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Abstract: Yellow pigment content is one of the main traits considered for grain quality in durum
wheat (Triticum turgidum L.). The yellow color is mostly determined by carotenoid pigments, lutein
being the most abundant in wheat endosperm, although zeaxanthin, α-carotene and β-carotene are
present in minor quantities. Due to the importance of carotenoids in human health and grain quality,
modifying the carotenoid content and profile has been a classic target. Landraces are then a potential
source for the variability needed for wheat breeding. In this work, 158 accessions of the Spanish
durum wheat collection were characterized for carotenoid content and profile and genotyped using
the DArTSeq platform for association analysis. A total of 28 marker-trait associations were identified
and their co-location with previously described QTLs and candidate genes was studied. The results
obtained confirm the importance of the widely described QTL in 7B and validate the QTL regions
recently identified by haplotype analysis for the semolina pigment. Additionally, copies of the Zds
and Psy genes on chromosomes 7B and 5B, respectively, may have a putative role in determining
zeaxanthin content. Finally, genes for the methylerythritol 4-phosphate (MEP) and isopentenyl
diphosphate (IPPI) carotenoid precursor pathways were revealed as additional sources of untapped
variation for carotenoid improvement.

Keywords: Triticum turgidum; grain quality; GWAS; landraces

1. Introduction

Durum wheat (Triticum turgidum L.) is an important food crop cultivated worldwide.
For the 2021–2022 season, the world durum wheat production is estimated to be 30.86 Mt [1].
Durum wheat is used to make pasta and couscous, consumed all over the world, and it is
an essential crop for many countries of the Mediterranean basin. Italy is the main producer
in the European Union with an average production of 4.4 Mt in the period 2016–2020,
followed by France (1.67 Mt), Spain (1.02 Mt) and Greece (0.83 Mt) [2].

Yellow pigment content (YPC) (also referred to as the yellow index, YI) and pro-
tein content are the most important quality traits for durum wheat (reviewed by [3]).
Carotenoids pigments are responsible for the bright yellow color of pasta and other durum
wheat-derived products [4] and the golden color of related cereals such as tritordeum [5].
Lutein is the main carotenoid in wheat endosperm [4,5], but other carotenoids, including
zeaxanthin, α-carotene and β-carotene, are also present [6–8].

Carotenoids play important roles in both health and product commercialization. On
one hand, these pigments are considered essential nutrients in the human diet due to
their important functions in health, particularly for their role as antioxidants [9]. For
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instance, lutein and zeaxanthin have been related with the alleviation of age macular
degeneration [10], while the consumption of carotenoid-rich foods reduces the risk of
developing certain types of cancer [11]. Furthermore, carotenoids with unsubstituted
β-rings, such as β-carotene, have provitamin A activity [12] which has promoted the
development of biofortification programs in maize and rice to fight vitamin A deficiency
all over the world [13,14].

On the other hand, carotenoids are also important for food commercialization due
to their relation to color. This is of paramount importance in the case of durum wheat
because consumers expect a bright yellow color of pasta. This demand has encouraged an
efficient breeding activity for YPC/YI resulting in new durum wheat varieties with higher
carotenoid content in grains [15,16]. The success in breeding has been possible because the
genetic component is predominant over environmental. The high heritability reported in
durum wheat [17], along with the importance of the YPC in breeding, has promoted the
development of many genetic studies for the identification of quantitative trait loci (QTL)
or marker-trait associations (MTAs) related to the YPC and/or YI in semolina (reviewed
by [3]).

The main QTL for the YPC has been located at the homoeologous group 7 in the Trit-
iceae species [18–23], but many other QTL/MTAs related to the YPC have been identified,
as reviewed by Colasuonno et al. [3]. The yellow index is strongly related to pigment
concentration, but it does not provide information about the carotenoid composition. The
profiling of individual carotenoids by using chromatographic techniques, mostly HPLC,
is necessary in order to gain information about the nutritional value of grains [15,24], as
well as to decipher the genetic control for the biosynthesis of specific carotenoids which
has been scarcely studied both in durum [6] and common wheat [25].

Modern breeding has been very successful at fixing numerous beneficial alleles at
many loci [26]. However, modern breeding and domestication bottlenecks have left behind
many beneficial alleles. This fact has renewed the interest in durum wheat landraces,
conserved both in situ and ex situ at germplasm banks, as a source of diversity for many
traits of interests that are no longer present in modern varieties.

