by visual boundaries,
the paradigm was applied to newly learned chunks defined by
statistical contingencies of abstract shapes. Note that the object-
based perceptual effects we measured in these two paradigms
were previously attributed exclusively to objects defined by visual
boundaries in an explicit manner. Both experiments provided
clear evidence that recently and implicitly learned statistical
chunks without any visual boundary defined by luminance or
other traditional cues elicited the same object-based effects as
objects with explicit boundaries did.

Results
Experiment 1. In Experiment 1, we tested whether the internal
representation of the statistical structure developed during a
standard VSL paradigm24 could bias the subsequent visual search
task similarly to how objects defined by explicit visual boundary
cues would. In alternating blocks of VSL and search trials,
observers were exposed to a series of scenes composed of abstract
shapes (Fig. 1a–d, in the green background). Unbeknownst to the
observers, the shape compositions in all the scenes followed a
predefined structure based on permanent shape-pairs (Fig. 1a,
VSL - Block 1, Inventory). After each VSL block, observers
completed a letter-search task with scenes composed of shapes
and letters superimposed on shapes (Fig. 1b, Search - Block 1). In
each trial, participants had to judge in a three alternative forced-
choice (3-AFC) task whether they saw (1) two target letters
horizontally arranged next to each other, (2) two target letters
vertically arranged on top of each other, or (3) just one target
letter. If the shape-pairs (chunks) that could only be learned from
the co-occurrence probabilities of the shapes during VSL blocks
behave similarly to objects, then the letter search should be
facilitated in this setup by the chunks the same way as it would be
by contour-based objects. Indeed, we found that observers
detected the targets better when they appeared within a chunk
than across chunks both in Experiment 1a and in its replication,
in Experiment 1b. These results reflected implicit learning pro-
cesses and not intentional cognitive strategies since we excluded
from the analysis participants who gained explicit knowledge of
the chunks during the experiment (one participant from
Experiment 1b, see Methods for details). Moreover, when we ran
a control experiment, Experiment 1c, which was identical to
Experiment 1a and b except that we used objects defined by visual
boundaries not chunks (Fig. 1e–g, in the red background), we
obtained a behavioral pattern in the visual search task, which was
very similar to what we found with statistical chunks.

In the first search block of Experiment 1a, the statistical chunks
significantly modulated the visual search task. Observers
committed more errors when the target letters appeared across
chunks compared to when the targets appeared within a chunk
(t29= 4.37, p < 0.001, d= 0.812, Bayes Factor= 186, Fig. 2a).
After the first block, this effect in the error rate disappeared, none
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of the error rate differences in search blocks 2–4 differed
significantly from zero (ts29 < 1.91, ps > 0.066, ds < 0.354, Bayes
Factors < 1, Fig. 2a). The drop in the chunk-based error rate effect
between the first and the other three search blocks was also
significant (F3,87= 7.417, p < 0.001, Bayes Factor= 539; post-hoc
comparisons of Block 1 vs. Blocks 2–4: ts29 > 3.04, ps < 0.004, ds >
0.565, Bayes Factors > 8, Fig. 2a). Meanwhile, there was no
difference in the measured reaction times between within-chunk
(targets appeared within a chunk) and across chunks (targets
appeared across chunks) trials across the four blocks (ts29 < |1.50|,
ps > 0.145, ds < |0.278|, Bayes Factors < 1, Fig. 2d).

These results indicate that immediately after the first exposure
to the novel structured input (1st VSL block), the implicitly
learned chunks influenced the accuracy of the observers in the
visual search task in the predicted manner: observers detected the
two targets more accurately when the target letters appeared
within the same statistically defined chunk compared to when
they were distributed across two chunks. To confirm that this
effect is indeed linked to the implicit learning of the chunks, we
calculated the correlation between the chunk-based error rate
difference in Block 1 and the amount of statistical learning
measured by the Familiarity test, and found a significant effect (r
= 0.40, CI95= 0.03–0.67, p= 0.031, Bayes Factor= 3, Fig. 2g).
This supports the idea that the effect on the error rates was a
direct consequence of the learned statistical structures during the
VSL block.

The overall performance of the observers did not differ
significantly from chance in the Familiarity test (t29= 1.409,

p= 0.169, d= 0.262, Bayes Factor= 0.5, Fig. 2g, orange error bar
on the x axis) despite the fact that, in total, observers were
exposed to twice as many exposure scenes as in the classic
experiment of Fiser and Aslin24. The most probable explanation
of this is that the scenes in our experiment were divided into four
shorter exposure blocks interleaved with the search blocks, and
thus the interleaved visual search blocks interfered with the
performance in the Familiarity test. Importantly, given the
substantial variability in learning found during the Familiarity
test, this non-significance of the overall magnitude of learning
was irrelevant with respect to the two main results found, namely
the differential search behavior of within vs. across learned
chunks and the significant correlation between the magnitude of
the search difference and statistical learning measured in the
Familiarity test.

