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ABSTRACT: Ionic liquids (ILs), known for their distinct and tunable properties, offer a broad spectrum of potential applications
across various fields, including chemistry, materials science, and energy storage. However, practical applications of ILs are often
limited by their unfavorable physicochemical properties. Experimental screening becomes impractical due to the vast number of
potential IL combinations. Therefore, the development of a robust and efficient model for predicting the IL properties is imperative.
As the defining feature, it is of practice significance to establish an accurate yet efficient model to predict the normal melting point of
IL (Tm), which may facilitate the discovery and design of novel ILs for specific applications. In this study, we presented a pseudo-
Siamese convolution neural network (pSCNN) inspired by SCNN and focused on the Tm. Utilizing a data set of 3098 ILs, we
systematically assess various deep learning models (ANN, pSCNN, and Transformer-CNF), along with molecular descriptors
(ECFP fingerprint and Mordred properties), for their performance in predicting the Tm of ILs. Remarkably, among the investigated
modeling schemes, the pSCNN, coupled with filtered Mordred descriptors, demonstrates superior performance, yielding mean
absolute error (MAE) and root-mean-square error (RMSE) values of 24.36 and 31.56 °C, respectively. Feature analysis further
highlights the effectiveness of the pSCNN model. Moreover, the pSCNN method, with a pair of inputs, can be extended beyond
ionic liquid melting point prediction.

1. INTRODUCTION
Ionic liquids (ILs) are a class of liquids composed entirely of
organic cations and inorganic/organic anions, which are
typically in liquid state at temperatures below 100 °C.1 The
unique chemical composition imparts various essential proper-
ties to ILs, including low volatility, high thermal stability, a
wide liquid range, nonflammability, and high ionic con-
ductivity.1 Consequently, ILs have recently attracted increasing
and broad interest from both academia and industry.2−10 The
distinctive chemical composition also bestows upon ionic
liquids a crucial characteristic: the ability to tailor their
physical, chemical, and biological properties to address specific
challenges through modifications to the corresponding cations
and/or anions. For example, the normal melting temperature
(Tm) of methanaminium bromide can be systematically
reduced from 237 to 111 and 13 °C by replacing bromide
with nitrate and formate anions, respectively.11 Despite
significant advances in synthetic chemistry that have
accelerated IL production, the experimental screening of ILs

remains impractical due to the vast number of potential
combinations of organic cations and inorganic/organic
anions.12

To tune the properties of ILs from a theoretical perspective,
a profound understanding of the molecular structure and
thermodynamics governing the ionic liquid system is necessary.
Ab initio molecular dynamics and quantum chemical
calculations offer a route to obtain reliable results,13 although
these calculations are not feasible due to the prohibitive
computational scaling of these methods. Quantitative
structure−property relationship-based (QSPR) methods have
been extensively employed to predict the physical and
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chemical properties of ILs and have achieved notable
successes.12,14−18 Among the various properties, Tm is of
great importance as a defining feature. Katritzky et al.
developed a QSPR model for a data set of 126 pyridinium
bromides using 6 descriptors, achieving an accuracy with a
square correlation coefficient (R2) of 0.788.12 Since then,
numerous attempts have been made to construct accurate
QSPR models for estimating the Tm of ILs and have achieved
certain successes(Table S1).14−18 However, several key factors
have limited broad applications of these QSPR models: (1)
QSPR-based models heavily depend on the quality and
quantity of the data used for training. If the data set is limited
or contains biases as in the case of previous investigations, the
model’s predictions may not be reliable for broader
applications; (2) The choice of molecular descriptors is crucial
for QSPR models. If the selected descriptors are not truly
representative of the molecular features influencing the
property of interest, the model may not perform well in the
blind test; (3) QSPR models often assume a linear relationship
between descriptors and properties. It has been shown that the
melting process of ILs is complicated and the descriptors are
generally not linearly correlated with the Tm of ILs.

19 Hence,
more sophisticated methods are needed to better describe the
correlation between the structure and the Tm values of ILs.
While tackling complex and nonlinear problems, modern

machine learning methods (ML), supported by big data, have
demonstrated superior efficiency and accuracy compared to
traditional QSPR methods, achieving considerable success in
predicting various properties of chemical materials.20,21 Over
the past few decades, numerous ML models have been
developed to predict the Tm values of ILs (Figure 1). Early ML
efforts primarily focused on predicting the Tm of specific types
of ILs due to a lack of sufficiently diverse data,22 and hence are
lack of generalization capability in nature. Recently, Venkatra-
man et al.23 carefully compiled a comprehensive data set of
2212 ILs from the literature, facilitating ML models with
generalization capabilities. Regression analyses, employing
various ML methods, yielded prediction R2 values ranging
from 0.53 to 0.67.23 Notably, the classification models revealed
better accuracy (84%) in discriminating between ILs with Tm
higher than 100 °C and those below 100 °C. Utilizing the same
data set, Low et al.24 proposed a kernel ridge regression (KRR)
model based on the extended connectivity fingerprint
(ECFP4), Coulomb matrix, and molecular orbital energies
derived from ab initio calculations, predicting the Tm of ILs
with average mean absolute error (MAE), root-mean-square
error (RMSE) and R2 of 29, 45 °C, and 0.74, respectively. This
model, in contrast to the group contribution methods and
traditional QSPR methods, is applicable to any type of ionic
liquid.
With the development of deep learning methods (DL), it is