The potential of landraces in cereal breeding for stress tolerance is widely recog-
nized [27], but they also harbor diversity for quality traits. For instance, carotenoid esterifi-
cation is a potential target for durum wheat biofortification [28] because carotenoid esters
are more stable than free carotenoids. This has promoted the development of breeding
programs to transfer the genes responsible for carotenoid esterification from common wheat
(XAT-7D) [29] and the wild barley Hordeum chilense Roem. et Schultz. (XAT-7Hch) [30] to
durum wheat. These programs were started on the assumption that no lutein esters were
present in durum wheat varieties [31].

Interestingly, a recent characterization of the carotenoid profile in a Spanish collection
of durum wheat landraces has allowed the identification of some accessions with significant
ability to produce lutein esters [7]. In addition, these landraces also showed diversity for
other carotenoids, such as zeaxanthin, which unveil the existence of genetic variability
useful for the discovery of beneficial untapped MTAs/QTL for specific carotenoids which
could be incorporated into new cultivars with enhanced nutritional properties. Despite the
nutritional interest of carotenoids, few attempts have been made to investigate the genetic
control of individual carotenoids in durum wheat [6] and common wheat [25], likely due
to the higher cost of this methodology compared to those used to determine YPC or YI.

Given the importance of carotenoids in durum wheat quality and nutritional value, the
aim of this work was to identify MTAs for both the total carotenoid content and individual
carotenoids using DArTSeq markers. In addition, this work is also intended to confirm the
diversity for the ability of carotenoid esterification in durum wheat landraces.
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2. Results and Discussion
2.1. Genotyping

The diversity panel was genotyped using the DArTSeq platform (Diversity Array
Technology Pty Ltd. DArT P/L, Canberra, Australia) as described by Ávila et al. [32].
In summary, a set of more than 190,000 markers was obtained, including both the pres-
ence/absence variation and SNP markers. The high-confidence and low-confidence gene
models from the ‘Svevo’ genome were used as a template for the alignment of the DArTSeq
markers using the BLASTn algorithm (E-value < 1.5 × 10−6, sequence identity > 80%) and
BLAST+ [33]. A final set of 8025 DArTSeq markers corresponding to genes, with a minor
allele frequency above 5% and less than 10% of missing data, were used for the association
analyses. The distribution of these markers at each chromosome is shown in Figure 1. The
linkage disequilibrium decay for the genotypic panel is 2 Mbp [32].
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Figure 1. Marker distribution along ‘Svevo’ genome.

2.2. Phenotypic Assessment

The carotenoid content and profile were determined in the diversity panel. The
following traits were analyzed: free lutein = (all-E)-lutein + (Z)-lutein isomers (including
both (9Z)- and (13Z)-lutein); total lutein = free lutein + lutein monoesters (including both
lutein monolinoleate and lutein monopalmitate) + lutein diesters (including lutein linoleate-
palmitate, lutein dipalmitate and lutein dilinoleate); (all-E)-zeaxanthin (hereinafter referred
as zeaxanthin); (all-E)-α-carotene (hereinafter referred as α-carotene) and (all-E)-β-carotene
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(hereinafter referred as β-carotene). The total carotenoid content was calculated as the
sum of the total lutein, zeaxanthin, α-carotene and β-carotene. The proportion (%) of the
carotenoids derived from the β,β-branch of the carotenoid pathway relative to the total
carotenoid content (hereinafter referred as Pββ) was also considered as an additional trait
for the association analysis.

The carotenoid content and profile for the first season were reported in a previous
work [7] aimed to identify the esterification ability in durum wheat (Supplementary Table S1).
As expected, lutein was the main carotenoid, representing around 90% of the total carotenoid
content in agreement with previous results [6,8,31,34,35]. The carotenoid profile also in-
cluded zeaxanthin with a 10.5% mean contribution to the carotenoid pool in accordance
with previous reports [35]. Minor quantities of β-carotene and α-carotene were also de-
tected. Both the total carotenoid content and individual carotenoids showed high broad-
sense heritability values: 0.97 for total carotenoid and for zeaxanthin, 0.96 for free lutein,
0.95 for total lutein and 0.85 for α–carotene. This is in agreement with the high values of
heritability reported in previous studies: 0.48–0.99 [19]; 0.91–0.94 [15]; and 0.78–0.96 [6].
The only exception was β–carotene with a broad-sense heritability of 0.25.