To enhance the credibility of our results, we reran Experiment
1a with a different group of observers in Experiment 1b. This
time, observers completed only two-two blocks of VSL and search
trials since in Experiment 1a, the chunks influenced the
performance significantly only in the first search block and it
disappeared in the remaining of the blocks (Fig. 1a). In the
replication Experiment 1b, we obtained exactly the same results
as in Experiment 1a (Fig. 2b, e): the chunks had a strong effect on
error rates in the first search block (t29= 2.68, p= 0.012, d=
0.498, Bayes Factor= 4), which disappeared in the second search
block (t29=−0.86, p= 0.398, d= 0.159, Bayes Factor= 0.3), the
chunk-based effect was also significantly smaller in the second
block than in the first search block (t29= 2.41, p= 0.022, d=
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Fig. 1 The stimuli, the tasks, and the design of Experiment 1. a–d The design of Experiments 1a and 1b using statistical chunks defined by co-associated
abstract shapes. In the Exposure blocks (a VSL - Block 1), true-pairs (Inventory) were used to generate 144 complex scenes for passive viewing. In the
Search blocks (b Search - Block 1), observers performed a letter search task with white letters superimposed on the shapes, where the two target letters
could be within or across pairs (b inset, using black letters for visibility). Exposure and Search blocks were presented in an alternating manner (c Blocks
2–4). After the last Search block, a standard VSL Familiarity test was administered to measure the observer’s bias to true chunks over random
combinations of elements (c Familiarity test). Coloring of the shapes in this figure is only for demonstration purposes, all shapes in the displays were shown
in black with no indication of chunk identity. e–g The design of Experiment 1c using objects defined by visual boundary cues. In the Exposure blocks (e
Exposure - Block 1), rectangles and squares were used that corresponded to the silhouettes of the pairs in Experiments 1a and 1b. In the Search blocks (f
Search - Block 1), observers performed a letter search task with letters appearing in separated rectangles and squares. f (insets) Trials within (top) and
across (bottom) object setups of targets. The block design of Exp 1c followed that of Experiments 1a and b (g Blocks 2–4). The shapes and the letters are
magnified in the figure compared to the actual experimental displays.
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0.448, Bayes Factor= 2), and there was no effect of the chunks on
the reaction times (ts29 < 1.28, ps > 0.212, ds < 0.237, Bayes
Factors < 0.4).

Using Bayesian statistics, we could combine the data from
Experiments 1a and 1b because the first two blocks were identical
in those experiments. We computed the probability of the
hypothesis that observers made fewer errors in within-chunk
trials than in across-chunk trials (following refs. 37,38), and found
very strong evidence supporting the existence of the chunk-based
effect, with Bayes Factor= 2907, indicating that the existence of a
chunk-based effect is 2907 times more probable than assuming

no chunk-based effect. Furthermore, the Bayes Factor analysis
conducted on the correlations (following ref. 39) indicated that
the probability of an existing positive correlation between the
chunk-based effect and the performance in the familiarity test was
24 times more probable than assuming no relationship between
the two. These results provided further strong evidence that the
chunk-based error rate effect was related to the learned statistical
structure.

We conducted two additional tests to further strengthen the
assessment that implicit learning of the chunks is the driving
force behind the error rate effect, and that the significant positive
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Fig. 2 Chunk- and object-based error rate effects in Experiment 1. a–f Chunk/object-based error rate (a–c) and reaction time (d–f) effects across Exps 1a,
1b, and 1c. Mean error rate and median reaction time differences between the across-chunk and within-chunk trials (y axis) in each Search block (x axis) in
the main (a) and in the replication (b), and in the control (c) experiments. Positive values mean fewer errors or faster responses in within-chunk compared
to across-chunk trials and error bars show the 95% confidence intervals of the mean. Colored dots represent the mean error rates or median reaction time
differences of the observers in a given block. g, h The relationship between performance in the Familiarity test (x axis) and error rate differences of the
across-chunk vs. within-chunk trials in the first block (y axis) in the main (g) and in the replication (h) experiments. Green error ellipses show one standard
deviation and green lines represent best-fitting linear regression lines. The error bars show the 95% confidence intervals of the mean performance in the
Familiarity test (orange), and of the average chunk-based error rate effect (blue). n= 30 in Exp. 1a (a, d, g), n= 30 in Exp. 1b (b, e, h), and n= 20 in Exp. 1c
(c, f). Significant differences from zero in a–f are indicated with ns.p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed paired (the difference between
across and within-chunk trials) t-tests. R-values in g and f indicate Pearson correlation coefficients. Source data are provided in the Source Data file (Fig. 2
worksheet tab in Source Data.xlsx).
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correlation between the chunk-based error rate effect and
familiarity is not just due to a generic factor such as attention
or across-subject variability in overall performance. First, we
computed the partial correlation between the performance in the
Familiarity test and the chunk-based error rate effect while
controlling for the average performance in the task (measured by
individual average error rates), and we found significant positive
partial correlations in both experiments (Experiment 1: r= 0.39,
CI95= 0.03–0.67, p= 0.028, Bayes Factor= 3; Experiment 1b:
r= 0.38, CI95= 0.04–0.66, p= 0.015, Bayes Factor= 3). This
result further corroborates the idea that the underlying cause of
the correlation between the performance in the Familiarity test
and the chunk-based error rate effect is the implicitly learned
statistical structure. Second, we wanted to rule out the possibility
that the chunk-based error rate effect emerged solely because
observers paid more general attention to the area of the scene
with a true-pair structure compared to the area lacking such a
structure due to having just two individual shapes (Supplemen-
tary Fig. 4c). To this end, we repeated the analysis on the subset of
trials in the search task, which had two true-pairs and no single
elements (i.e., two chunks, see Supplementary Fig. 4b). In this
case, all positions enjoyed the same advantage from being a part
of a chunk, thus the effect had to originate from the targets being
within the same chunk. We found the effect of the chunks on the
error rate in these trials to have the same size as in the case of the
full set (Experiments 1a and 1b together: t59= 3.77, p < 0.001,
d= 0.487, Bayes Factor= 64) indicating that the reported chunk-
based error rate effect could not be explained by allocating more
attention to true-pairs than to individual shapes. In summary, in
Experiments 1a and 1b we found convincing evidence that (1) the
chunks of the scenes’ underlying statistical structure modulated
subsequent performance in the visual search task, and (2) this
chunk-based error rate effect had a strong positive relationship
with the performance in the familiarity test measuring the degree
of learning.