widely accepted that DL surpasses normal ML in handling

complex and nonlinear problems. A benchmark investigation
by Baskin et al.25 indeed demonstrated that nonlinear MLs
outperform traditional linear models, and DLs outperform
MLs. Furthermore, the Transformer, actively utilized in natural
language processing, may offer a promising alternative for
modeling the physical properties of ILs. In a recent
development, Makarov et al.26,27 collected the largest and
most comprehensive data set consisting of 3073 ILs. They
utilized the Transformer Convolutional Neural Network
(Transformer-CNN) equipped with a SMILES representation
to predict the Tm of ILs. Two models, based on the whole data
set, were developed with different cross-validation (CV)
protocols (Component and Mixture). Reasonable accuracies
have been achieved with R2 of 0.66 and 0.78,27 respectively.
However, the generalization capability of these models needs
further assessment due to the lack of sufficient external
validation.
The Tm of ILs is controlled by both single-molecule

properties and intermolecular interactions.1,28 Therefore, an
effective model for predicting the Tm of ILs must accurately
describe not only the properties of anions and cations
themselves but also capture the complex and nonlinear
correlations between them. In the field of computer vision, a
specialized architecture, the Siamese convolutional neural
network (SCNN) is designed for tasks that involve assessing
the similarity or dissimilarity between pairs of inputs. SCNN is
constructed to learn and extract features from pairs of input
samples, making decisions based on their similarity.29

Compared to conventional artificial neural networks (ANNs)
and Transformer-based methods, SCNNs focus on learning
correlation between pair inputs and making predictions based
on that. Consequently, they have demonstrated successful
applications in image recognition,30 natural product identi-
fication,31 and bioactivity prediction.32 These characteristics
suggest that SCNN is particularly well suited to predict the Tm
of ILs using pairwise inputs of anions and cations. In this
contribution, a pseudo-Siamese convolution neural network
(pSCNN), inspired by SCNN, was developed to predict the
Tm of ILs.

2. METHODS
2.1. Data Set. To date, the most comprehensive data set,

compiled by Makarov et al.,27 comprises 3073 records. As new
data keep on appearing in journals and monographs, this work
endeavors to enhance the data set’s comprehensiveness.
Building upon the data set of Makarov et al.,27 journal
articles,23 and NIST ILThermo database,11 we complied a
more extensive data set. Several protocols have been adopted
to ensure a relatively low noise level. For instance, when
multiple melting point values were reported for a given IL, the
most recent measurement was selected under the assumption
that the recent measurement is more accurate due to the

Figure 1. Various machine learning models for predicting the Tm of ionic liquids.
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advances in experimental. In cases in which the melting point
is presented as a range, the midpoint was adopted. Ionic liquids
consisting of more than two types of ions were also excluded,
aligning with the pSCNN’s capability to process pairs of inputs.
The resultant data set comprises the Tm of 3098 ILs, featuring
203 distinct anions and 1760 unique cations. The cleaned data
set was imported as a DataFrame in Python using the pandas
package,33 serving as the foundation for various analyses and
model selections in the subsequent sections.
Detailed analysis reveals that the Tm of 3098 ILs range from

177 to 592 K, with an average Tm of 357 K. Noted that the Tm
distribution complies well with the standard normal distribu-
tion (Figure 2), suggesting the current data set is

representative in terms of the Tm. However, further
examination shows that majority of the cations are
ammoniums (1096), imidazoliums (993), and pyridinums
(372) based while majority of the anions are halides (1155),
bistriflylimide (394), borates (168), and phosphates (168)
based. The limited chemical diversity suggests a potential bias
in the trained model, necessitating caution in its subsequent
applications. Nevertheless, the current data set is the most
comprehensive data set to the best of our knowledge.
2.2. Molecular Representation. For a predictive deep

learning model in chemistry, a molecule is typically
represented by an array of descriptors or a graph. One widely
used molecular descriptor is the Extended Connectivity
Fingerprint34 (ECFP), which has exhibited outstanding
performance in virtual screening, particularly in identifying
compounds with similar bioactivity.34 In this research, we
employed ECFP4, which encodes functional groups up to two
bonds away from the central atom and has demonstrated
robust performance in virtual screening benchmarks.35 The
ECFP4 fingerprints were encoded as 2048-bit one-hot vector
using the implementation in RDKit.36

Molecular descriptors, encapsulating the structural, topo-
logical, and/or physicochemical properties of molecules, have
been at the core of chemo-informatics and are always the first
choice in data-driven deep learning approaches.37 As high-
lighted earlier, a robust model for predicting the Tm of ILs
must accurately describe not only the properties of anions and
cations themselves but also capture the complex and nonlinear
correlations between them. Hence, Mordred38 molecular
descriptors were also employed in this work to ensure a
good description of anions and cations. 1631 molecular
descriptors were calculated for each anion and cation in the
data set by utilizing Mordred. These molecular descriptors
were then subsequently analyzed using statistical criteria to
minimize the impact of multicollinearity and prevent over-
fitting. All columns with low variance molecular descriptors
and those containing missing values or empty columns were

Figure 2. Distribution of the ionic liquid melting temperature in the
whole data set (red line) and the standard normal distribution curve
(green line).