The carotenoid content and profile were analyzed in a second season with similar
results (Supplementary Table S1). The esterification ability of the accessions BGE047507,
BGE047535 and BGE047536, reported by Requena-Ramírez et al. [7], was confirmed with the
results obtained in the second season. The accession BGE047520 was lost in this field trial,
but its esterification ability was also confirmed with an individual grown at a greenhouse
(data not shown).

The Pearson correlation between the seasons for the total carotenoid content was
0.782 (Figure 2). Similar values were obtained for the total lutein (r = 0.769) and free lutein
(r = 0.767). Significant correlations were also found for zeaxanthin (r = 0.597), β-carotene
(r = 0.575) and α-carotene (r = 0.920) (Figure 2).

In addition, moderate to high correlations among the traits were also detected (Figure 3).
The total carotenoid content was highly correlated with both total lutein and free lutein
as expected because lutein accounts for around 90% of the total carotenoids. Zeaxanthin,
β-carotene and α-carotene showed high correlations among them with r-values above
0.879 (Figure 3), while they showed moderate correlations with the total carotenoid content
(r-values of 0.673, 0.680 and 0.670, respectively).
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2.3. Marker-Trait Associations

The total carotenoid, total lutein, free lutein, zeaxanthin, α-carotene and β-carotene
contents were considered as primary traits for the association analysis. In addition to them,
the relative contribution of the β,β-carotenoids to the total carotenoid pool (Pββ) was also
considered as a secondary trait. The Manhattan plots obtained for each trait are shown in
Figure 4. A total of 28 MTAs were identified (Table 1): 4 for total carotenoids (2 on 2B and
2 on 7B), 4 for total lutein (2 on 2B and 2 on 7B), 6 for free lutein (1 on 2B, 1 on 3B and 4 on
7B), 9 for zeaxanthin (2 on 2B, 1 on 3A, 1 on 4A, 3 on 5A, 1 on 5B and 1 on 7B) and 5 for the
relative contribution of the β, β-branch carotenoids to the total carotenoid pool (1 on 2B,
1 on 3A, 2 on 5B and 1 on 6B). No MTA was identified for β-carotene or α-carotene, but
these carotenoids account for less than 1% of the total carotenoid content in durum wheat,
and thus, the potential of any MTA for these traits in breeding is very limited.

Table 1. Marker-trait associations (MTAs) identified for carotenoid content and profile and
DArTseq markers.

Marker Trait 1 Chromosome Pos (Mbp) 2 LOD FDR 3 R-square Type 4 Effect 5 Svevo 6

1022270 Zeax 2B 5.33 3.70 0.200 0.096 SNP/T|C 0.01 C
1699053 Flut 2B 15.6 5.49 0.028 0.083 PAV/T|G 0.49 T
1699053 Tlut 2B 15.6 5.04 0.073 0.076 PAV/T|G 0.47 T
1699053 Tcar 2B 15.6 4.90 0.102 0.075 PAV/T|G 0.51 T
4412035 Pββ 2B 699.6 3.93 0.155 0.111 SNP/A|G 3.09 A
4910734 Zeax 2B 739.9 5.86 0.006 0.149 SNP/T|C 0.01 T
2327237 Tlut 2B 765.6 4.05 0.195 0.065 PAV/T|G 0.47 T
2327237 Tcar 2B 765.6 4.03 0.201 0.065 PAV/T|G 0.06 T
1126970 Zeax 3A 575.0 6.09 0.006 0.144 SNP/T|C 0.02 T
1127042 Pββ 3A 679.7 4.06 0.130 0.133 SNP/T|C 1.61 C
5563469 Flut 3B 796.9 3.99 0.173 0.060 PAV/T|G 0.65 T
1215093 Zeax 4A 648.0 5.42 0.011 0.152 SNP/T|A 0.01 A
2346846 Zeax 5A 306.3 4.48 0.060 0.124 SNP/C|T 0.10 C
4006073 Zeax 5A 567.0 4.04 0.110 0.102 SNP/A|G 0.003 A
3028544 Zeax 5A 661.4 4.32 0.070 0.110 SNP/T|C 0.02 T
12772437 Pββ 5B 287.2 4.73 0.051 0.137 SNP/T|C 3.56 T
1237690 Pββ 5B 601.1 3.95 0.154 0.108 SNP/T|C 4.17 C
2255960 Zeax 5B 685.8 3.79 0.160 0.091 SNP/G|A 0.01 A
4408288 Pββ 6B 45.2 4.93 0.051 0.146 SNP/C|G 0.69 C
1094075 Zeax 7B 37.4 4.59 0.050 0.078 SNP/A|G 0.01 A
26672068 Flut 7B 692.4 4.10 0.155 0.055 PAV/T|G 0.54 T
4008170 Flut 7B 697.8 3.93 0.179 0.040 PAV/T|G 0.49 T
4407472 Flut 7B 697.8 4.74 0.070 0.044 PAV/T|G 0.54 T
4407472 Tlut 7B 697.8 4.37 0.130 0.050 PAV/T|G 0.53 T
4407472 Tcar 7B 697.8 4.44 0.145 0.042 PAV/T|G 0.56 T
4989844 Flut 7B 698.6 4.52 0.095 0.042 PAV/T|G 0.67 T
4989844 Tlut 7B 698.6 4.45 0.121 0.0430 PAV/T|G 0.67 T
4989844 Tcar 7B 698.6 4.11 0.190 0.040 PAV/T|G 0.69 T

