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Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer’s Disease

(AD) and Parkinson’s Disease (PD). Conventional therapeutic strategies seek to enhance

cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and

few studies have examined noradrenergic dysfunction as a target for medication

development. We review the literature of noradrenergic dysfunction in AD and PD

with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit.

The LC sends noradrenergic projections diffusely throughout the cerebral cortex and

plays a critical role in attention, learning, working memory, and cognitive control. The

LC undergoes considerable degeneration in both AD and PD. Advances in magnetic

resonance imaging have facilitated greater understanding of how structural and functional

alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the

potential roles of the noradrenergic system in the pathogenesis of AD and PD with an

emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI

studies, where we highlight changes in LC connectivity with the default mode network

(DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity

and increasing saliency and task control network activities to meet behavioral challenges.

We finish by proposing potential and new directions of research to address noradrenergic

dysfunction in AD and PD.

Keywords: norepinephrine, dopamine, neurodegeneration, neurodegenerative, locus coeruleus, ventral tegmental

area, midbrain, MRI

ANATOMICAL AND NEUROBIOLOGICAL CONSIDERATIONS

Alzheimer’s Disease
Alzheimer’s disease (AD) is a well-known cause of dementia that is associated with the
accumulation of intraneuronal neurofibrillary tangles (NFTs; Braak et al., 1994) and extraneuronal
neuropil threads (Perry et al., 1991). NFTs are composed of abnormally phosphorylated tau, a
protein supporting cytoskeletal structure in neurons (Delacourte andDefossez, 1986; Bancher et al.,
1989; Braak et al., 1994). Neuropil threads (NTs) are composed of tau and ubiquitin and located
typically at distal dendrites (Perry et al., 1991). The progression of AD, first detailed by Braak
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and Braak in 1995, was described in six stages that correlate with
accumulation of NFTs and NTs. Stage I and II are regarded as the
entorhinal stage and associated with accumulation of NFTs and
NTs in the transentorhinal regions (Jellinger et al., 1991; Bancher
et al., 1993; Braak et al., 1994). Stage III and IV are known as the
limbic stage and progress to involve considerable portions of the
entorhinal cortex. The limbic stage is also associated with minor
hippocampal change. Clinically, stage III/IV are associated with
impaired cognitive functioning and minor personality changes
(Jellinger et al., 1991; Bancher et al., 1993; Braak et al., 1994). The
last two stages, stage V and VI, represent the isocortical stages
of AD. The feature that distinguishes the isocortical stages is
significant involvement of the cerebral cortex and hippocampus.
Stage V and VI manifest in clinically diagnosable AD.

It is important to note that AD does not follow a uniform
pattern of neuroanatomical changes. A more recent study of AD
pathology revealed three NFT distribution patterns described as
typical AD, hippocampal-sparing AD and limbic predominant
AD (Whitwell et al., 2012). Typical AD presents with diffuse NFT
deposition in the hippocampus and cortex. Hippocampal-sparing
AD demonstrates less NFT deposition in the hippocampus but
more in the cortex, when compared to typical AD. Lastly, limbic
predominant AD involves significantly more NFT deposition in
the hippocampus than either of the other two groups. Thus, AD
appears to be a relatively heterogeneous disease in terms of its
etiological processes as characterized by chemical neuroanatomy.

Whereas clinical staging focuses on changes in the cerebral
cortex and hippocampus, other studies have implicated changes
in the locus coeruleus (LC) and nucleus basalis of Meynert
(NbM). The loss of cholinergic neurons in the NbM was
demonstrated as early as 1981 by Nissl-stained histological
sections and cell counts in post-mortem studies of AD
(Whitehouse et al., 1981). Patients with AD demonstrated
degeneration of >75% of the neurons within the NbM
(Whitehouse et al., 1982). The NbM cholinergic neurons project
throughout the brain and loss of the cholinergic inputs may
account for behavioral changes such as short-term memory
loss, disorientation and problems with language in AD (Burns
and Iliffe, 2009). Other studies demonstrated significant loss
of LC neurons in AD (Matthews et al., 2002; Szot et al.,
2006; Insua et al., 2010). In fact, LC degeneration has been
documented in AD too as early as 1981 (Tomlinson et al.,
1981). In comparative studies of disease burden in patients with
advanced-stage AD the NbM demonstrated the most significant
cell loss followed by the LC and transentorhinal cortex (Arendt
et al., 2015). LC degeneration also occurs during healthy aging,
which could amount to 50% of cell loss in the tenth decade of
life (Manaye et al., 1995). In a longitudinal clinical-pathologic
cohort study, 165 individuals completed a battery of cognitive
tests and underwent brain autopsy upon death to examine
neuronal density of the LC and other aminergic nuclei in the
midbrain/brain stem (Wilson et al., 2013). Modeled together,
only LC neuronal density was related to cognitive decline,
suggesting that the LC may be a structural component of neural
reserve.

Parkinson’s Disease
Structural brain changes in Parkinson’s Disease (PD) similarly
follow a time course. PD is associated with the formation of
intraneuronal aggregates of the protein alpha synuclein, known
as Lewy bodies. The accumulation of Lewy bodies is closely
associated with the degeneration of the ventrolateral substantia
nigra including specifically the pars compacta (SNc; Fearnley and
Lees, 1991; Damier et al., 1999). The loss of SNc neurons results in
diminution of extranigral dopaminergic projections throughout
the striatum, allocortex, and neocortex (Braak et al., 2003).

As with AD, post-mortem pathology has been described
in six different stages which were determined using alpha-
synuclein-immunopositive Lewy neurites and Lewy bodies to
track disease progression in PD (Braak et al., 2003). Stage 1 is
associated with lesions in the dorsal IX/X motor nucleus. Stage
2 includes the findings of stage 1 with additional involvement
of the caudal raphe nuclei, gigantocellular reticular nucleus,
and coeruleus-subcoeruleus complex. Stage 3 is characterized by
significant lesions in the midbrain specifically in the area of the
SNc. Progression to stage 4 represents first cortical involvement
specifically in the transentorhinal region and allocortex. Stage 5
involves the neocortex with lesions present in sensory association
areas and prefrontal regions. Finally, progression to stage six is
characterized by additional lesions in sensory association areas
and new lesions in the premotor, primary sensory, and primary
motor areas. In summary, lesions in PD start at the dorsal motor
nucleus and progress to involve the LC, SNc, transentorhinal
and cortical regions, in that order. It is worth noting that Braak
staging of PD implies an ascending propagation of pathology
similar to that of prion diseases and offers to explain the neural
processes underlying symptom progression. However, the exact
mechanisms of stage progression remain unclear. In particular,
studies have reported that only about half of postmortem brains
in PD demonstrated Lewy body pathology consistent with the
Braak staging (Kalaitzakis et al., 2008; Jellinger, 2009; Halliday
et al., 2012), challenging the notion that PD progresses in a
sequence similar to prion diseases (Surmeier et al., 2017).