Figure 3. Schematic diagram of the proposed pSCNN model. pSCNN consists of two networks. The first one is a pseudo-Siamese convolution
network for learning and extracting features of anions and cations. The extracted features are concatenated and fed into the MLP with two dense
layers for prediction.
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excluded. Pearson correlations were then applied to exclude
columns with high correlation (>0.95). By excluding the
molecular descriptors with low correlation (<0.05) with
respect to the melting points of ILs, 178 and 47 features
remained for cation and anion, respectively. Finally, the
remaining features for cation and anion were combined
together to keep a uniform input size as required by SCNN.
In total, a set of molecular features consisting of 209 molecular
descriptors for both anions and cations, were identified and
used to train the pSCNN model.
2.3. Model. The pSCNN model consists of two networks

as shown in Figure 3: a pseudo-Siamese convolution neural
network and a fully connected multilayer perceptron (MLP).
The pseudo-Siamese convolution neural network takes pairs of
fingerprints or molecular descriptors as its input, which are fed
into two independent subnetworks consisting of convolutional
layers. Given that both anions and cations are organic/
inorganic entities, these two subnetworks share identical
architectures as in SCNN. However, the weights of the two
networks are trained separately because anions and cations
possess distinct properties and contribute differently to the
melting of ILs. Through learning embeddings for input pairs,
pSCNN can extract and create a feature space that maximizes
the correlations between anions and cations. The learned and
extracted features of anions and cations are then concatenated
and fed into the MLP consisting of two dense layers for
predictions, as shown in Figure 3.
For model training, the 3098 ILs were randomly split into

two sets: the training set and the testing set with a ratio of
2478/620. To ensure the generalization capability of the
pSCNN model, the training set was then subjected to a 5-fold
cross-validation. The final prediction is then made by taking
the ensemble average of five trained models from the cross-
validation process. The final model developed in this study and
all data used in this work are publicly available at https://
github.com/Anan-Wu-XMU/pSCNN/.
2.4. Statistical Metrics. The quality of the predictive

model was evaluated using the mean absolute error (MAE, eq
1), the root-mean-square error (RMSE, eq 2), and the squared
coefficient of correlation (R2, eq 3).
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where n is the number of ionic liquids, yexp is the experimental
Tm, ypred is the predicted Tm, and yexp is the mean values of all
experimental Tm in the set.

3. RESULTS AND DISCUSSION
3.1. Model Performance. The melting process of ILs is

intricate and is still not well understood. However, certain facts
are known: (1) both intramolecular and intermolecular factors
are pivotal in the melting process; (2) van der Waals and
electrostatic interactions assume distinct roles for different
kinds of ILs; (3) Nonlinear entropy effects complicate the
prediction of the Tm of ILs. Previous investigations have
demonstrated that ANN can effectively handle complex
nonlinear problem by correlating input features.39,40 Hence,
the ANN models are included in this study for comparison. A
summary of the performance of various models is presented in
Table 1.
For the KRR model based on ECFP4 reported by Low et al.,

the MAE and RMSE are 29.78 and 39.8 °C, respectively, with a
moderate R2 of 0.74 (Table 1). The introduction of quantum
chemical descriptors, intended to describe the interion
interactions, yields only a slightly improved result, with MAE
decreasing from 29.78 to 29.15 °C. However, using the same
ECFP4 as descriptors, the deep learning models (ANN and
pSCNN) do not outperform the conventional machine
learning method as expected, even with a larger data set. For
instance, ANN and pSCNN predict the Tm of ILs with MAEs
of 29.34 and 29.85 °C, respectively (Table 1). Although DLs
have generated various important breakthroughs in many areas,
it is known that they are not friendly designed for application
involving high-dimensional sparse data.41 Given the often
sparse and highly dimensional nature of ECFP4, it is not
surprising that both ANN and pSCNN do not outperform the
conventional machine learning method in predicting the Tm of
ILs using ECFP4 as descriptors. A closer inspection reveals
that the feature space of halogen anions represented by ECFP4
is extremely sparse, with only 1 out of 2048 dimensions being
nonzero. Since halogen anions are widely present in ILs
(1155/3098), this will inevitably lead to the notorious “curse
of dimensionality” in DLs,42 resulting in unsatisfied general-
ization performance, as shown above. Other molecular
representations that do not generate sparse features (such as
Mordred molecular descriptors) may yield better results.
The results of the ANN model using Mordred descriptors as

input did improve compared to the ANN model based on the

Table 1. Comparison of the Statistical Metrics of Different Models for Predictions of the Normal Melting Temperatures of the
Ionic Liquids. For MAE and RMSE, the units are in °C

descriptors method Nsample MAE RMSE R2

ECFP4a KRRa 2212 29.78 39.8 0.74
ECFP4 + QCa KRRa 2212 29.15 39.5 0.74
SMILESb transformer-CNFb 3073 27.3 35.8 0.77