1 Trait abbreviations: Tlut: Total lutein; Flut: Free lutein; Tcar: Total carotenoids; Zeax: Zeaxanthin; Pββ:
Relative proportion of carotenoids from the β,β-branch relative to the total carotenoid pool; 2 Position in Mbp;
3 Significance level (α) calculated using the False Discovery Rate approach [36]; 4 Type (SNP = Single Nucleotide
Polymorphism; PAV = Presence absence variation). Alternative nucleotides are also indicated. In the case of
PAV, T means presence, G means absence. The allele favorable to the trait is shown in bold; 5 Difference in the
effect between alternative alleles; 6 SNP at ‘Svevo’ for each MTA. ‘Svevo’ genes matching each MTA are shown in
Supplementary Table S2.
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Figure 4. Manhattan plots from the GWAS analyses. For each trait, a suggestive (FDR) threshold by
Benjamini and Hochberg [36] at α = 0.2 is shown (blue horizontal line). The significance of each MTA
calculated with the same FDR approach is shown in Table 1.

The position of the MTAs identified in this work were compared with the regions for
the YPC and YI previously reported. In a first round, the QTL track of the ‘Svevo’ genome
browser was considered [37], which provides the position of the known QTL curated
by the International Durum Wheat Genome Sequencing Consortium. The overlapping
confidence intervals of QTLs for the YPC or YI were used to define eight QTL regions co-
locating or in the vicinity of the MTAs identified in this work (Figure 5) as follows: QTL-2B
includes QTL0090 (YI) [38] and QTL0057 (SY) [39]; QTL-3A represents QTL0992 (YPC) [40];
QTL-3B is QTL0954 (YPC and YI) [6]; QTL4A1 is composed of QTL1799 (YPC), QTL1800
(YI) [41] and QTL0061 (YI) [39]; QTL4A2 includes QTL1801 (YI) [41] and QTL2086 (YI) [23];
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QTL5A1 with QTL0955 (YPC) [6]; QTL5A2 with QTL1802 (YPC) [41]; QTL5B with QTL0069
(YI) [39]; and QTL7B is composed of QTL1810, QTL1811, QTL1812, QTL1813, (YPC, YI) [41],
QTL0996 (YPC) [40], QTL0079 (YI) [39], QTL2088 (YPC, YI) [23] and QTL0176 (YI) [42].