Thus, whereas degeneration of the SNc is the most
classic neuropathological finding in PD, postmortem studies
also demonstrate Lewy body burden and associated loss of
noradrenergic neurons in the LC (Chan-Palay and Asan, 1989;
Braak et al., 2006; Szot, 2012). Interestingly, the loss of LC
neurons in PD has been documented to occur earlier and in
greater magnitude than that of the SNc (Rommelfanger and
Weinshenker, 2007). For instance, in Braak staging of PD
involvement of the LC starts in stage 2 while involvement of the
SNc is not present until stage 3. Loss of LC neurons in PD is
associated with depletion of noradrenergic inputs in the frontal
cortex, cerebellum, striatum, thalamus, and hypothalamus (Kish
et al., 1984; Shannak et al., 1994; Pavese et al., 2011), all of which
receive projections from the LC. Together, although postmortem
anatomical studies have focused on changes in the SNc, there is
significant evidence in support of changes of the noradrenergic
system as a critical etiological process of PD. Table 1 highlights
the anatomical and neurobiological changes in AD and PD.
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TABLE 1 | Summary of anatomical changes in Alzheimer’s Disease and

Parkinson’s Disease.

Anatomical Changes in AD and PD

AD -Braak Staging (Braak et al., 1994)

I/II—NFTs and NTs accumulate in transentorhinal regions

III/IV—pathology in entorhinal cortex with hippocampal change

V/VI—significant accumulation in cerebral cortex and hippocampus

-Early loss of neurons is also seen in NbM and the LC (Szot et al., 2006)

PD -Accumulation of LBs is closely associated with degeneration of the SNc

(Fearnley and Lees, 1991; Damier et al., 1999)

-Loss of SNc neurons is associated with diminution of extranigral

dopaminergic projections through striatum, allocortex, and neocortex

(Braak et al., 2003)

-Loss of LC neurons occurs earlier and in greater magnitude than that of

the SNc (Rommelfanger and Weinshenker, 2007)

-Loss of LC neurons is associated with depletion of noradrenergic inputs

in the frontal cortex, cerebellum, striatum, thalamus, and hypothalamus

(Kish et al., 1984; Shannak et al., 1994; Pavese et al., 2011)

AD, Alzheimer’s Disease; PD, Parkinson’s disease; NFT, neurofibrillary tangle; NT, neuropil

thread; NbM, nucleus basalis of Meynert; LC, locus coeruleus; LB, Lewy body; SNc,

substantia nigra pars compacta.

STRUCTURAL BRAIN IMAGING IN AD AND
PD

Alzheimer’s Disease
Many studies have correlated Braak staging with atrophic
changes on magnetic resonance imaging (MRI) using voxel-
based morphometry (VBM) (Ohnishi et al., 2001; Matsuda et al.,
2002; Chetelat et al., 2003; Rémy et al., 2005; Matsuda, 2013),
focusing largely on hippocampal atrophy as a biomarker of AD
(Jack et al., 2011). The patterns of cerebral atrophy as detected
on MRI vary across pathological subtypes of AD (Whitwell
et al., 2012; Noh et al., 2014). Medial temporal cortical atrophy

is seen in limbic-predominant while severe cortical atrophy is
seen more in hippocampal-sparing AD (Whitwell et al., 2012).
Distinct anatomical changes have also been identified on MRI
when early and late onset AD are contrasted (Frisoni et al.,
2007). Individuals with early onset AD tend to demonstrate more
extensive occipital gray matter atrophy whereas those with late
onset AD demonstrate more extensive hippocampal atrophy.
The notion of prioritizing anatomical integrity of an isolated
region as a biomarker of AD may be convenient; however, the
anatomical heterogeneity brings to question the sensitivity of
structural changes of individual brain regions as a diagnostic tool
of AD.

Although the LC is implicated by postmortem anatomical
studies, only recently have studies begun to employ high-
resolution fast spin-echo T1-weighted imaging to reveal signal
attenuation of the LC in individuals with mild cognitive
impairment (MCI) and AD (Takahashi et al., 2015). This finding

corresponds well to pathological findings of a decrease in
neuromelanin contents as a result of LC neuronal loss in these
patients. It is important to note that conventional MRI has
not been successful in delineating the LC. However, fast spin-
echo T1-weighted imaging, which relies on the paramagnetic

properties of neuromelanin, has been demonstrated as a
reliable method to quantify signal attenuation or volume loss
in neuromelanin- containing tissues such as the LC and
SNc (Tosk et al., 1992; Enochs et al., 1997). Neuromelanin
is a pigment found in both SNc and LC (Lehéricy et al.,

2012). Neuromelanin is identified in monoamines-containing
neurons and formed by polymerization of 4,5-dihydroxyindole
monomers (Charkoudian and Franz, 2006) via enzymatic
processes that involve monoamine oxidase (Rabey and Hefti,
1990), and its concentrations increase with age. Neuromelanin
can chelatemetals and protect against oxidative stress (Tribl et al.,
2009). On the other hand, excessive neuromelanin accumulation
compromises neuronal integrity and causes dissolution of cell
mass and decrease in neuromelanin signals, as may occur in
neurodegenerative conditions. Neuromelanin has paramagnetic-
T1 shortening effects and, when combined with metals like iron
and copper, wouldmake the SNc and LC appear hyper-intense on
MRI. On neuromelanin-MRI there is signal attenuation in MCI
participants who do or do not to progress to AD, suggesting that
attenuated LC signal alone may not be diagnostic of AD. In fact,
the LC exhibited signal changes during healthy aging (Shibata
et al., 2006; Betts et al., 2017). Most recently, a stereological study
of postmortem human brains reported that as the Braak staging
increases by 1 unit, LC volume decreases by 8.4% (Theofilas et al.,
2017). Together, although not necessarily pathognomonic of AD,
LC volume measurements offer a promising biomarker to track
the progression to AD from presymptomatic stages.