However, two additional issues had to be clarified for linking
these effects to object representations. First, the effect we found
diminished after the first search block, and second, it is unclear
exactly how objects with explicit boundaries would influence the
same search in the present 3-AFC paradigm. To address both
issues, we ran a control experiment (Experiment 1c), which was
identical to Experiments 1a and 1b in all aspects except that the
underlying scene structure was specified by objects defined by
visual boundaries instead of chunks defined by abstract shape-
pairs (Fig. 1e–g, in the red background). Comparing the results of
Experiments 1a, 1b, and 1c, we found that objects with explicit
visual boundaries elicited a very similar pattern of results to those
obtained with statistical chunks (Fig. 2c, f and see Supplementary
Fig. 2). First, objects with visual boundaries influenced the error
rates significantly in the first search block, and also significantly
more there than in the rest of the search blocks. Specifically,
observers made more errors when the targets appeared across
compared to within objects in two of the four search blocks
(Block 1: t19= 6.50, p < 0.001, d= 1.490, Bayes Factor= 6237;
Block 2: t19= 1.51, p= 0.148, d= 0.346, Bayes Factor= 1; Block
3: t19= 0.957, p= 0.351, d= 0.219, Bayes Factor= 0.3; Block 4:
t19= 4.52, p < 0.001, d= 1.036, Bayes Factor= 130, Fig. 2c), but
this effect was significantly larger in the first block (F3,57= 7.709,
p < 0.001, Bayes Factor= 441; comparing Block 1 to Blocks 2–4
post-hoc: ts19 > 2.71, ps < 0.014, ds > 0.621, Bayes Factors > 4,
Fig. 2c). Second, objects with visual boundaries had no
modulatory effect on the reaction times in any of the blocks
(ts19 < 1.10, ps > 0.286, ds < 0.252, Bayes Factors < 0.4, Fig. 2f).

The most parsimonious interpretation of these results is that
the reduction of the object/chunk-dependent effect after the first
block is due to a floor effect in errors, while the sustained within/

across-object difference in the later block of Experiment 1c is due
to the stronger overall effect obtained by using objects with visual
boundaries compared to chunk-based objects. In particular, when
observers struggle to learn the task, the effect is the largest both
for objects and chunks (1st block), while after having learned the
task (blocks 2–4), they make, on average, fewer errors, hence the
error difference due to the effect of chunks/objects also decreases.
Indeed, we found that in all three experiments, observers made
the most errors in the first block and after the first block their
performance improved significantly (Supplementary material,
Experiment 1, Results, Supplementary Fig. 2). Thus, while an
overall reduction in error difference occurred across the blocks of
all three experiments, due to the stronger modulatory effect of
objects with visual boundaries, the within/across-object difference
could still be detected in Block 4 of Experiment 1c using the
present paradigm, while it became insignificant in Experiments
1a and b.

More importantly, based on the strong effects we found and
the quantitative treatment of the diminishing nature of the effect
over time, this set of experiments coherently demonstrated in a
novel visual search task that statistical chunks learned in a VSL
paradigm elicited very similar behavioral effects to those caused
by objects defined by clear visual boundaries.

Experiment 2. If statistical chunks in a VSL paradigm behave as
objects defined by explicit visual boundaries, they should also
manifest their effect on attention in classical visual cueing para-
digms. To test this conjecture and provide further evidence for
similar higher-order effects based on objects with visual bound-
aries and contingency-based novel statistical chunks, we com-
bined the classic object-based attention (OBA) paradigm with the
VSL paradigm in our second experiment. Object-based attention
(OBA) is a well-documented example of object-related perceptual
effects, which is based on reaction time measurements32–36. OBA
refers to the phenomenon when observers’ attention is drawn to
one part of an object and their attention will automatically
include the whole object, not just the part singled out by the
cue32,34,36. In the classic demonstration of OBA, observers are
asked to identify a target letter among distractor letters in a two
alternatives forced-choice (2-AFC) task after a partially reliable
cue indicates where the target might appear in a scene composed
of multiple objects defined by visual boundaries. Observers are
faster to identify the target if the cue indicates an incorrect
location but the location is within the object tagged by the cue as
opposed to the situation, when the target appears not only in an
uncued location but also in an uncued object even when the
distances of the target from the cue are identical in the two
conditions (Fig. 3b).

In order to investigate whether the chunks learned in the VSL
task elicit an effect similar to OBA, we followed the same design
as in Experiment 1. Observers completed alternating blocks of
VSL and OBA trials. In the VSL blocks, similarly to Experiment 1,
they were exposed to a series of scenes, which were composed of
chunks of shapes (Fig. 1a). After each block of VSL, observers
completed a set of classical OBA trials32,35, with one modification:
the target and distractor letters appeared superimposed on the
shapes of the VSL block, which were arranged in a 2-by-2
configuration (Fig. 3a). After finishing all the VSL and OBA
blocks, half of the observers completed an additional four blocks
of the classic OBA task, but this time using objects defined by
explicit visual boundary cues (Fig. 3b). This arrangement allowed
a direct comparison between chunk- and contour-driven OBA
within these observers. Finally, all observers completed a
Familiarity test with chunks. We found that observers identified
the targets faster when they appeared at an uncued location which
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was on a cued chunk compared to when the target was presented
on an uncued chunk, replicating the exact same pattern that was
found with objects defined by visual boundaries. Furthermore, we
found a positive correlation between the OBA and the chunk-
based attention (CBA) effects in observers performing both tasks,
which suggests overlapping cognitive mechanisms behind the two
effects. We also found a strong correlation between the CBA
effect and the strength of chunk learning as quantified by the
Familiarity test. Similar to Experiment 1, we excluded from these
analyses all participants with explicit knowledge about the chunks
(5 participants, see “Methods” section) to assure that our results
reflect the consequences of implicit statistical learning and not
explicit strategies.