The main QTL controlling the YPC variation in durum wheat is represented by QTL7B
(Figure 5). Thus, the identification of MTAs for the total carotenoids, total lutein and
free lutein co-locating with QTL7B is in agreement with previous reports in wheat and
related species [19,21,22,43]. The Phytoene synthase 1 gene is known to be responsible for
the variation at this QTL in durum wheat [22,43] and other Triticeae species [3,5].
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Figure 5. Co-localization of marker-trait associations identified in this work with previous QTLs
for yellow pigment content (YPC) and semolina yellowness (YI). Regions identified as ‘QTL’ were
depicted according to their position at the ‘Svevo’ genome browser [37]. Haplotype regions associated
to semolina pigment [44] were identified as ‘hap’ regions. The MTA between wPt-2724-2B and Yellow
index was reported by [45]. Trait abbreviations: Tlut: Total lutein; Flut: Free lutein; Tcar: Total
carotenoids; Zeax: Zeaxanthin; Pbb: Relative proportion of carotenoids from the β,β-branch relative
to the total carotenoid pool.
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The MTAs identified in chromosomes 2BS and 3BL co-localized with the QTL-2B and
QTL-3B regions, respectively, (Figure 5), and thus, these regions can be also considered
validated. The same happens with the MTA 1126970-Zeaxanthin in chromosome 3A
because it is within the confidence interval of QTL-3A (Figure 5). In this case, the confidence
interval of QTL-3A almost spans the complete chromosome and its utility is limited.
Nevertheless, this MTA also co-localizes with the haplotype hap-3A-5 (see below) which is
located in a narrow interval. The QTL regions QTL-4A-1, QTL-4A-2, QTL-5A-1, QTL-5A-2
and QTL-5B are in the vicinity of some MTAs, but they cannot be associated with those
described in this work.

Thus, in a second round, we also considered the haplotype loci reported by
N’Diaye et al. [44], described to be under selection for the semolina pigment in Cana-
dian durum wheat. Interestingly, many of the MTAs identified in this study co-localized
with some of these regions (reported as hap-regions in Figure 5). Indeed, seven hap-
regions, hap_2B_6, hap_2B_7, hap_3A_5, hap_3A_6, hap_5B_5, hap_5B_3 and hap_6B_2,
co-localized with MTAs for the carotenoid content or profile. Thus, the MTAs identified in
this study that are co-localizing with these haplotype regions are validating them.

Several MTAs did not co-localize with QTLs or hap-regions in chromosomes 2BL, 4AL,
5A (two MTAs), 5B and 7BS. Thus, we inspected the ‘Svevo’ genome in the proximity of
MTAs, looking for carotenogenic genes that may be responsible for the detected variation.
Interestingly, the MTA for the zeaxanthin content in chromosome 5B is co-locating with
TRITD5Bv1G246960 coding for Phytoene synthase (Figure 5). The phytoene synthase (PSY)
regulates a rate-limiting step in the carotenoid biosynthesis. Gallagher et al. [46] showed
that PSY is essential for the carotenoid accumulation in the endosperm as discussed above.
Although Psy1 is mainly responsible for carotenoid accumulation in grains, there are three
paralogous Psy genes in grasses [47,48] that may contribute to the determination of the
carotenoid content in grain. Indeed, the mRNA levels of Psy2 have been associated with
the differences in the total carotenoid content between tritordeum and durum wheat [49].
Thus, the co-localization of the MTA for the zeaxanthin content with TRITD5Bv1G246960
suggests a putative contribution to carotenoid content variation.

Similarly, the MTA 1094075/zeaxanthin is 10Mbp from the gene TRITD7Bv1G017350
coding for a ζ-carotene desaturase (Zds). Although there are many genes in this region,
none of them seem related to the carotenoid content. The ‘Svevo’ genome includes four Zds
genes located on chromosomes 2A, 2B, 7A and 7B. This enzyme catalyzes the conversion of
ζ -carotene to lycopene via the intermediary neurosporene. From lycopene, the carotenoid
pathway divides into two branches, the β,ε-branch, leading to the synthesis of α-carotene
and lutein, and the β,β-branch for the synthesis of β-carotene and zeaxanthin. Zds genes
have received attention in wheat. Indeed, a cDNA sequence encoding a Zds gene was
cloned in the hexaploid wheat ‘Chinese Spring’ [50]. Later studies allowed the development
of functional markers for TaZDS-D1 [51] and TaZDS-A1 [52]. These markers co-segregated
with QTLs for the YPC content on chromosomes 2A [52] and 2D [51], showing the role
of ZDS in the determination of the YPC in common wheat. Recent findings by Pasten
et al. [53] have demonstrated similar associations of Zds in durum wheat. Indeed, these
authors identified the complete sequence of Td-ZDS-A-IWGSC and TD-ZDS-B-IWGSC and
confirmed the association between the QTL of grain YPC on chromosome 2A and Td-ZDS-
A-IWGSC in durum wheat. Considering our results, the role of TRITD7Bv1G017350 in the
determination of zeaxanthin content is worthy of further investigation in the future.