Parkinson’s Disease
Findings from VBM studies of PD demonstrate varying results
with the most common changes identified in the frontal and
parieto-occipital regions (Biundo et al., 2011; Pan et al., 2012;
Lee et al., 2013; Fioravanti et al., 2015). A meta-analysis of 498
patients with idiopathic PD revealed reductions in gray matter
(GM) volume in the left frontal temporal cortices encompassing
inferior frontal and superior temporal gyri (Pan et al., 2012).
Other brain areas demonstrating GM reductions in PD were
the left insular cortex, with insular GM density potentially
related to memory scores (Pan et al., 2012; Lu et al., 2016),
and the middle and superior frontal gyrus (Biundo et al., 2011).
In a study where patients were scanned twice 2 years apart,
PD but not controls demonstrated significant GM loss in the
putamen and parietal cortex (Fioravanti et al., 2015). On the
other hand, some studies did not reveal any significant differences
in GM volume between PD and healthy controls (Menke et al.,
2014; Borroni et al., 2015). In one of these studies PD patients
were split into those with and without dementia and the PD
group with dementia but not the group without demonstrated
reductions in frontal regional GM volume (Borroni et al., 2015).
However, compared to health controls, the two groups combined
did not show frontal GM reduction. Together, these findings
suggest that variability across studies may relate to the cognitive
status of study participants. Other issues including sample size,
duration of illness, medication status may all impact the imaging
findings.

Neuromelanin Imaging has also been widely used to examine
the integrity of SNc function in PD (Shibata et al., 2006;
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Ohtsuka et al., 2014; Castellanos et al., 2015; Reimão et al.,
2015). In melanin-sensitive MR sequences both the SNc and
the LC demonstrate reduction in signal intensity or contrast
ratio (CR) in PD (Sasaki et al., 2006). The finding of decreased
neuromelanin CR in the SNc has been reported in multiple
studies of PD (Sasaki et al., 2006; Matsuura et al., 2013; Miyoshi
et al., 2013; Mukai et al., 2013; Ohtsuka et al., 2014; Isaias et al.,
2016). A recent work of neuromelanin-sensitive MRI employed
an automated segmentation algorithm to quantify the volumes
of the SNc and LC (Castellanos et al., 2015). Receiver operating
characteristic analysis demonstrated better accuracy using the
SNc than LC volumes in the diagnosis of PD. Neuromelanin-
sensitive MRI has also been used to differentiate essential tremor
from PD (Reimão et al., 2015) and early-stage PD from healthy
controls (Ohtsuka et al., 2014). Thus, neuromelanin MRI offers a
promising technique for characterizing structural and potentially
functional changes of the SNc and LC in PD.

Summary
Neuromelanin-sensitive MRI has become a popular tool to
investigate LC function and dysfunction. Neuromelanin CRs
enable better visualization and assessment of the anatomical and
functional integrity of the LC. In healthy adults neuromelanin
CR of the LC increased until the sixth decade of life at which
point it started to decrease (Shibata et al., 2006). This as
well as another study (Clewett et al., 2016) suggests that LC
neuromelanin accumulates in an inverted U pattern with age and
peaks around 60 years. In older adults, greater LC signal intensity
was associated with higher composite scores of cognitive reserve
(Clewett et al., 2016). Neuromelanin CRs were greater in
healthy adults as compared to patients with major depression,
schizophrenia, MCI, PD, and AD (Liu et al., 2017). Together,
these findings demonstrate the importance of LC imaging in
investigating cognitive changes in neurodegenerative conditions
and other psychiatric illnesses that implicate monoaminergic
dysfunction.

FUNCTIONAL BRAIN IMAGING IN AD AND
PD

Functional MRI (fMRI) utilizes blood-oxygenation level
dependent (BOLD) signals as a proxy for neural activity. The
premise of using BOLD signals to reflect neural activities lies
in the fact that oxyhemoglobin and deoxyhemoglobin exhibit
different magnetic properties. As neurons are activated, more
oxygen is consumed, resulting in a change in the ratio of
oxyhemoglobin and deoxyhemoglobin, which can be picked up
by BOLD imaging. Many studies have combined fMRI and a
behavioral task to examine cerebral responses to cognitive and
affective challenges. However, a decade of work has suggested
that functional organization of the brain can be delineated by
how BOLD signals of brain regions are correlated during a
resting state. Low-frequency BOLD signal fluctuations reflect
connectivity between functionally related brain regions (Biswal
et al., 1995; Fair et al., 2007; Fox and Raichle, 2007). Studies of this
“spontaneous” activity have provided insights into the intrinsic

functional architecture of the brain and shown that coordinated
spontaneous fluctuations are present in motor, visual, auditory,
default mode, memory, language, dorsal attention, and ventral
attention systems (Fox and Raichle, 2007). Other studies have
suggested connectivity analysis of resting-state fMRI data as a
useful alternative to characterizing functional subdivisions of a
brain region (Zhang and Li, 2012a,b, 2014, 2017).

In a study of resting state functional connectivity (rsFC),
the LC demonstrated positive connections to bilateral superior
frontal gyrus, primary motor cortex, inferior parietal cortex,
inferior temporal cortex, anterior parahippocampal gyrus,
posterior insula, putamen, pallidum, ventrolateral thalamus,
midbrain, and large areas of the cerebellum (Zhang et al., 2016).
The LC showed negative connectivities too to a wide swath of
brain regions, including bilateral visual cortex, middle/superior
temporal cortex, precuneus, retrosplenial cortex, posterior
parahippocampal gyrus, frontopolar cortex, caudate nucleus,
and the dorsal and medial thalamus. Findings of positive
connectivity support a role for norepinephrine (NE) in orienting
and sensorimotor responses to external stimuli. The findings
of negative connectivity to the precuneus support a role for
the LC in regulating activity of the default-mode network
(DMN). Together, through connectivity to the cerebral cortex
the LC may suppress DMN activity in response to external
stimuli and facilitate engagement of the saliency (“alert and
orient”) and executive control systems (Li et al., 2007; Zhang
and Li, 2010, 2012a,b). On the other hand, one should be
cautioned against over-interpreting rsFC in terms of functional
implications. A positive rsFC does not necessarily mean that
the two brain regions are functionally congruent. Long range
cortical-cortical/subcortical projections may target inhibitory
interneurons within the recipient regions (Thomson and Lamy,
2007; Apicella et al., 2012; DeNardo et al., 2015). For instance,
the amygdala and ventromedial prefrontal cortex (vmPFC) show
positive rsFC (Veer et al., 2010; Schultz et al., 2012) but may
respond in isolation or in opposite directions to behavioral
challenges such as affective regulation (Urry et al., 2006) and
extinction learning of fear (Phelps et al., 2004).