First, we assessed the standard cue validity effect by measuring
how much observers’ reaction times and error rates were
modulated when the cue indicated the subsequent target position
exactly. We found in both the chunk and the object version of
the paradigm that observers responded faster (Objects: t43=
9.78, p < 0.001, d= 1.491, Bayes Factor= 5⋅109; Chunks: t89=
11.35, p < 0.001, d= 1.203, Bayes Factor= 1016; Fig. 4a, left
panel), and they made fewer errors (Objects: t43= 2.46, p=
0.018, d= 0.375, Bayes Factor= 2; Chunks: t89= 4.11, p < 0.001,
d= 0.435, Bayes Factor= 217; Fig. 4a, right panel) when the
target appeared at the cued (valid-cue trials) compared to the
uncued location (invalid-cue trials). There was no difference
between the magnitude of the validity effect in the object vs. the
chunk version of the paradigm (reaction times: t86= 0.81, p=
0.418, d= 0.178 Bayes Factor= 0.3; error rates: t86= 0.49, p=
0.627, d= 0.106, Bayes Factor= 0.2; Fig. 4a). Furthermore, there
was a large positive correlation between the validity effects using
objects and chunks (r= 0.63, CI95= 0.40-0.78, p < 0.001, Bayes
Factor= 3499; Fig. 4b) suggesting that observers who produced a
large validity effect in the chunk version also produced a large
validity effect in the object version of the paradigm. These results
confirm that classical cueing worked in a very similar manner
with objects and chunks.

Beyond cue validity, we also successfully replicated the OBA
effects reported in earlier studies using objects with visual
boundaries29,32,33,35. In the invalid-cue trials, observers
responded faster when the target appeared in the cued object
albeit not in the cued position (cued-object trials) compared to
when it appeared in the uncued object (uncued-object trials)
demonstrating the classic OBA effect (t43= 6.62, p < 0.001, d=
1.010, Bayes Factor= 3⋅105, Fig. 4c, left panel, in red). More
importantly, we found the same pattern of results when
statistically defined chunks were used instead of objects with
clear boundaries. Observers identified the target faster when it
appeared on the cued chunk (cued-chunk trials) compared to
when it appeared on the uncued chunk (uncued-chunk trials)
demonstrating a clear CBA effect (t89= 2.58, p= 0.011, d=
0.273, Bayes Factor= 3, Fig. 4c, left panel, in blue). We expected
the CBA effect to be smaller than the OBA effect because the
former effect emerges due to chunks implicitly learned in the last
half an hour while the latter effect is due to objects based on
lifelong learning of visual boundary cues. Indeed, the CBA effect
was significantly smaller than the OBA effect (t43= 3.84, p <
0.001, d= 0.586, Bayes Factor= 68, Fig. 4c). However, there was
a significant positive correlation between the CBA and OBA
effects (r= 0.33, CI95= 0.03–0.58, p= 0.026, Bayes Factor= 3,
Fig. 4d) providing substantial evidence towards a positive
relationship between chunk- and object-based attention. A
further link could be established between cue validity and OBA
by comparing the results in Fig. 4b, d. The cue validity effect in
Fig. 4b indicates the correlation between object- and chunk-based
effects for trials where the cue predicted exactly where the target
would appear, whereas Fig. 4d shows the same correlation for
trials where the cue indicates only the correct object/chunk, but
not the correct location. The correlation of r= 0.63, obtained in
the former case, where the object and chunk-based cueing
conditions are highly similar, puts an upper bound on how strong
the correlation could be in the latter case had the two processes
shared exactly the same underlying mechanism. Therefore, the r
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coefficients. Source data are provided in the Source Data file (Fig. 4 worksheet tab in Source Data.xlsx).
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= 0.33 obtained in Fig. 4d suggests that chunks and contour-
based objects evoke significantly overlapping cognitive processes.
There were no similar effects in the error rates either for trials
with objects or with chunks (Objects: t43=−0.16, p= 0.872, d=
0.025, Bayes Factor= 0.2; Chunks: t89=−0.42, p= 0.671, d=
0.045, Bayes Factor= 0.1; Fig. 4c, right panel).

Next, we tested whether our CBA effect was not just a spurious
finding. We found a very significant positive correlation between
observers’ performance in the Familiarity test, which indicated
the extent of their learning, and the size of their CBA biases (r=
0.45, CI95= 0.26-0.61, p < 0.001, Bayes Factor= 2833, Fig. 4e). To
confirm that this strong positive relationship between learning
and CBA was not merely due to changes in generic (e.g.,
alertness-based) processes, we conducted a within-subject con-
sistency analysis. For each observer, we measured how much the
particular chunks they preferred more strongly during the
Familiarity test were also the ones that elicited a larger CBA
effect. Comparing Familiarity scores and CBA effects for each
observer and each chunk separately, we found a very strong and
significant within-subject consistency (r= 0.27 ± 0.06, t89= 4.53,
p < 0.001, Bayes Factor= 941; Fig. 4f).

Finally, as in Experiment 1, we measured the CBA effect in the
trials in which only two true-pairs were presented to rule out the
possibility that the CBA effect emerged only in trials with
individual shapes because participants allocated more attention to
the true-pairs than to the two individual shapes (Supplementary
Fig. 4). We found that the CBA effect was detectable in trials with
two true-pairs, and it was significant with the same effect size (t89
= 2.57, p= 0.012, d= 0.273, Bayes Factor= 3). This again
indicates that the chunk-based error rate effect cannot be
explained by allocating more attention to true-pairs than to
individual shapes per se.

Taken together these results, the chunks learned during VSL
elicited a very similar attentional effect to what objects with
explicit visual boundaries are known to generate. Furthermore,
this chunk-based effect was strongly related to the implicitly
learned statistical structure during the VSL, since the stronger a
chunk was preferred in the Familiarity test, the stronger
attentional effect it evoked in the CBA paradigm. Finally, the
correlation between CBA and OBA suggests that related
mechanisms could be involved when processing objects or
chunks supporting the claim that statistical learning creates
object-like representations.