Finally, the distal part of chromosome 2BL seems to be relevant for the determination
of the carotenoid content and profile. Indeed, two hap-regions associated with semolina pig-
ment (hap_2B_6 and hap_2B_7) [44], two MTAs for the lutein content and total carotenoid
content (this work) and one MTA for the yellow index (wPt-2724-2B) [45] are located in this
region. Furthermore, this area is also important for the determination of grain carotenoid
content in related Triticeae species. In fact, a QTL for the YPC has been consistently detected
in chromosome 2HchL of H. chilense Roem. et Schultz [54,55]. Considering the high degree
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of collinearity of this wild barley with other Triticeae species [56], it seems that this region
corresponds to the candidate region defined in 2BL in this work.

Thus, we inspected the ‘Svevo’ genome at the distal part of chromosome 2BL (green
region in Figure 5), searching for candidate genes from the carotenoid precursor path-
ways because upstream precursors of geranylgeranyl diphosphate (GGPP) and isopen-
tenyl diphosphate (IPP) can affect carotenoid accumulation [57]. The methylerythritol
4-phosphate (MEP) pathway is the source of the isoprenoid precursors isopentenyl diphos-
phate (IDP) and dimethylallyl diphosphate (DMADP) [58]. The MEP pathway has seven
enzymatic steps [58], including some genes previously investigated in maize [59], such as
DXS (1-deoxy-D-xylulose-5-phosphate synthase), DXR (1-deoxy-D-xylulose-5-phosphate
reductoisomerase), HDS (hydroxy-methylbutenyl diphosphate synthase) and HDR (hy-
droxymethylbutenyl diphosphate reductase) which catalyzes the reduction of hydroxy-
methylbutenyl diphosphate to IDP and DMADP [58]. IDP and DMADP are isomerized by
isopentenyl diphosphate isomerase (IDI) [58]. After this, the geranylgeranyl diphosphate
synthase (GGPPS) catalyzes the conversion of DMAPP to GGPP which is subsequently used
to synthesize phytoene by the phytoene synthase, constituting the first step of the carotenoid
pathway [9]. In maize, the mRNA levels for the carotenoid precursor genes during en-
dosperm development correlated with the carotenoid content [59], and thus, it is possible
that these genes may contribute to the carotenoid content in durum wheat. Indeed, four
upstream genes were detected: TRITD2Bv1G234360 coding for IDI, TRITD2Bv1G241110
coding for GGPPS, TRITD2Bv1G263010 coding for HDS and TRITD2Bv1G265450 coding
for HDR. It is necessary to note that this candidate region also contains genes contributing
to carotenoid degradation during grain processing, such as lipoxygenases (LOX) [60] and
peroxidases (PER) [61]. However, the carotenoid extraction protocol used in this work
includes the addition of BHT (butylated hydroxytoluene) as an antioxidant, which prevents
the effect of oxidative enzymes, and thus, the association of LOX or PER genes with the
MTAs identified in this work can be ruled out.

3. Materials and Methods
3.1. Plant Material, Field Design and Statistical Analysis

A diversity panel composed of 158 Spanish durum wheat landraces was selected for this
study, including the core collection development by Ruiz et al. [62] (Supplementary Table S3).
The original seeds were obtained from the National Plant Genetic Resources Centre (INIA-
CSIC, Alcalá de Henares, Spain). Passport data are available at the Spanish Inventory of Plant
Genetic Resources Centre (Inventario Nacional de Recursos Fitogenéticos. Available online:
https://bancocrf.inia.es/es/ (accessed on 6 July 2022)).

The diversity panel was characterized for carotenoid content and profile during two
seasons at field conditions in Córdoba (Spain). The experimental details and the results for
the first season were recently described by (Requena-Ramírez et al., [7]). For the second
season, the field trial consisted of non-replicated rows 1 m long with 10 plants per row,
arranged using an augmented design with two commercial durum wheat varieties (‘Kiko
Nick’ and ‘Olivadur’) as checks. The field trial was cultivated under an anti-bird net
structure and using an anti-weed net. Grain samples were harvested at maturity and stored
at −80 ◦C until the extraction and analysis of carotenoids (described below).