The proposition that the LC circuit responds to behavioral
tasks is supported by task-based studies demonstrating LC
activation to stimulus change. In an oddball task LC activity
increased to the detection of novel, oddball stimuli (Krebs
et al., 2017). In a picture-word interference task the LC
responded to novel as compared to familiar stimuli (Krebs
et al., 2013). In an attention task, exposure to the alerting
condition was associated with increased activation of the LC
(Neufang et al., 2015). The LC is also consistently activated
in response to stimuli that trigger arousal responses via fear,
pain, and anger (Liddell et al., 2005; Brooks et al., 2017;
Gilam et al., 2017). The role of the LC in arousal is examined
by a recent study using dexmedetomodine to elicit a state
of reduced arousal (Song et al., 2017). Dexmedetomidine, a
potent sedative, is an α2 agonist that reduces LC neuronal
firing and NE release. Along with decreasing arousal,
dexmedetomidine diminished connectivity between the
LC and posterior cingulate cortex (PCC) as compared to
the awake state. Further, dexmedetomidine disrupted PCC
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connectivity with subcortical and cortical structures central
to executive control. These findings together support the
role of the LC in facilitating attention shifts in response to
stimulus change and in situations that demand a higher level
of alertness (see Liu et al., 2017 for a review of task-related LC
studies).

Finally, an overview of electrophysiological studies of LC
neuronal functions would place human imaging findings in a
clearer perspective (Aston-Jones and Waterhouse, 2016). First,
cortical projections of the LC are predominantly ipsilateral
whereas subcortical projections are more likely to be bilateral.
Further, projections of individual LC neurons collateralize to
cover functionally related brain regions. Neurons projecting
to different circuits are segregated in the LC and may release
NE asynchronously in response to task demands. Second,
studies employing iontophoresis of NE in target regions and
electrical stimulation of the LC showed that LC suppresses
spontaneous neuronal activity in the cerebellum and cerebral
cortex, establishing NE as an inhibitory neurotransmitter at
central synapses. Other studies showed that the spontaneous
activities are suppressed to a greater extent than stimulus-
evoked activity, resulting in an increase of the signal noise
ratio in response to stimulus. Third, LC neurons discharge both
tonically and phasically. LC neurons discharge tonically at a
moderate rate but respond to task-related stimuli phasically
during focused attention. The Adaptive Gain Theory proposes
that LC phasic responses facilitate behavioral adaptation to
changing environment whereas tonic activities suppress behavior
of low utility (Aston-Jones and Waterhouse, 2016).

Functional Imaging Studies of AD
The default mode network (DMN) comprises a set of brain
regions, including parts of the precuneus and posterior cingulate
cortex (PCC; Leech and Sharp, 2013), that are more active during
mind wandering, retrieval of autobiographical memories, and
monitoring of the arousal state (Leech and Sharp, 2013), than
during exposure to environmental stimuli. A host of studies have
noted changes in DMN activity and connectivity in AD during
rest (Jacobs et al., 2013; Badhwar et al., 2016; Kim et al., 2016).
Reduced DMN connectivities can be observed from early stages
of MCI to late stage AD (Adriaanse et al., 2014; Gour et al.,
2014; Badhwar et al., 2016), as well as in asymptomatic patients
genetically at risk of AD (Chhatwal et al., 2013; Sala-Llonch et al.,
2013; Quiroz et al., 2015). Reduced DMN connectivity in AD
also correlates with disease severity, as measured by the Clinical
Dementia Rating scale (Zhou et al., 2010; Petrella et al., 2011;
Brier et al., 2012). Of all the brain networks studied, the DMN
demonstrates the most consistent connectivity changes in AD.

The salience network (SAN) is a network of structures
including most prominently the dACC and anterior insula that
processes a constant stream of external stimuli to identify salient
inputs for goal-directed behavior. In contrast to the DMN,
which is an inwardly driven network, the SAN integrate sensory,
visceral, and autonomic information to facilitate decisionmaking
(Seeley et al., 2007). Changes in the SAN activity and connectivity
are also implicated in AD. Network based analyses frequently
demonstrate hyperconnectivity within the SAN in patients with

AD (Thomas et al., 2014; Wang et al., 2015; Badhwar et al., 2016).
Abnormal SAN connectivity has been documented across the
disease spectrum from early to late onset AD (Wang et al., 2015;
Badhwar et al., 2016), in patients with autosomal dominant AD
(Thomas et al., 2014), and in those who carry the APOEe4 gene,
which is known to increase the risk for AD (Machulda et al.,
2011; Goveas et al., 2013). One of the key hubs of the SAN is
the anterior insular cortex (Seeley et al., 2007). In a large, voxel-
based meta-analysis, the anterior insula demonstrated significant
hyperconnectivity in AD (Badhwar et al., 2016). The SAN
receives limbic and autonomic inputs and facilitates activity shifts
between the DMN and frontoparietal network to help guide
behavior (Seeley et al., 2007; He et al., 2014). Moreover, changes
in SAN connectivity may perturb DMN function and vice versa
(Bonnelle et al., 2012; Zhao Q. et al., 2017). Thus, the SAN
plays a critical role in regulating DMN activity and failure to
suppress DMN activity during task challenges correlates with
worse cognitive performance. The implications of these changes
for AD will be discussed in more depth later.

Other studies demonstrated hyperconnectivity of the limbic
network (Gour et al., 2011, 2014; Badhwar et al., 2016), mostly in
the hippocampus and entorhinal cortex, in AD (Badhwar et al.,
2016). Intriguingly, anterior temporal network hyperconnectivity
was correlated positively with memory performance in patients
with early onset AD (Gour et al., 2014), perhaps reflecting
a transient compensation before progression to late-stage
dementia. Together with findings on the DMN, network
connectivity changes appear to be a prominent feature of AD.
The significance of these findings needs to be evaluated with
longitudinal records of disease progression.

Functional Imaging Studies of PD
In patients with PD slower processing speeds were associated
with decreased DMN connectivity at rest, specifically between the
posterior cingulate, medial prefrontal and inferior parietal nodes
(Disbrow et al., 2014). Offmedication, PD patients were unable to
suppress DMN activity during a facial emotion recognition task
(Delaveau et al., 2010). In the Montreal card-sorting task, a task
that involves manipulation of short-term memory, patients with
PD showed less deactivation of the DMN as compared to healthy
controls (van Eimeren et al., 2009). Another study reported
worse performance on executive functioning, psychomotor speed
and verbal memory in association with increased positive
connectivity between the SAN and DMN (Putcha et al., 2016).
In other words, reduced anti-correlation between these two
networks was associated with impaired cognitive performance in
PD. The latter study implicates dysregulation of both SAN and
DMN in PD.