Discussion
The present study provides the first evidence that statistically
defined chunks influence visual processes in subsequent search
tasks the same way as objects defined by articulated boundary
cues do. In the first experiment, observers performed better in a
novel 3-AFC visual search task when the targets appeared on the
same chunk as opposed to when the targets appeared on two
different chunks. In the second experiment, chunks elicited the
same object-based attention effect as was reported in the classical
findings of Egly et al.32. In both experiments, the chunk-based
effect was larger in observers who performed better in the
familiarity test that measures the observers’ implicit knowledge of
the statistical structure embedded in the stimuli. These results
have implications in two domains of the research on internal
representation in the brain: the nature of object representation
and the role of learning in having object representations.

Object representation initially has been approached as a
boundary contour problem4,40 that later evolved into character-
izing a large number of important cues for object formation, such
as good continuation41,42, closure43, connectedness3,
convexity44,45, and regularity of shape23,46. Here, we argue for a

parsimonious integration of these results by stating that the
notion of boundary information for the brain is more general
than edge contours, and it is based on separating two sets of
consistent elements according to some complex statistical mea-
sure, which naturally leads to object representations. In the
simplest case, these are dark and light local regions giving rise to a
luminance boundary or edge. However, apart from such first-
order boundaries, there exist for example second-order bound-
aries that are invisible to mechanisms detecting first-order
boundaries, do not necessarily co-occur with the first-order
boundaries, and have ecological relevance47,48. In addition, there
are texture-based, disparity-based, or motion-based boundaries22

that can be largely independent of luminance-based boundaries
and that are more difficult to perceive without prior experience.
In this ordering of increasingly abstract examples of boundaries,
discontinuities in any arbitrary measure of the stimulus detected
by mid-level routines, or boundaries defined by Gestalt rules are
at an even higher level, while the stimuli used in our study reside
at the opposite extreme from edges: our elements are grouped and
separated based on purely statistical consistencies of co-
occurrence without the use of any other low-level visual mea-
sure. Yet they evoke the same treatment by our cognition as true
contour-based object stimuli do even if only to a smaller extent.
Thus, we propose that object representations are defined and
object-based effects emerge whenever a sufficient subset of sta-
tistical contingencies at various levels of abstraction together
indicate a separable entity. We also propose that although
objectness seems to be an all-or-none property in most natural
settings, in fact, it is a continuum with different degrees of
objectness. For example, two solid objects separated by a clear
visual gap are perceived as two separate objects until they start to
move coherently2, when they are interpreted as one object with
two parts or with a surface marker, and the degree of perceived
single-objectness will depend on the level of motion coherence
between the two objects.

Regarding the role of learning in forming boundaries and
objects by statistical contingencies, a number of earlier results
corroborate our proposal that statistical learning leads to object-
like representations. In a recent study using a similar VSL para-
digm, the observer immediately and automatically generalized
between the haptic and visual statistical definition of an object
from unimodal experience19 suggesting that learning statistical
chunks in any one modality automatically creates abstract and
amodal representations. Several findings suggest that VSL inter-
feres with perception: it affects the extraction of summary sta-
tistics of scenes49, automatically biases attention50, modulates
perceived numerosity51, creates novel object associations based
on transitive relations52, and influences the size perception of the
elements within the structure53. Two earlier studies linked per-
ceptual organization and statistical learning between abstract
shapes directly54,55. In Vickery and Jiang54 chunks were explicitly
delineated from the surrounding with a clear black line, and they
found that learning new shape associations with such explicit
visual cues led to perceptual grouping. Zhao and colleagues55

showed that detecting color change was faster within than across
chunks that were defined solely by co-occurrence statistics.
Unlike in our paper, observers in that study completed the
Familiarity test, in which the true chunks were explicitly shown,
before the color change detection task with the chunks, and
therefore, they had an explicit memory of the underlying chunks.
Nevertheless, these studies provide partial support to our claim
that statistical learning has a key role in the emergence of object
representations in humans.

Another support for the crucial role of learning in forming
object representations comes from infant studies. Automatic VSL
has been demonstrated amply across various modalities not only

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20589-z

8 NATURE COMMUNICATIONS |          (2021) 12:272 | https://doi.org/10.1038/s41467-020-20589-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


in adults but in infants as well56–58, suggesting that infants and
adults are equally capable of learning the co-occurrence statistics
of scenes9. Infants are also known to segment and represent
objects initially only by a subset of the available sensory cues, the
most important cues being surface motion and arrangement,
while their ability to utilize the other cues, such as Gestalt rules or
smooth contours develops later1. This gradual incorporation of
more complex cues by infants1,59 is compatible with the idea that
statistical learning mechanisms have a key role in the emergence
and elaboration of object representation during infancy. Further
support comes from another line of infant studies demonstrating
that prior experience with given objects together or separately
brings forward the time when the infant is able to perform object
segregation properly with the particular objects60–62. While these
results are strongly suggestive, future investigations will be
required to test precisely the relative importance and limits of
statistically learned vs. innately available cues in object repre-
sentation across ages.