The R package ‘AugmentedRCBD’ [63] was used to perform the analysis. This function
is designed for analysis of variance of an augmented randomized block design [64,65] and
the generation, as well as comparison, of the adjusted means of the treatments/genotypes.
Broad-sense heritability was based on the BLUEs of genotypic effects using Formula
19 from [66],

H2 =
σ2

g

σ2
g + v/2

where v is the mean variance of the difference of two adjusted treatment means (BLUE).
Correlograms were obtained using the BLUEs and GGally packages in RStudio.

https://bancocrf.inia.es/es/
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3.2. Extraction of Carotenoids and HPLC Analysis

Carotenoids pigments were extracted from durum wheat grains according to the
method described in [30,67]. All the steps for carotenoid extraction and analysis were car-
ried out under dimmed light to prevent carotenoid photo-degradation and isomerization.

Analysis of carotenoids was performed by HPLC as described in previous works [67,68].
Carotenoid quantification was performed using calibration curves prepared from pure
pigment standards. The concentration of (Z)-isomers of lutein was assessed by using the
calibration curve for (all-E)-lutein. Similarly, lutein esters were determined as free lutein
equivalents. All the analyses were performed in duplicate and carried out on the same day
of the preparation of extracts. Data were expressed as µg/g fresh weight (µg/g fw).

3.3. DNA Isolation, Genotyping and Marker-Trait Associations

The isolation of genomic DNA from two-week-old leaves of seedlings was conducted
using the CTAB protocol [69] with the specifications described by Rodríguez-Suárez
et al. [30]. Genotyping by sequencing was performed at Diversity Arrays Technology
Pty Ltd. (DArTSeq) (Camberra, Australia). DArTSeq markers were processed as described
by Ávila et al. [32]. Briefly, DArTSeq markers were aligned to the durum wheat reference
genome ‘Svevo’ [37]. A BLASTn search [70] was performed using BLAST+ [33] with the
following criteria: E-value of <1.5 × 10−6 and sequence identity of >80%. DArTSeq se-
quences were used as a query against the durum wheat coding sequences (nucleotides)
of annotated high- (HC) and low (LC)-confidence genes. Only DArTSeq markers with
a significant match to HC or LC genes were considered for genetic analyses. A principal
component analysis (PCoA) was conducted based on genotype data with DArTSeq markers
spaced at least 2 Mbp using Tassel 5.2.80 [71] to inspect the existence of structures in the
durum wheat collection and depicted using ggplot2 [72]. Marker-trait associations were
determined using TASSEL 5.2.80 [71]. Markers with a minimum allele frequency of less
than 5 and 10% of missing data points were not included in the association analyses.

Association analyses were performed using a mixed linear model (MLM), including
the PCoA as the Q matrix, the kinship matrix calculated with Tassel MLM (Q + K) and the
arithmetic mean of both seasons as phenotypic data (considering the adjusted means data
for each trait and season). False discovery rate (FDR) for each trait was calculated with the
approach developed by Benjamini and Hochberg [36] using the RainbowR package [73]
and RStudio v. 1.3.1093 [74]. The significance of each MTA was calculated using the FDR
approach [36]. Manhattan plots were obtained using the qqman package [75] in RStudio.

4. Conclusions

The identification of Zds and Psy genes co-locating with MTA for zeaxanthin content
on chromosomes 7B and 5B, respectively, suggests a putative role of these genes in the
determination of the content of this carotenoid in durum wheat. Similarly, genes coding for
the MEP and IPPI precursor pathways may constitute an additional source of untapped
variation for carotenoid improvement in durum wheat. The co-localization of the MTAs
identified in this study with widely reported QTLs such as QTL-7B was expected and
supports the findings of this study. Similarly, the co-localization of MTAs for the total
carotenoid content with QTL regions for semolina pigment recently identified using hap-
lotype analysis constitute an independent validation of these hap-regions. The MTAs
identified in this work will be useful for the pre-breeding and breeding of durum wheat
for increasing both the total and specific carotenoid content (lutein and zeaxanthin). In
addition, the confirmation of the esterification ability in durum wheat would allow the
development of breeding programs aimed at the enhancement of carotenoid esterification
in grain.
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