The right inferior parietal cortex (IPC), a region associated
with the DMN (Mars et al., 2012; Davey et al., 2016),
demonstrated aberrant connectivity in PD patients (Tahmasian
et al., 2017) with and without depression (Wen et al.,
2013), particularly in those who were cognitively impaired
(Amboni et al., 2015; Gorges et al., 2015). Altered IPL activity
was demonstrated consistently across different neural metrics,
including the amplitude of low frequency fluctuations and
regional homogeneity (Tahmasian et al., 2017). In ameta-analysis
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of rs-fMRI studies, connectivity changes in the right posterior
IPC represent the most consistent finding in PD (Tahmasian
et al., 2017) and may disrupt activity of the precuneus, PCC,
mid-cingulate cortex, middle and superior frontal gyrus, and
orbitofrontal gyrus. It is worth noting again that, the posterior
IPC is part of the DMN (Davey et al., 2016). Sub-cluster analysis
of functional connectivity identified four functionally dissociable
subregions in the IPC (Zhang and Li, 2014; Bzdok et al., 2015)
and the posterior subregion, in the area of angular gyrus and
with the strongest connectivity to the DMN, is the exact region
that demonstrated aberrant connectivity in PD (Tahmasian et al.,
2017). PD patients demonstrated increased parietal cortical
activation when off as compared to on medication (Herz et al.,
2014). Mutation carriers of leucine-rich repeat kinase 2 (LRR2),
a population with an elevated risk for PD, also demonstrated
reduced connectivity between the IPL and posterior putamen,
a task network region (Helmich et al., 2015). Altered DMN
activity was associated with decreased SNc activity and with
disease severity in PD (Wu et al., 2012). In summary, as with AD,
dysconnectivity of the DMN appears a core neural feature and
may contribute to cognitive decline in PD.

OTHER IMAGING STUDIES

Conventional T1/T2 MRI has not been successful at identifying
changes in the SNc or other structures in PD. More advanced
techniques including magnetization transfer (Wolff and Balaban,
1989; Rademacher et al., 1999; van Waesberghe et al., 1999;
Helms et al., 2009), adiabatic and MR microscopy (Lehéricy
et al., 2012) and relaxometry have revealed changes in the SNc
in individuals with PD. In addition to neuromelanin imaging,
iron imaging has been studied in PD. Brain iron content is
increased in association with dopamine loss in the SNc in PD
patients (Dexter et al., 1991; Martin et al., 2008; Martin, 2009;
Mascalchi et al., 2012). Thus, imaging iron with nonionizingMRI
offers a strategy to detect neuroanatomical changes in PD. In
a two-year follow-up study iron-related relaxation increased in
the anterior globus pallidus, caudate nucleus and medial SNc
and the changes in the globus pallidus and SNc were related
to the development of MCI (Rossi et al., 2014). More recently
an iron imaging study employing quantitative susceptibility
mapping (QSM) reported increased QSM magnetic values in
PD patients as compared to healthy controls. The difference
between SNc iron deposition between healthy controls and
patients with advanced PD was the most prominent, with
SNc iron content correlated with symptom severity in PD
(An et al., 2018).

Positron emission tomography (PET) imaging of PD focused
primarily on changes in dopamine transporter (DAT) density.
In a recent meta-analysis DAT and vesicular monoamine
transporter in early to moderate PD is decreased most
significantly in the posterior putamen followed by the anterior
putamen and caudate. Moreover, disease severity was linearly
correlated with dopamine loss (Kaasinen and Vahlberg, 2017).
No studies to our knowledge investigated norepinephrine
transporter (NET) density in PD. [(11)C]MENNET is a novel

PET radiotracer with high affinity and selectivity for NET and
may provide insights into noradrenergic dysfunction in PD
(Adhikarla et al., 2016).

PET imaging has also demonstrated utility in tracking
AD progression. Fluorine-18 fluorodeoxyglucose (FDG) PET
imaging assessed regional cerebral glucose metabolism and
showed decreased metabolic rates in the medial temporal lobes,
lateral temporoparietal cortex, posterior cingulate cortex, and
precuneus in patients with AD in comparison to normal aging
(Sarikaya, 2015). In a post-mortem autoradiographic study of
(S,S)-[(18)F]FMeNER-D(2), a selective ligand for NET, AD
patients showed a reduction in NET density at the LC and
thalamus in correlation with disease progression by Braak staging
(Gulyás et al., 2010). The size of the LC is below the spatial
resolution of PET imaging but in vivo imaging of NET density
in the thalamus may be useful to highlight early noradrenergic
dysfunction in AD (Gulyás et al., 2010).

Table 2 highlights VBM, neuromelanin and other imaging
findings of AD and PD.

NORADRENERGIC DYSFUNCTION IN AD
AND PD

An Overview
The LC sends noradrenergic projections to the hippocampus
(Loughlin et al., 1986), amygdala (Fallon et al., 1978), and
prefrontal cortex (PFC; Loughlin et al., 1982). Phasic LC
activation in response to target stimuli facilitates anticipation
(Aston-Jones et al., 1985, 1994) and release of norepinephrine
(NE) in the cortex (Mountcastle et al., 1972; Aston-Jones and
Cohen, 2005) prior to a motivated action. NE signals in the
PFC regulate attention, learning and working memory (Robbins,
2000). On the other hand, NE interacts with other catecholamines
like dopamine (DA) to support these functions, with NE often
playing a regulatory role in DA signaling. For example, chemical
modulation or electrical stimulation of the LC increases the
extracellular concentrations of both NE and DA (Smith and
Greene, 2012). The ability of the LC to effect direct and indirect
control of catecholamines has important implications on the
arousal state as well as autonomic, motor, sensory, and cognitive
functions.

Both AD and PD involve noradrenergic dysfunction. For
example, orthostatic and postprandial hypotension in PD can be
related to autonomic dysfunction and NE deficiency (Kaufmann
and Goldstein, 2013). Disruption of the circadian rhythm
and arousal/wakefulness cycles manifest in both diseases and
are associated with noradrenergic dysfunction (Berridge and
Waterhouse, 2003; Benarroch, 2009). In PD, decreased CSF
concentration of NE is associated with freezing of gait and
administration of a NE precursor improves gait (Tohgi et al.,
1993a,b). Animal studies involving degeneration of the LC
also support noradrenergic dysfunction in AD. In transgenic
mice carrying homozygous forms of amyloid precursor
protein/presenilin 1 genes, induction of LC degeneration with
N-(2-chloroethyl)-N-ethyl-bromo-benzylamine resulted in an
exacerbation of olfactory memory deficits and weakening of
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TABLE 2 | Summary of imaging findings in Alzheimer’s Disease and Parkinson’s Disease.