Our results show only a correlation between the measured
object-based effects and the amount of learning, thus we cannot
completely exclude the possibility that the co-variation is due to a
common source, and learning contingencies is not causally linked
to the emergence of object-like representation of the input. An
alternative interpretation of our results could be that object-based
attention is not really object-based, and objects and chunks share
this kind of attentional effect, which should be properly called
“object-and-chunk-based” attention. However, this is unlikely for
two reasons. First, the correlation remained strong after con-
trolling general improvement in performance, and this reduces
the probability of an uncovered common cause since assuming a
dynamically strengthening hidden cause that is related neither to
general performance nor to learning contingencies is implausible.
Second, there exists no visual cue in our chunk stimuli other than
statistical contingencies that would selectively map to the features
that were implied as causes of OBA in objects, while the features
that were implied (long contours, similar textures/colors, Gestalt
structures, etc.) all represent strong examples of statistical con-
tingencies. Therefore, based on parsimony, we propose that the
emergence of the chunk-based advantage in Experiment 1 and the
chunk-based attention in Experiment 2 are direct consequences
of implicitly collecting enough statistical evidence by VSL to treat
the chunks as a preliminary object, and automatically initiating
object-related processes on them. Clearly, this does not mean that
the object-like representation emerging after a brief VSL can be
considered as fully-blown, real mental objects, as these pre-
liminary object-like representations need to be fortified by further
experiences to pass several additional criteria to reach the
representational richness of true mental objects. Whether and
under what conditions VSL mechanisms can produce such fully
developed mental object representations needs to be clarified by
future studies.

Earlier computational studies can point to possible computa-
tions showing how statistically defined chunks and objects are
related63–65. When observers are faced with an unfamiliar
environment with an unknown statistical structure composed of
shapes, they learn and compress the information about the sti-
muli in terms of meaningful latent chunks from the shapes
instead of representing only recursive pairwise associations
between those shapes63,64. Therefore, we argue that these latent
chunks extracted hierarchically based on the statistical regularity
in the sensory input are the building blocks of object-like
representations. Investigating visual scenes with low-level fea-
tures, a recent study provided a computational framework, based
on hierarchical Bayesian clustering, that demonstrated how an
image can be represented by mixture components organized
hierarchically, and how such representations can capture most

Gestalt rules through probabilistic inferences66. Such hierarchical
chunk-representations, using probabilistic learning, that makes
inferences across multiple levels simultaneously can also link
VSL-and, therefore, object representations- to low-level percep-
tual effect and perceptual learning65.

Regarding the neural correlates of object-based perceptual
effects, an fMRI study reported that in the early visual cortex,
visual error predictions spread between the parts of the same
object67. This suggests that already in the early visual cortex, the
context for computing the prediction error is defined by the
objects rather than by low-level visual cues. If this is correct, early
visual areas should also manifest increased gamma synchrony
with higher areas similar to what has been reported in relation to
object-based attentional effects between the inferior frontal
junction and the fusiform face and parahippocampal place
areas68. Moreover, we posit that this effect should increase with
learning the underlying chunk-structure of an unknown visual
stimulus.

In conclusion, the present results provide a significant step
toward linking the concept of object representations to implicit
statistical learning of environmental structures through redefining
the fundamental requisites necessary for the perception of a new
object.

Methods
Experiment 1
Participants. Eighty-one university students (53 female, mean age = 21, range =
18–29, 71 right-handed, 49 had normal vision without correction) gave informed
consent prior to participation in the experiment. Thirty participants took part in
Experiment 1a, 31 in Experiment 1b (replication), and 20 in Experiment 1c
(control). We excluded one participant from Experiment 1b, who explicitly noticed
the statistical structure of the pairs (s/he could recall the pairs and the shapes
consisting of the pairs during the debriefing, see “Debriefing” section) since we
were interested in the effects of implicit automatic processes and not the con-
sequence of explicit cognitive knowledge. All participants had a normal or
corrected-to-normal vision. The experimental protocols were approved by the
Ethics Committee for Hungarian Psychological Research.

Stimuli. Similar to previous studies24,69, the stimuli in the visual statistical learning
(VSL) and search blocks in Exps 1a–1b consisted of 12 moderately complex 2D
abstract shapes (Fig. 1a, VSL - Block 1, Inventory). Unbeknownst to the observers,
an Inventory of 6 pairs was constructed from these shapes creating two horizon-
tally, two vertically, and two diagonally oriented pairs. These pairs were the
building blocks of the scenes throughout the experiments, as the two elements of a
given pair always appeared together in the prespecified spatial configuration
defined by the Inventory. Hence, each pair constituted one statistical chunk in our
experiment. For each observer, the shapes were randomly reassigned to the pairs in
the inventory to eliminate any specific learning effect across subjects due to par-
ticular shape combinations.

Tasks and procedure. Observers completed 4-4 (in Experiments 1a and 1c) and 2-2
(in Experiment 1b) alternating blocks of VSL and Search trials. Both Experiments
1a–1b were completed with a final Familiarity test and a debriefing, whereas in
Experiment 1c such a Familiarity test was omitted as it was not meaningful (Fig. 1).

Visual statistical learning paradigm. Observers watched a series of scenes, each
constructed from three pairs chosen pseudo randomly from the Inventory (Fig. 1a,
VSL - Block 1). In each scene, one pair was selected from each of the three types
(horizontal, vertical, and diagonal). The three selected pairs could appear in a 3-by-
3 grid and their positions were randomized with the constraint that each pair had
to be adjacent by side to at least one other pair. This method yielded 144 unique
scenes with each pair appearing 72 times during each VSL block. We split the
possible scenes into two sets so that each pair appeared in each set 36 times, and
presented the two sets alternating: the first set was presented in blocks 1 and 3,
while the second set in blocks 2 and 4, all in a different randomized order across
observers. Each scene was presented for 2 s with 1 s pause between scenes. The task
of the participants was simply to observe the scenes passively so that they could
answer some questions related to their experience afterward.

Visual search paradigm. After each VSL block, observers had to complete a block of
search trials. In these blocks, four shapes were presented in each trial adjacent to
each other in a 2-by-2 arrangement (Fig. 1b, Search - Block 1). The scenes could
contain two true pairs (the two horizontal or two vertical pairs of the Inventory), or
one true pair and two individual shapes chosen randomly from the remaining
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shapes of the two diagonal pairs. The chunks of diagonal pairs were sacrificed in
the search task in order to get more possible unique scenes with a 2-by-2 con-
figuration. In each search block, we presented 144 scenes in random order, from
which there were 96 unique scenes containing one true pair and two individual
shapes (from the two diagonal pairs) and 12 × 4 unique scenes consisting of two
true pairs (the horizontal and vertical pairs). All individual shapes were presented
48 times during the search blocks and all horizontal/vertical pairs were presented
an equal number of times.