consensus modelb 3073 26.4 34.9 0.78
ECFP4 ANN 3098 29.34 37.94 0.74
ECFP4 pSCNN 3098 29.85 38.33 0.74
mordred descriptors ANN 3098 26.25 34.11 0.79
mordred descriptors pSCNN 3098 24.36 31.56 0.82

aQC: quantum chemistry descriptors derived from quantum chemical calculations, taken from ref 24. bTaken from ref 27.
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ECFP4 fingerprint. Its test MAE, RMSE, and R2 are 26.25,
34.11 °C, and 0.79, respectively, outperforming the best model
in the literature (Table 1, Transformer-CNF). As reported by
Makarov et al.,27 the Transformer-CNF model relies only on
the augmented SMILES and can achieve the best accuracy
among all general models reported to date (Table 1, i.e., MAE:
27.3, RMSE: 35.8 °C and R2: 0.77). As stated in Section 1, a
robust model for predicting the Tm of ILs not only needs to
accurately describe the properties of anions and cations
themselves but also needs to describe the complex and
nonlinear correlations between anions and cations. Trans-
former-CNF meets the above conditions to a certain extent.
On the one hand, Transformer can effectively extract encoded
chemical information from SMILES, allowing it to describe the
properties of individual ions well. On the other hand, the
intrinsic attention mechanism in the Transformer architecture
can describe the correlation between anions and cations to a
certain extent. However, systematic investigations43 show that
the number of augmented SMILES plays a decisive role in the
results, and it usually requires 20+ augmentations to achieve
good enough results. 10-fold augmentation adopted by
Makarov et al. may be insufficient.
In comparison to ANNs and transformer-based methods,

SCNN is designed to learn and extract features from pairs of
input samples and make decisions based on their correlation.29

Therefore, SCNN is particularly suitable for predicting the Tm
of ILs provided that the properties of single ions can be well
described. Using Mordred descriptors as input features, it is
encouraging to see from Table 1 and Figure 4 that our pSCNN

model has had the best accuracy so far. The introduction of the
Siamese network does help to better learn and extract features
from pairs of input samples as desired. The MAE and RMSE
are significantly reduced from 26.25 and 34.11 °C (ANN/
Mordred: Table 2) to 24.36 and 31.56 °C, respectively. The R2
value of 0.82 is one of the highest values among all general
models (Table 1). This superior performance highlights the
importance of choosing the proper model that matches the
nature of the problem.
3.2. Applicability Domain Analysis. For a predictive

model, applicability domain analysis (ADAN) is also a crucial

aspect to assess the reliability of the mode.44 To establish the
boundaries within which the model predictions can be trusted,
a probability-based and distance-oriented algorithm was
applied. The query compound is considered as an outlier,
and the prediction is marked as unreliable when the calculated
average Euclidean distance with respect to the training set falls
outside the 95% confidence interval boundary.
Figure 5 shows the applicability domain analysis for the

pSCNN model, wherein the reliable prediction space is
obtained by computing the 95 and 99% confidence interval
boundaries. In the testing set, our analysis demonstrated that
34 ILs were outside the 95% confidence interval boundary
(Figure 5, points in orange and red) with 7 ILs outside the
99% confidence interval boundary (Figure 5, points in red).
Thus, the pSCNN model could account for nearly 95% reliable
predictions across 620 compounds in the testing set. Such a
performance is already satisfactory on the blind test.
Upon close inspection of the ILs for which predictions were

flagged as unreliable, it was revealed that these ILs contained
cations or anions that were highly underrepresented in the
calibration, and a majority of these ILs (25 out of 34) were
even new ILs (Table S2). These ILs represent a significant
challenge for melting point predictions. In such a stringent test,
it is encouraging to see that our model can still produce
reasonable predictions with MAE and RMSE of 30.4 and 37.0
°C, respectively. This suggests that by learning and extracting
features from input pairs, our model has good generalization
capability in predicting the Tm of ILs. In fact, this validation on
outliers corresponds to the most rigorous “compounds out”
adopted by Makarov et al.,26,27 both indicating the predictive
power of the model for ionic liquids with novel ions. If the
model is applied to predicting only a new combination of ions,
the pSCNN model is expected to provide more accurate
results. Thus, it may provide a simple yet efficient way to help
experimentalists in advancing and customizing the synthesis of
new IL. Note that predicting the Tm of a new IL by using the
pSCNN model (including the feature generation) will take an
average of 1.02 s on a workstation made of dual processor Intel
Xeon Silver 4110@2.10 GHz.
3.3. Feature Importance. While the melting process of

ILs is not fully understood, it is well recognized that factors
primarily controlling the Tm of an ionic liquid include
intermolecular forces (van der Waals and electrostatic),
molecular symmetry, and the conformational degrees of
freedom of a molecule.45