Non-Functional Imaging in AD and PD

AD Voxel-based morphometry Hippocampal atrophy (Jack et al., 2011)

Medial temporal atrophy in limbic-predominant AD (Whitwell et al., 2012)

Severe cortical atrophy in hippocampal-sparing AD (Whitwell et al., 2012)

More extensive occipital GM atrophy in early- vs. late- onset AD (Frisoni et al., 2007)

More extensive hippocampal atrophy in late- vs. early-onset AD (Frisoni et al., 2007)

Neuromelanin Imaging LC demonstrates neuromelanin signal attenuation in MCI (Shibata et al., 2006; Betts et al., 2017)

LC volume decreases by 8.4% with progression to each consecutive Braak stage, as measured by neuromelanin signals

(Theofilas et al., 2017)

PET Imaging PET imaging with F18-FDG radioligand reveals decreased cerebral metabolic rates in the medial temporal lobes, lateral

temporoparietal cortex, posterior cingulate cortex and precuneus (Sarikaya, 2015)

(S,S)-[(18)F]FMeNER-D(2), a radioligand specific for norepinephrine transporter (NET), demonstrates reduced NET density in

the LC and thalamus on postmortem brains (Gulyás et al., 2010)

PD Voxel-based morphometry GM volume reductions in the left frontal temporal cortices encompassing inferior frontal and superior temporal gyri (Pan

et al., 2012)

GM reductions in left insular cortex (Pan et al., 2012; Lu et al., 2016)

PD patients with dementia have more prominent reductions in frontal regional GM (Borroni et al., 2015)

Iron Imaging Brain iron content in the SNc is increased in PD patients, in association with loss of DA neurons (Dexter et al., 1991; Martin

et al., 2008; Martin, 2009; Mascalchi et al., 2012)

Increased iron-content in the globus pallidus and anterior and medial SNc, in correlation with MCI in PD (Rossi et al., 2014)

Iron content in the SNc as measured by quantitative susceptibility mapping correlates with the symptom severity of PD (Liu

et al., 2017)

Neuromelanin Imaging SNc and LC demonstrate reduction in signal intensity in PD (Fox and Raichle, 2007; Zhang and Li, 2012a,b, 2014, 2017;

Zhang et al., 2016)

Differences on neuromelanin-sensitive MRI distinguish essential tremor from PD and early-stage PD from healthy-controls

(Fair et al., 2007; Fox and Raichle, 2007)

PET Imaging Decline in dopamine transporter occurs most significantly in the posterior putamen followed by anterior putamen and

caudate and there is a correlation between dopamine loss and disease severity (Kaasinen and Vahlberg, 2017)

AD, Alzheimer’s Disease; PD, Parkinson’s disease; MCI, Mild cognitive impairment; GM, gray matter; LC, locus coeruleus; PET, positron emission tomography; F18-FDG, Fluorine-18

fluorodeoxyglucose; NET, norepinephrine transporter; GM, gray matter; SNc, substantia nigra pars compacta; DA, dopamine.

olfactory discrimination (Rey et al., 2012). As 90% of patients
with early AD experience olfactory dysfunction (Hawkes,
2003), the latter study suggests a potential role of the LC in
the etiological processes of early AD. In another study of
transgenic mice with a low amyloid load, LC degeneration
elicited with the same chemical triggered massive glial
inflammation and augmented the deposition of amyloid
plaques (Heneka et al., 2006). Together, these studies provide
substantial evidence for noradrenergic dysfunction in AD
and PD.

Noradrenergic Dysfunction and the
Hippocampus in AD and PD
AD and PD are known to have distinct pathology, yet they
share many cognitive and behavioral manifestations as the
illness progresses, including dementia, motor dysfunction, and
behavioral disinhibition. Both AD and PD are associated with
significant degeneration of the LC (Bondareff et al., 1982;
Marcyniuk et al., 1986; Rommelfanger and Weinshenker, 2007).
In PD the degeneration of the LC occurs earlier and in
greater magnitude in comparison to the SNc (Rommelfanger
and Weinshenker, 2007). AD and PD also share extensive
pathology in the hippocampus. In AD, memory deficits tend

to manifest early and correlate with hippocampal pathology
(Braak et al., 1994). In PD, loss of NE-containing neurons is
associated with cognitive decline (Cash et al., 1987). As the
LC projects heavily to the hippocampus and parahippocampal
formation (Zhang et al., 2016), loss of noradrenergic signaling
may lead to hippocampal dysfunction and memory deficits.
In patients with MCI and a Clinical Dementia Rating score
of 0.5, decreased LC connectivity to the left parahippocampal
gyrus was associated with lower memory performance (Jacobs
et al., 2015). These findings support the proposition that
noradrenergic dysfunction in AD and PD contributes to memory
impairment.

In rodent studies, the LC has extensive anatomical
connectivity (likely stronger than the ventral tegmental area)
to the hippocampus (Takeuchi et al., 2016). Optical activation
of LC terminals in the dorsal hippocampus enhances object
location memory (Kempadoo et al., 2016). Further, depletion
of noradrenergic terminals in the hippocampus by neurotoxics
or ablation of LC neurons impaired location memory in mice
(Coradazzi et al., 2016; Moreno-Castilla et al., 2017). Numerous
other studies have implicated noradrenergic control of other
aspects of cognitive functioning (Caetano et al., 2013). Reduced
cortical noradrenergic neurotransmission was associated with
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increased neophobia and impaired spatial memory in aged
rats (Collier et al., 2004). Work on transgenetics associated
reduced tissue levels of NE and LC degeneration with behavioral
phenotypes of mouse models of AD (Francis et al., 2012; Rey
et al., 2012). In transgenic mice that accumulated amyloid burden
at early ages, treatment with a NE precursor increased CNS NE
levels and improved learning in the Morris water maze (Kalinin
et al., 2012). Noradrenergic innervations from the LC are needed
to maintain beta amyloid clearance, and LC degeneration could
contribute to the pathogenesis of AD (Kalinin et al., 2007).

The potential roles of NE in the etiological processes
of AD and PD and memory impairment can also be
examined with pharmacologic manipulations. Administration of
methylphenidate, a stimulant medication known to increase NE
and DA levels and commonly used in the treatment of ADHD
(Weikop et al., 2007), improved word recall when taken before
learning (Verster et al., 2010; Linssen et al., 2012). Administration
ofmethylphenidate after learning also increased 1-week retention
of intentionally and casually learned information (Izquierdo
et al., 2008). In a fMRI study, methylphenidate administration
increased connectivity between the LC and the hippocampus
(Kline et al., 2016). The latter study implicates NE in producing
a measurable change in connectivity between the LC and
hippocampus, both of which suffer significant neuronal loss
and functional dysconnectivity in AD and PD. Although
methylphenidate increases the extracellular levels of DA in
addition to NE, the finding of increased connectivity between the
LC and hippocampus and its association with improved memory
function helps establish a specific link to the noradrenergic
system. Together, considered in the context of LC degeneration
and the resulting denervation of the hippocampus, these findings
support noradrenergic dysfunction as a neural mechanism of
memory impairment in AD and PD.