In each search trial, a small white letter appeared in the middle of each black
shape, which could be either a T or an F. The task of the observers was to look for
the letter Ts among distractor letters (F), and in a 3-AFC task, they had to press 1
on the keyboard if they saw two Ts horizontally arranged next to each other, press
2 if they saw two Ts vertically arranged on top of each other, and press 3 if they saw
only one T. The response key mapping (1-beside, 2-top, 3-one target) and the
target letter identity (T or F) was counterbalanced across observers. The letters
appeared for 500 ms, then they disappeared and only the shapes were visible until
the response (Fig. 2b, Search - Block 1). Observers were instructed to always keep
their eye on the fixation dot in the middle of the scene. When two Ts appeared,
they formulated either a horizontal or a vertical pair, and these pairs were
randomly distributed the same number of times across the four possible locations
in the 2-by-2 configuration. Similarly, when only one T appeared in a trial, its
position was randomly and evenly distributed across the four possible locations
(top-left, top-right, bottom-left, bottom-right). Each of the three response types
(targets on top of each other, targets beside each other, only one target) occurred 48
times randomly distributed across the block.

Familiarity test. After the last search block of Experiments 1a and 1b (replication),
observers completed a 2-AFC task typically administered in VSL experiments. In
each trial, they saw two pairs of shapes after each other, and they decided which of
the two consecutive pairs seemed more familiar to them based on the experiment
(Fig. 1d, Familiarity test). The two pairs were presented sequentially for 1 s each
with 1 s pause between them. One of the pairs was a true pair (a horizontal or a
vertical pair were chosen from the Inventory; Fig. 1a, VSL - Block 1, Inventory, top
four pairs), while the other random pair was constructed from two shapes arbi-
trarily chosen from the diagonal pairs (Fig. 1a, VSL - Block 1, Inventory, bottom
two pairs). Observers performed 8 trials, in which one of the horizontal and one of
the vertical true pairs were chosen randomly and tested twice against two randomly
paired shapes from the diagonal pairs. The presentation order of the true pair and
the random pair was counterbalanced across trials, and the presentation order of
the trials was randomized individually for each observer.

Debriefing. VSL is an implicit learning task because observers had no task to
perform beyond paying attention to the scenes. However, their knowledge of the
statistical structure, that they built during the implicit learning task, could become
explicit. Since the Familiarity test does not indicate to what extent the responses
were based on implicit or explicit knowledge, we conducted a debriefing at the end
of Experiments 1a, 1b, and Experiment 2 (see “Methods” section, Experiment 2) to
identify observers with clear explicit knowledge of the statistical structure. Parti-
cipants were questioned whether they noticed anything about the shapes during the
experiment. If they answered “yes”, they were asked further about what they
noticed, and if they said something about pairs of shapes being linked, they were
asked to name the shapes in each pair that they remembered. Observers who
mentioned noticing consistent pairs during the experiments were considered to be
explicit learners who were aware of the hidden statistical structure and, therefore
their data were excluded from the analysis.

Control experiment. The control experiment, Experiment 1c was identical to
Experiments 1a and 1b with the exception that instead of shape-pairs, geometric
objects defined by explicit visual boundaries were used as inventory elements (Fig. 1e,
in the red background) and there was no Familiarity test at the end. We used
rectangles to represent the true horizontal and vertical pairs, and two squares to
represent the two constituent shapes of each diagonal pair. In the Exposure blocks,
observers saw the same number of scenes constructed from the same constituents in
the same manner as in the scenes of Experiments 1a–1b, but constructed by rectangles
and squares instead of the pairs of shapes. Consequently, the global silhouettes of the
composed scenes were also identical across the three experiments. The Search blocks
were as similar to those in Experiments 1a–1b as possible. Observers completed the
same number and type of trials with the same target locations as in the first two
experiments: either two horizontal or two vertical rectangles, similarly to trials with
two true pairs in Exps 1a–1b, or one rectangle and two squares, similarly to trials with
one true pair and two individual shapes.

Experiment 2
Participants. We estimated the effect size of the original object-based attention
(OBA) reported in previous studies and found that, on average, OBA has a small
effect size (Cohen’s d= 0.22). Since chunk-based attention (CBA) is likely to be
even weaker than OBA, we assumed that CBA would yield an effect half as strong
as in OBA. Asking for a 60% probability to find the CBA, we established that our
study required a sample size of 104 observers. We aimed at one hundred observers
and managed to recruit 98 university students (68 female, mean age = 21, range =

18–26, 91 right-handed, 60 had normal vision without correction), who gave
informed consent prior to participation in the experiments. As in Experiment 1,
observers with explicit knowledge of the chunks were excluded (5/98). We excluded
three additional observers because they did not finish the experiment, thus data of
90/98 observers were analyzed in this experiment. All observers had a normal or
corrected-to-normal vision. The experimental protocols were approved by the
Ethics Committee for Hungarian Psychological Research.

Stimuli, tasks, and procedure. The design of the experiment, the stimuli, the VSL
blocks, and the familiarity test were identical to Experiment 1 with the exceptions
specified below. Observers completed 4-4 alternating blocks of VSL and CBA trials.
Due to data acquisition error, 19 observers completed only 3-3 blocks of VSL and
CBA trials, but this only reduced the number of trials to 72 from 96 in the
experimental conditions, thus their data was used in the analyses. All observers
completed a Familiarity test at the end of the final CBA block.