To further examine whether our model captures the essence
of the problem being addressed, we analyzed feature
importance based on permutation importance (see the
Supporting Information (SI) for more information). Figure 6
shows the top 10 most important molecular descriptors that
have a significant impact on Tm of ILs. Notably, all key features
(Figure 6) are molecular descriptors related to either
topological characters (IC3, IC2, IC5, and AATS0v) or
electrostatic characters (PEOE_VSA7, VSA_Estat8, PEOE_V-
SA12, PEOE_VSA13, SlogP_VSA8, and Xc-3d). As the most
important descriptors, ICx (IC3, IC2, and IC5) describe the
connectivity and branching in the molecule. They are closely
related to molecular shape and local symmetry, thus having a
profound effect on the Tm of ILs. PEOE_VSAx (PEOE_VSA7,
PEOE_VSA12, and PEOE_VSA13), on the other hand,
quantify the van der Waals surface area of molecules with a
specific charge range, aiming to capture direct electrostatic
interactions46 that influence the Tm of ILs. SlogP_VSA8 is

Figure 4. Parity plot comparing the predicted melting point values
(Tm,pred) with the corresponding experimental values (Tm,exp).
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designed to capture the hydrophobic or lipophilic properties of
a molecule,46 which is directly related to intermolecular van
der Waals interactions and thus affects the melting point of the
ionic liquid.
All of these results clearly demonstrate that our pSCNN

model, by learning and extracting features from pairs of input,
indeed captures the essence of the problem being addressed.
Thus, it can provide an accurate yet efficient way to predict the
Tm of ILs.
3.4. External Validation and Perspective. Over the past

few years, new data have continuously emerged in the journals
and monographs. To further check the generalization perform-
ance of our pSCNN model, an independent test was
conducted using 39 newly synthesized ILs, sourced from
NIST ILThermo database.11 These ILs did not overlap with
the ILs used in the development of the model. Results of the
Transformer-CNF models were included for comparison.

ADAN (Figure S1) reveals that all 39 ILs are within the 95%
confidence interval boundary, indicating that they should have
good prediction results. The evaluations by our model indeed
produced excellent results, with MAE and RMSE of 13.4 and
20.6 °C, respectively. These results are clearly superior to the
two Transformer-CNF models26,27 with MAE and RMSE of
17.8, 22.4 °C and 16.3, 20.9 °C respectively (Table 2).
Detailed analysis showed that the majority of the prediction

errors (23 out of 39) were less than 10 °C, which is an
encouraging result for the design of new ILs. Large errors
mainly occur when the occurrence rate of cations or anions is
low. For instance, the largest error (71 °C, Table 2) was
calculated for 1-(2-hydroxyethyl)-3-methylimidazolium non-
afluoro-1-butanesulfonate, in which the 1-(2-hydroxyethyl)-3-
methylimidazolium occurs only twice in the calibration. The
cause of this high error may also be due to the fact that

Table 2. Predicted Melting Points for 39 Newly Synthesized Ionic Liquidsa

name Tm,exp
b Tm,pred(transformerCNN)

c Tm,pred(transformerCNF)
d Tm,pred(pSCNN)

1-butyl-3-methylimidazolium hydrogen sulfate 293 311 300 293.4
1-ethyl-3-methylimidazolium hydrogen sulfate 300 296 280 277.1
N-methyl-N-propylpyrrolidinium acetate 289.8 291 310 280.4
N-ethyl-N-methylmorpholinium bromide 445.6 413 440 420.5
1-butyl-3-methylimidazolium bromide 352.1 315 330 346.1
1-butyl-3-methylimidazolium trifluoromethanesulfonate 291.1 300 290 294.3
1-butyl-1-methylpiperidinium trifluoromethanesulfonate 309.1 330 350 348.6
1-butylpyridinium chloride 405.4 357 350 366.9
1-(2-Methoxyethyl)-1-methylpyrrolidinium hexafluorophosphate 307 311 300 313.1
1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide 253.5 288 270 277.2
1-ethyl-3-methylimidazolium bromide 350.2 354 360 348.6
1-butyl-3-methylpyridinium hexafluorophosphate 324.8 331 350 323.1
1-butyl-1-methylpiperidinium hexafluorophosphate 354.7 403 400 405.7
1-butyl-1-methylpyrrolidinium hexafluorophosphate 359.7 393 380 364.6
1-(2-hydroxyethyl)-3-methylimidazolium nonafluoro-1-butanesulfonate 251.5 293 280 322.4
1-(2-hydroxyethyl)-3-methylimidazolium perfluoropentanoate 294.8 271 280 285.0
1-ethyl-4-methylpyridinium bis((trifluoromethyl)sulfonyl)amide 288 298 290 287.4
1-ethyl-2-methylpyridinium bis((trifluoromethyl)sulfonyl)amide 289 281 290 293.4
N-(3-cyanopropyl)pyridinium tricyanomethanide 305.2 313 330 303.0
choline tosylate 378.1 393 380 389.8
1-ethylpyridinium 4-methylbenzenesulfonate 374.1 350 350 368.9
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 266.6 263 250 266.8
1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide 256 268 260 261.8
1-ethyl-3-methylimidazolium trifluoromethanesulfonate 262.6 299 270 270.9
1-ethyl-3-methylimidazolium 4-methylbenzenesulfonate 328.2 349 350 338.5
1-ethyl-3-methylimidazolium thiocyanate 266 283 280 276.4
1-ethyl-3-methyl-1H-imidazolium tricyanomethanide 274.9 274 270 281.2
1-ethyl-3-methylimidazolium dimethylphosphate 312.9 280 270 306.0
tetrabutylphosphonium bromide 376.1 370 380 393.5
1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide 259.1 268 260 260.6
1-ethyl-3-methylimidazolium tetrafluoroborate 284.1 270 270 281.5
N,N,N-triethylhexan-1-aminium trifluoromethanesulfonate 347.83 319 330 351.8
N,N,N-triethylhexan-1-aminium tricyanomethanide 290.03 270 280 300.1
N-decyl-N-methylmorpholinium trifluoromethanesulfonate 349.2 350 340 353.9
3-ethylthiazolium bis((trifluoromethyl)sulfonyl)amide 303.1 303 300 324.5
cetylpyridinium chloride 354.1 343 340 364.5
1-hexadecyl-1-methylpiperidinium acetylsalicylate 303.9 309 310 350.3
1-hexadecyl-1-methylpiperidinium chloride 365.9 393 390 374.1
3-methyl-1-octadecyl-1H-imidazolium bis((trifluoromethyl)sulfonyl)amide 328.1 306 300 318.0
MAE 17.8 16.3 13.4
RMSE 22.4 20.9 20.6