Noradrenergic Connectivity Dysfunction in
AD and PD
The LC undergoes early and significant deterioration and recent
imaging studies suggest LC functional dysconnectivity that
involves brain regions other than the hippocampus in AD. A
recent work employed Granger causality mapping to create
a model of directed connectivity and characterized regional
functional coupling in AD and healthy controls (Zhao S. et al.,
2017). With group differences determined with a generative
model of pathology, the authors identified the LC and right
orbitofrontal cortex as the two foci of disruption in AD. These
findings provide further support of a critical role of the LC in
functional impairment in AD.

The saliency network (SAN) facilitates network activity
transition from the DMN to the frontoparietal network during
task challenges (Seeley et al., 2007; He et al., 2014). For instance,
the right anterior insula temporally precedes activation of the
central executive network and de-activation of the DMN in task
based paradigms (Sridharan et al., 2008). Temporal control over
these network activities is central to an intact cognition, and
impaired suppression of the DMN is associated with impaired
performance. As discussed earlier, abnormal DMN connectivity

represents one of the most consistent finding in AD. The
SAN, specifically the anterior insula, also demonstrates abnormal
connectivity in AD. DMN and SAN dysfunction may result in
large part from noradrenergic dysfunction in AD. The insula
responds strongly to deviances in a stream of continuous stimuli
and does so across auditory, visual, and tactile modalities (Linden
et al., 1999; Downar et al., 2000, 2001; Crottaz-Herbette and
Menon, 2006). Regions of the SAN coactivate in response to faces
of loved ones (Bartels and Zeki, 2004), pleasurable touch (Craig,
2002), emotional dimensions of pain (Peyron et al., 2000), “chills”
to music (Blood and Zatorre, 2001) and other forms of saliency
(Eisenberger et al., 2003; Singer et al., 2004), all supported by LC
activity and an intact system of physiological arousal. As the LC
shores up arousal and responses to salient stimuli, noradrenergic
signaling is in a position to influence SAN and DMN network
activities. It is highly likely that deficient noradrenergic signaling
may compromise functional coupling between the SAN and
DMN and, as a result, deficits in the suppression of DMN activity
to meet task demands.

In support, atomoxetine, a selective NE reuptake inhibitor
commonly used in the treatment of ADHD, increased
connectivity between the right anterior insula and dorsolateral
prefrontal cortex (Hernaus et al., 2017). Increased connectivity
between these regions correlated with decreased reaction time
variability in an N-back working memory test and predicted
auditory digit span of the Wechsler Adult Intelligence Scale.
In a predictive learning task atomoxetine facilitated extinction
learning along with increased activity in the insula (Lissek et al.,
2015). In a study of inhibitory control, atomoxetine improved
performance in a stop-signal task in correlation with increased
insula activity (Chamberlain et al., 2009). These findings
suggest that NE influences insula activity and improves a broad
spectrum of cognitive functions, providing a pathway whereby
noradrenergic dysfunction may contribute to aberrant SAN and
DMN activations in AD.

As discussed earlier, the IPL is part of the DMN (Bzdok et al.,
2015) and consistently demonstrates abnormal connectivity in
PD. Engagement in a cognitive task is associated with significant
posterior IPL deactivation (Greicius et al., 2003; Buckner
et al., 2008). Altered IPL and DMN connectivity in PD during
task engagement (van Eimeren et al., 2009; Delaveau et al.,
2010; Putcha et al., 2016) may represents a failure in activity
transition between functional networks (Putcha et al., 2016).
Successful task engagement requires suppression of internally
driven processes such as mind-wondering, and the salience
network monitors external stimuli and facilitates the suppression
of DMN activity and these internally driven processes. One
study discussed earlier demonstrated reduced anti-correlation
between the SAN and DMN in link with diminished executive
functioning, psychomotor speed and verbal memory (van
Eimeren et al., 2009). The LC responds to saliency and
functionally connects to key regions within the DMN including
the IPL, PCC, and precuneus (Zhang et al., 2016). It is also
one of the first brain regions affected in PD (Rommelfanger
and Weinshenker, 2007). Thus, early deterioration and
dysconnectivity of the LC is positioned to effect cognitive decline
in PD.
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Pharmacological investigations provide more evidence
relating cognitive decline to LC dysfunction in PD. Enhancing
noradrenergic signaling improves cognitive performance in
PD (Bédard et al., 1998; Marsh et al., 2009; Weintraub et al.,
2010; Obeso et al., 2011; Kehagia et al., 2014; Nombela et al.,
2014; Ye et al., 2015). For example, naphtoxazine, a selective
α1 agonist, as compared to placebo, ameliorated performance
deficits in a reaction time task and the Stroop task in PD patients
(Bédard et al., 1998). A recent study of healthy adults reported
that LC functional connectivity increased in the Stroop task,
implicating the noradrenergic system during interference control
(Köhler et al., 2016). In other studies, atomoxetine improved
performance on measures of global cognition (mini-mental
status exam) and executive functions, as evaluated by the Frontal
Systems Behavior Scale and Connors Adult ADHD Rating Scale
(Marsh et al., 2009; Weintraub et al., 2010) in patients with
PD. In a stop signal task, atomoxetine improved stop signal
reaction times in a subset of PD patients (Obeso et al., 2011;
Kehagia et al., 2014; Nombela et al., 2014; Ye et al., 2015).
Atomoxetine also restored functional connectivity between
the presupplementary motor area, inferior frontal gyrus, and
subthalamic nucleus (Rae et al., 2016) of the cortical subcortical
circuit to support response inhibition in PD patients. As
discussed earlier, atomoxetine improved performance on stop
signal tasks along with increased insular activity and engagement
of the saliency network in healthy adults (Chamberlain et al.,
2009). This is important because control of the DMN relies
critically on SAN function (Bonnelle et al., 2012; Zhao Q. et al.,
2017). In a study of medication-naïve adults with ADHD,
atomoxetine facilitated suppression of the DMN in correlation
with improved clinical symptoms (Lin and Gau, 2016). Together,
these findings support noradrenergic dysfunction and the
efficacy of noradrenergic agents in improving cognition in
PD. Table 3 highlights key findings of DMN dysfunction in
AD and PD.