Visual statistical learning paradigm. Based on the assumption that stronger asso-
ciations lead to a larger effect in the CBA task, the number of exposure scenes in the
VSL blocks was doubled from 72 to 144 to strengthen the learned associations
between the shapes. Set size of 144 was chosen to have a robust learning effect while
avoiding an explicit understanding of the input structure. In contrast to the exposure
scenes of Experiment 1, the black lines separating the shapes in the scene were
completely omitted in order to further decrease lower-level visual cues of structure.

Chunk-based attention paradigm. After each VSL block, observers completed a
block of CBA trials. In the CBA blocks, four shapes were presented adjacent to each
other in a 2-by-2 arrangement without explicit black lines separating them
(Fig. 3a). The configurations of the different scenes were the same as in Experiment
1: they either contained two horizontal or two vertical true pairs (Fig. 1a, VSL -
Block 1, Inventory, top four pairs, see also Supplementary Fig. 4b) or one true pair
and two individual shapes from the diagonal pairs (Fig. 1a, VSL - Block 1,
Inventory, bottom two pairs, see also Supplementary Fig. 4c). Observers were
exposed to the same number and mix of scenes as in Exp. 1, and the scenes were
presented in a different random order in each search block.

Following the original OBAmethod32 in each trial scene, first, only the four shapes
appeared for 1000 ms, then one of the shapes was cued for 100 ms. The cue
disappeared and only the four shapes were visible for another 100 ms, then one target
(T or L) and three distractor letters (F) appeared, one in the middle of each of the four
shapes. The letters remained in the center of the shapes until the observer responded.
Cueing was provided by coloring a quadrant of the black shape to white (Fig. 3a, CBA
panel insets). The cue-coloring was designed to draw attention without favoring
direction to any location. The observers’ 2-AFC task was to press 1 when they saw a
letter T, and 2 when they saw an L among the distractor letters F in the given trial. At
the beginning of the experiment, they were explicitly instructed to pay attention to the
cue as it would correctly predict the location of the target in most, but not all of the
trials. Observers were further instructed to continuously fixate at the fixation dot in
the middle of the screen. The size of the OBA effect has been found fairly independent
of the predictability of the cue in previous studies: similar effect sizes were reported
with fully random35 and highly predictable cues32. Therefore, the accuracy of the cue
in the present study was set to 55%, which was estimated to be sufficient to elicit the
OBA effect.

Each CBA block consisted of 144 trial scenes with 80 valid-cue trials (i.e., the
cue appeared at the same location as the target), and 64 invalid-cue trials. Of the 64
invalid-cue trials, the target appeared on the cued chunk in 24 trials (Fig. 3a, right
inset), whereas in the other 24 trials, the target appeared at the same distance from
the cued location as in the first 24 trials but in the uncued chunk (Fig. 3a, left inset).
The remaining 16 invalid-cue trials were used for balancing the frequency of the
individual shapes across the block and used only one chunk and two individual
shapes in the scene, with the cue appearing in one of the individual shapes. These
trials were not used in the subsequent analysis. The targets and the cues appeared
randomly and the same number of times in all four locations of the 2-by-2 layout.
In the invalid-cue trials, the target never appeared in the position diagonally
opposite to the cued location.

Object-based attention paradigm. 49 participants completed 4 blocks of classic OBA
task at the end of the experiment and data of 44/49 observers were analyzed (see
exclusion criteria in “Participants” section). In the OBA blocks, the task was identical
to the task in the CBA paradigm, but the target and distractor letters appeared in
objects defined by visual boundary cues (i.e., rectangles or squares) instead of the
shapes (Fig. 3b, OBA panel). We used the boundary-outlined rectangles as objects
following previous studies32–36 and augmented those with squares as analogs of the
individual shapes constituting the diagonal pairs in the CBA paradigm. Observers
completed the same number of trials of the same trial types (either two rectangles-
comparable to trials with two chunks- or one rectangle and two squares-comparable
to trials with one chunk and two individual shapes) with the same cues, and target
locations as in the CBA blocks in a different random order.

Familiarity test. The Familiarity test was identical to the test in Experiment 1 with
one modification driven by the goal of increasing the number of trials for a more
accurate estimate of learning performance while keeping the appearance frequency of
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the shapes and pairs balanced. Specifically, we introduced foil pairs and catch trials in
this test in the following manner (see Supplementary material for more information
on foil pairs). Observers performed 24 trials in which all true pairs were tested against
foil pairs. In each trial, the true and foil pairs contained different shapes. From the 24
trials, 16 were normal and 8 were catch trials. In the catch trials, observers had to
compare two foil pairs. These trials were needed to keep the appearance frequency of
the shapes and pairs equal in the Familiarity test. In this way, both the true and the
foil pairs appeared four times, and each shape appeared eight times in the test. The
presentation order of the trials, and the sequential order of the true and foil pairs in a
trial were separately randomized for each subject.

Data analysis. In all statistical analyses, we performed the standard two-sided
frequentist and the corresponding Bayesian tests and drew our conclusion based on
both types of tests combined. In the reported results, the value of the Bayes Factor
directly reflected how much more probable the alternative hypothesis was com-
pared to the null hypothesis. For computing the Bayes Factor, we used JZS Bayes
factor analysis with a scaling factor of

ffiffiffiffiffiffiffi

1=2
p

in the Cauchy prior distribution37–39.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data of the figures are provided with this paper and the data set generated
during the current study is publicly available in the statistical-chunk-based-attention
GitHub repository, https://github.com/GaborLengyel/statistical-chunk-based-
attention. Source data are provided with this paper.

Code availability
The code implementing the analyses in the current study is publicly available in the
statistical-chunk-based-attention GitHub repository, https://github.com/GaborLengyel/
statistical-chunk-based-attention.
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