aUnits are in Kelvin (K). bTaken from ref 11. cEvaluated with the model in ref 26. dEvaluated with the model in ref 27.
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experimental measurements for ILs with very high (>200 °C)
and low (<0 °C) Tm are often prone to errors.47
These results further strengthened the argument that, by

learning and extracting features from pairs of input, the
pSCNN model indeed captures the essence of the problem
being addressed and hence can predict the Tm of ILs with good
accuracy.
Considering that the synthesis of an ionic liquid is generally

challenging and time-consuming, and the number of ionic
liquids is virtually unlimited, it is therefore crucial to narrow
down the potential pool of suitable ionic liquids to be
synthesized. By taking combinations of all cations (1760) and
anions (203) in our data set, we could evaluate the Tm of
nearly 360,000 ILs (Figure 7) with satisfactory accuracy using
our pSCNN model. This extensive data set, with diverse Tm’s
ranging from −100 to 367 °C, may provide immense value for
advancing and customizing the synthesis of new IL.

4. CONCLUSIONS
Ionic liquids (IL) offer a broad spectrum of potential
applications, owing to their distinctive and tunable properties,
rendering them versatile across diverse fields. However, the
practical applications of numerous ionic liquids are often
constrained by their unfavorable physical or chemical proper-
ties. Due to the extensive number of potential combinations of
anions and cations, the experimental screening of ionic liquids
is impractical. Consequently, a robust and efficient method for
predicting the properties of ionic liquids becomes imperative.
In this study, we focused on predicting the normal melting
temperature of ionic liquids, employing a pseudo-Siamese
convolution neural network (pSCNN) inspired by SCNN.
Utilizing a comprehensive data set of 3098 ILs, comprising 203
distinct anions and 1760 unique cations, we systematically
assess various deep learning models (ANN, pSCNN, and
Transformer-CNN), along with molecular descriptors (ECFP
fingerprint and Mordred properties), for their performance in
predicting the Tm of ILs. Noteworthy among the investigated
modeling schemes, the pSCNN, in conjunction with filtered
Mordred descriptors, demonstrates superior performance,
yielding a mean absolute error (MAE) and root-mean-square
error (RMSE) of 24.36 and 31.56 °C, respectively.
Subsequent feature analysis uncovered that the pivotal

molecular descriptors influencing the melting process of ionic
liquids are intricately associated with molecular symmetry,
electrostatic interactions, and van der Waals forces. This
observation highlights the effectiveness of the pSCNN model,
which, by learning and extracting features from input pairs,
effectively captures the essence of the addressed problem,
explaining its superior performance. It is noteworthy that the
same methodology can be extended to predict various other
properties of ionic liquids.
By applying the pSCNN model to all combinations of anions

and cations within our data set, we constructed an extensive
database for advancing and customizing the synthesis of new
IL. The final model developed in this study and all data used in
this work are publicly available at https://github.com/Anan-
Wu-XMU/pSCNN/.

Figure 5. Boundaries of the applicability domain for the pSCNN
model. Compounds positioned to the left of the gray dashed line fall
within the 95% confidence interval, while those positioned to the left
of the green dashed line are within the 99% confidence interval.

Figure 6. Top 10 most important molecular descriptors that have a
significant impact on the Tm of ILs.

Figure 7. Predicted melting points of all potential ILs generated by
the pSCNN model.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02393
ACS Omega 2024, 9, 31694−31702

31700

https://github.com/Anan-Wu-XMU/pSCNN/
https://github.com/Anan-Wu-XMU/pSCNN/
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ASSOCIATED CONTENT
Data Availability Statement
All materials for the prediction of the normal melting point of
ionic liquid are publicly available at https://github.com/Anan-
Wu-XMU/pSCNN/.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c02393.