Figure 1 illustrate a hypothetical model of noradrenergic
circuit regulation of functional neural networks.

CONCLUSIONS AND FUTURE RESEARCH

Dysfunction of the noradrenergic system is a key feature of both
AD and PD. The deficit is manifested in post-mortem studies
which reveal loss of NE neurons in the LC in both diseases.
It is also manifested in structural brain imaging as atrophic
changes in structures connected with the LC and in functional
imaging as changes in network activity and connectivity. Key
networks implicated in noradrenergic dysfunction include the
hippocampus, DMN and the SAN. Specifically, noradrenergic
dysfunction may disrupt the ability to monitor external stimuli
and shift attentional demands accordingly. These shifts in
attentional demand rely on the SAN to regulate and suppress
the DMN during task-oriented processes. Pharmacologic studies
with NE reuptake inhibitors highlight the role of NE in
remediating aberrations in functional connectivity and deficits

FIGURE 1 | Hypothetical models of the influence of LC on the activity of the

saliency network (SAN), frontoparietal task network (FPN), and default model

network (DMN). Box position with respect to the dashed line represents

changes in activity level from a resting to task state, and arrows indicate the

location of LC action in response to a task challenge. (A) LC increases activity

of the SAN and FPN and suppresses activity of the DMN; (B) LC increases

activity of the SAN, which in turn increases activity of the FPN and suppresses

activity of the DMN.

TABLE 3 | Summary of functional connectivity changes of the default mode and saliency networks in Alzheimer’s disease and Parkinson’s disease.

Functional connectivity changes in AD and PD

AD DMN Reduced DMN connectivity during resting state in early stage MCI to late stage AD and in asymptomatic patients at genetic risk for

AD (Seeley et al., 2007; Zhou et al., 2010; Machulda et al., 2011; Thomas et al., 2014; Wang et al., 2015)

Reduced DMN connectivity in AD correlates with disease severity as measured by the Clinical Dementia Rating (Gour et al., 2011;

Disbrow et al., 2014; Zhao Q. et al., 2017)

SAN Abnormal SAN connectivity across disease spectrum and those at genetic risk of AD (van Eimeren et al., 2009; Zhou et al., 2010)

Anterior insular cortex, a key hub of the SAN, demonstrates hyperconnectivity to the SAN in AD (Delaveau et al., 2010)

PD DMN The most consistent connectivity change in PD involves a region of the R posterior IPC, which is part of the DMN (Rademacher et al.,

1999) and altered IPC connectivity is more prominent in PD patients with cognitive impairment (Martin et al., 2008; Martin, 2009)

Slower processing speeds in PD are associated with decreased DMN connectivity at rest, specifically between the posterior

cingulate, medial prefrontal and inferior parietal nodes (Bzdok et al., 2015)

SAN Reduced anti-correlation between the SAN and DMN is associated with worse performance on tests of executive functioning,

psychomotor speed and verbal memory (Wu et al., 2012)

AD, Alzheimer’s disease; PD, Parkinson’s disease; DMN, default mode network; MCI, mild cognitive impairment; SAN, salience network; R posterior IPC, right posterior inferior parietal

cortex.
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in cognitive performance. Together, the studies may facilitate
research of the etiology of AD and PD as well as development of
pharmacotherapy for these debilitating illnesses (Calsolaro and
Edison, 2015; Greig, 2015; Leissring, 2016; Schaeffer and Berg,
2017).

Despite the advances in methodology, there are limitations
in current imaging techniques and pharmacological approaches
to precisely localize the LC and quantify LC functions. For
instance, neuromelanin imaging provides data with low spatial
resolution with respect to the size of the LC and with signal non-
uniformity in a given plane (Sasaki et al., 2008). These issues may
compromise the utility of neuromelanin imaging in quantifying
signal alteration in the LC. Pharmacological manipulations have
been used to investigate noradrenergic dysfunction in AD and
PD. However, many “noradrenergic” agents are not specific to
the noradrenergic system. Further, because of co-localization of
synaptic NE and DA, the findings from pharmacological studies
would require careful interpretation.

A few potential research directions can be explored to further
our knowledge of LC function in health and illness. First,
despite electrophysiological studies characterizing the roles of
LC neurons in cognitive performance in behaving primates,
imaging work in humans has been hampered by the small
size of LC. Thus, studies combining neuromelanin imaging to
more accurately localize the LC and fMRI to explore task-
related activations are needed to fully understand how LC and
LC connectivity with SAN, DMN, and frontoparietal network
partake in task challenges. As VTA/SNc and LC are both
involved in saliency response, it would be of great interest
to evaluate how the two systems are differentially involved
in cognitive performance and whether reward plays a specific
role in differentiating noradrenergic and dopaminergic circuit
functions. Likewise, studies of pharmacological manipulations
can take advantage of anatomical localization of the LC andmore
precisely pinpoint how noradrenergic agents influence regional
activity and connectivity during cognitive performance. Second,
there have been neuromelanin imaging studies of the VTA/SNc

in PD but less work has focused on elucidating signal changes in
the LC in either PD or AD. In particular, longitudinal studies to

characterize how LC signals evolve during healthy aging and in
individuals with MCI or at risk of developing PD and AD would
be instrumental in determining the significance of neuromelanin
imaging as a tool in predicting onset and progression of the
illnesses. In individuals at risk for PD, it would also be of interest
to contrast findings on VTA/SNc and LC to determine how
the noradrenergic and dopaminergic circuits are differentially
involved in the pathogenesis of PD. Likewise, longitudinal studies
of PD and AD patients undergoing treatment may benefit from
knowledge whether LC neuromelanin signal intensity may serve
as a biomarker of treatment outcomes. Third, the LC projects
to multiple brain regions and the interaction of LC with these
neural networks are likely complex and defy simple correlation
analyses. More sophisticated analytical tools such as Granger
causality analysis (Duann et al., 2009; Ide and Chiang-shan,
2011; Ide and Li, 2011; Hu et al., 2015) and detrended partial
cross correlation (Ide et al., 2017; Ide and Li, 2018) will be
useful in delineating the direction of influence and distinguish
direct functional interaction from influences via a common
“third party.” These analyses would be tremendously useful in
confirming the hypothesis that the LC response to saliency and
its projection to the SAN facilitates activity transition from
the DMN to frontoparietal network for goal-directed behavior.
Together, these new studies will address many unanswered
questions in cognitive and clinical neuroscience, and the findings
would not only advance knowledge but also better patient
care.
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