Selected models for IL melting point prediction (Table
S1); brief description of permutation feature importance
analysis; Tm of ILs lay outside the 95% confidence
interval boundary (Table S2); and boundaries of the
applicability domain for the 39 ILs (Figure S1) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Anan Wu − State Key Laboratory of Physical Chemistry of
Solid Surface, Fujian Provincial Key Laboratory for
Theoretical and Computational Chemistry, Departmental of
Chemistry, College of Chemistry and Chemical Engineering,
Xiamen University, Xiamen 361005, P. R. China;
orcid.org/0000-0001-5243-9291; Email: ananwu@

xmu.edu.cn
Xin Lu − State Key Laboratory of Physical Chemistry of Solid
Surface, Fujian Provincial Key Laboratory for Theoretical
and Computational Chemistry, Departmental of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China; orcid.org/0000-
0003-4968-9462; Email: xinlu@xmu.edu.cn

Authors
Tao Liang − State Key Laboratory of Physical Chemistry of
Solid Surface, Fujian Provincial Key Laboratory for
Theoretical and Computational Chemistry, Departmental of
Chemistry, College of Chemistry and Chemical Engineering,
Xiamen University, Xiamen 361005, P. R. China

Wei Liu − State Key Laboratory of Physical Chemistry of Solid
Surface, Fujian Provincial Key Laboratory for Theoretical
and Computational Chemistry, Departmental of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China

Kai Tan − State Key Laboratory of Physical Chemistry of Solid
Surface, Fujian Provincial Key Laboratory for Theoretical
and Computational Chemistry, Departmental of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China; orcid.org/
0000-0001-8372-2778

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c02393

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (nos. 92161117 and 22373079) and the
Natural Science Foundation of Fujian Province of China (grant
no. 2021J01020).

■ REFERENCES
(1) Freemantle, M. An Introduction to Ionic Liquids; Royal Society of
Chemistry, 2010.

(2) Lei, Z. G.; Dai, C. N.; Chen, B. H. Gas Solubility in Ionic
Liquids. Chem. Rev. 2014, 114 (2), 1289−1326.
(3) Watanabe, M.; Thomas, M. L.; Zhang, S. G.; Ueno, K.; Yasuda,
T.; Dokko, K. Application of Ionic Liquids to Energy Storage and
Conversion Materials and Devices. Chem. Rev. 2017, 117 (10), 7190−
7239.
(4) Zhang, Q. H.; Zhang, S. G.; Deng, Y. Q. Recent advances in
ionic liquid catalysis. Green Chem. 2011, 13 (10), 2619−2637.
(5) Zhou, Y.; Qu, J. Ionic Liquids as Lubricant Additives: A Review.
Acs Appl. Mater. Interfaces 2017, 9 (4), 3209−3222.
(6) Sahbaz, Y.; Williams, H. D.; Nguyen, T. H.; Saunders, J.; Ford,
L.; Charman, S. A.; Scammells, P. J.; Porter, C. J. H. Transformation
of Poorly Water-Soluble Drugs into Lipophilic Ionic Liquids
Enhances Oral Drug Exposure from Lipid Based Formulations. Mol.
Pharmaceutics 2015, 12 (6), 1980−1991.
(7) Gupta, K. M.; Jiang, J. W. Cellulose dissolution and regeneration
in ionic liquids: A computational perspective. Chem. Eng. Sci. 2015,
121, 180−189.
(8) Hijo, A. A. C. T.; Maximo, G. J.; Costa, M. C.; Batista, E. A. C.;
Meirelles, A. J. A. Applications of Ionic Liquids in the Food and
Bioproducts Industries. Acs Sustainable Chem. Eng. 2016, 4 (10),
5347−5369, DOI: 10.1021/acssuschemeng.6b00560.
(9) Zhang, J.; Sun, B.; Zhao, Y.; Tkacheva, A.; Liu, Z.; Yan, K.; Guo,
X.; McDonagh, A. M.; Shanmukaraj, D.; Wang, C.; et al. A versatile
functionalized ionic liquid to boost the solution-mediated perform-
ances of lithium-oxygen batteries. Nat. Commun. 2019, 10 (1),
No. 602.
(10) Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids:
Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111 (5),
3508−3576.
(11) https://ilthermo.boulder.nist.gov/.
(12) Katritzky, A. R.; Lomaka, A.; Petrukhin, R.; Jain, R.; Karelson,
M.; Visser, A. E.; Rogers, R. D. QSPR correlation of the melting point
for pyridinium bromides, potential ionic liquids. J. Chem. Inf. Comput.
Sci. 2002, 42 (1), 71−74.
(13) Izgorodina, E. I.; Seeger, Z. L.; Scarborough, D. L. A.; Tan, S. Y.
S. Quantum Chemical Methods for the Prediction of Energetic,
Physical, and Spectroscopic Properties of Ionic Liquids. Chem. Rev.
2017, 117 (10), 6696−6754.
(14) Sun, N.; He, X. Z.; Dong, K.; Zhang, X. P.; Lu, X. M.; He, H.
Y.; Zhang, S. J. Prediction of the melting points for two kinds of room
temperature ionic liquids. Fluid Phase Equilib. 2006, 246 (1−2), 137−
142.
(15) López-Martin, I.; Burello, E.; Davey, P. N.; Seddon, K. R.;
Rothenberg, G. Anion and cation effects on imidazolium salt melting
points: A descriptor modelling study. ChemPhysChem 2007, 8 (5),
690−695.
(16) Huo, Y.; Xia, S. Q.; Zhang, Y.; Ma, P. S. Group Contribution
Method for Predicting Melting Points of Imidazolium and
Benzimidazolium Ionic Liquids. Ind. Eng. Chem. Res. 2009, 48 (4),
2212−2217.
(17) Gharagheizi, F.; Ilani-Kashkouli, P.; Mohammadi, A. H.
Computation of normal melting temperature of ionic liquids using a
group contribution method. Fluid Phase Equilib. 2012, 329, 1−7.
(18) Mital, D. K.; Nancarrow, P.; Ibrahim, T. H.; Jabbar, N. A.;
Khamis, M. I. Ionic Liquid Melting Points: Structure-Property
Analysis and New Hybrid Group Contribution Model. Ind. Eng.
Chem. Res. 2022, 61 (13), 4683−4706.
(19) Varnek, A.; Kireeva, N.; Tetko, I. V.; Baskin, I. I.; Solov’ev, V. P.
Exhaustive QSPR studies of a large diverse set of ionic liquids: How
accurately can we predict melting points? J. Chem. Inf. Model. 2007, 47
(3), 1111−1122.
(20) Varnek, A.; Baskin, I. Machine Learning Methods for Property
Prediction in Chemoinformatics:? J. Chem. Inf. Model. 2012, 52 (6),
1413−1437.
(21) Wu, A.; Ye, Q.; Zhuang, X.; Chen, Q.; Zhang, J.; Wu, J.; Xu, X.
Elucidating Structures of Complex Organic Compounds Using a
Machine Learning Model Based on the 13C NMR Chemical Shifts.
Precis. Chem. 2023, 1 (1), 57−68.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02393
ACS Omega 2024, 9, 31694−31702

31701

https://github.com/Anan-Wu-XMU/pSCNN/
https://github.com/Anan-Wu-XMU/pSCNN/
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02393/suppl_file/ao4c02393_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anan+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5243-9291
https://orcid.org/0000-0001-5243-9291
mailto:ananwu@xmu.edu.cn
mailto:ananwu@xmu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xin+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4968-9462
https://orcid.org/0000-0003-4968-9462
mailto:xinlu@xmu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tao+Liang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kai+Tan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8372-2778
https://orcid.org/0000-0001-8372-2778
https://pubs.acs.org/doi/10.1021/acsomega.4c02393?ref=pdf
https://doi.org/10.1021/cr300497a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr300497a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00504?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00504?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c1gc15334j
https://doi.org/10.1039/c1gc15334j
https://doi.org/10.1021/acsami.6b12489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/mp500790t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/mp500790t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/mp500790t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ces.2014.07.025
https://doi.org/10.1016/j.ces.2014.07.025
https://doi.org/10.1021/acssuschemeng.6b00560?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.6b00560?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.6b00560?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-019-08422-8
https://doi.org/10.1038/s41467-019-08422-8
https://doi.org/10.1038/s41467-019-08422-8
https://doi.org/10.1021/cr1003248?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr1003248?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://ilthermo.boulder.nist.gov/
https://doi.org/10.1021/ci0100503?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci0100503?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00528?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00528?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.fluid.2006.05.013
https://doi.org/10.1016/j.fluid.2006.05.013
https://doi.org/10.1002/cphc.200600637
https://doi.org/10.1002/cphc.200600637
https://doi.org/10.1021/ie8011215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie8011215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie8011215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.fluid.2012.05.017
https://doi.org/10.1016/j.fluid.2012.05.017
https://doi.org/10.1021/acs.iecr.1c04292?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.1c04292?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600493x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci600493x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci200409x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci200409x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/prechem.3c00005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/prechem.3c00005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(22) Carrera, G.; Aires-de-Sousa, J. Estimation of melting points of
pyridinium bromide ionic liquids with decision trees and neural
networks. Green Chem. 2005, 7 (1), 20−27.
(23) Venkatraman, V.; Evjen, S.; Knuutila, H. K.; Fiksdahl, A.;
Alsberg, B. K. Predicting ionic liquid melting points using machine
learning. J. Mol. Liq. 2018, 264, 318−326.
(24) Low, K.; Kobayashi, R.; Izgorodina, E. I. The effect of
descriptor choice in machine learning models for ionic liquid melting
point prediction. J. Chem. Phys. 2020, 153 (10), No. 104101,
DOI: 10.1063/5.0016289.
(25) Baskin, I.; Epshtein, A.; Ein-Eli, Y. Benchmarking machine
learning methods for modeling physical properties of ionic liquids. J.
Mol. Liq. 2022, 351, No. 118616, DOI: 10.1016/j.mol-
liq.2022.118616.
(26) Makarov, D. M.; Fadeeva, Y. A.; Shmukler, L. E.; Tetko, I. V.
Beware of proper validation of models for ionic Liquids! J. Mol. Liq.
2021, 344, No. 117722, DOI: 10.1016/j.molliq.2021.117722.
(27) Makarov, D. M.; Fadeeva, Y. A.; Shmukler, L. E.; Tetko, I. V.
Machine learning models for phase transition and decomposition
temperature of ionic liquids. J. Mol. Liq. 2022, 366, No. 120247,
DOI: 10.1016/j.molliq.2022.120247.
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