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Abstract: In recent years, robotic sorting is widely used in the industry, which is driven by necessity
and opportunity. In this paper, a novel neuromorphic vision-based tactile sensing approach for
robotic sorting application is proposed. This approach has low latency and low power consumption
when compared to conventional vision-based tactile sensing techniques. Two Machine Learning
(ML) methods, namely, Support Vector Machine (SVM) and Dynamic Time Warping-K Nearest
Neighbor (DTW-KNN), are developed to classify material hardness, object size, and grasping force.
An Event-Based Object Grasping (EBOG) experimental setup is developed to acquire datasets, where
243 experiments are produced to train the proposed classifiers. Based on predictions of the classifiers,
objects can be automatically sorted. If the prediction accuracy is below a certain threshold, the gripper
re-adjusts and re-grasps until reaching a proper grasp. The proposed ML method achieves good
prediction accuracy, which shows the effectiveness and the applicability of the proposed approach.
The experimental results show that the developed SVM model outperforms the DTW-KNN model in
term of accuracy and efficiency for real time contact-level classification.

Keywords: robotics sorting; contact-level classification; neuromorphic vision; haptics; machine
learning; dynamic vision sensor

1. Introduction

Robotic sorting is a key part for most industrial production lines. Their applications vary from
sorting and organizing products in warehouses, automotive assembling in manufacturing plants,
and cleaning up debris in disaster zones. Utilizing robots for sorting can effectively reduce labor
intensity, space saving, and easy to re-deploy for various applications. Besides, it gives the industry
the advantage of reducing the production time while increasing the throughputs. In the 4th industrial
revolution, the demand on robots for doing multiple tasks is highly increased. The bulk of these tasks
require the robots to be proficient in gripping objects with different shapes, weights, and textures.
However, the majority of present techniques are used to train robots to perform tasks that are suitable
for a structured environment. Such tasks are prone to high error and are tremendously difficult to
be fully automated, especially for unstructured environments [1]. In order to deal with different
situations, such as unstructured environment, robotic sorting based on vision has huge advantages on
dealing with changes of working environment [2].
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Capitalizing on that, several approaches have been suggested over the past decades to improve
grasping behavior for robot sorting applications [1,3]. A range of applications utilizing the grasping
techniques has been devised, ranging from micro scales to macro scales [1]. For instance, work in [4]
exploited robot grasping ability in an automatic system for sorting garbage. It achieved a sorting goal
that is based on recognizing target shapes and position utilizing the Region Proposal Generation (RPN)
and the VGG-16 model. Work in [5] designed a self-adopting claw for sorting apples, which can adjust
grasping force by regulating the angular displacements of hinges according to sizes of apples. Recently,
soft-gripper is employed in industry for sorting applications [6,7]. Soft gripping has the flexibility
to adapt for different object shapes and hardnesses when compared to the hard gripping method,
which makes it preferable for other purposes that require a sensitive grasping. Besides, utilizing soft
gripper is a useful way to reach a better grasping. Nevertheless, soft gripper requires a complex
structural design, dynamic modelling, and gripper control. Thus, sensing capability is important to
soft robotic grippers to precisely handle or classify objects. In our work, we use soft finger and contact
level decision making. In particular, we focus on how vision based tactile sensing facilitates contact
level decisions for soft gripping robots. In addition, through the deformation of silicon wafer, objects’
characteristics, such as size and shape, can be observed by the camera that is crucial for improving
system performance.

For precise grasping, different types of sensors were developed for sensing tactile signal, such
as capacitive sensors [8] and piezoresistive sensors [9]. Despite the extensive research that has used
various types of tactile sensors for grasping action, they still lack the proper spatial and temporal
resolution. Moreover, they are also limited by large sizes, high hysteresis, and interference with
other electronics. Progression in image processing techniques and optical technology over the past
decades has a significant impact on improving robots grasping for sorting purposes. A vision-based
sorting approach is proposed in [10] to group similar parts while using Bayesian estimation. Recently,
interesting applications, such as garbage sorting [4], transparent Plastic Granulate sorting [11], and
material sorting [12], are proposed utilizing different vision-based techniques. The advantage of
vision-based tactile sensor resides in its ability to provide a high resolution. However, processing
images is often involved with a lot of redundant pixels, which adds further computation and memory
requirement. Therefore, a neuromorphic event-based camera (Dynamic and Active-Pixel Vision Sensor
(DAVIS) 240C) [13] is adopted for this research work. Due to its ability to provide dense temporal
information about the changes in scene, an accurate and fast detection becomes achievable in the
dynamic environment. Therefore, the unique property of DAVIS becomes indispensable to improve
the performance for grasping in sorting applications. To that end, few works employed DAVIS for
tackling grasping behaviors, such as dynamic force estimation [14] and incipient slippages detection
and suppression [15,16]. In this work, we explore and study how the event based tactile sensor with
occluded skin can be effective in contact-level classification, especially in robotic sorting applications.

The main advantages of event-based camera are of local gain control, sparse output, low latency
and non-motion blur. In addition, it has a high dynamic range (140 dB) with low-power consumption
(10 mW) as compared to the traditional camera. DAVIS is used to measure the pre-pixel brightness
changes in the scene asynchronously. The resulting stream of events have a microsecond resolution,
encode time, address, and the sign of brightness changes, called polarity [13]. Therefore, when compared
with traditional visual tactile sensor, utilizing events-based grasping has the advantages of higher
sampling rate and faster response. Building on that, the prior information of objects can be obtained
with a low latency that can effectively improve grasping performance. This work aims to classify object
size, material hardness, and grasping force based on sequential events information to develop grasping
prior knowledge. The grasping is only considered to be successful when classifications reach a high
accuracy. Otherwise, the gripper will re-adjust its position and orientation to re-grasp the object properly.
Moreover, prior knowledge can be helpful for other grasping application by estimating the initial force
for reliable grasping by classifying object size, material hardness and contact force based on events.
Accordingly, a stable lifting would be achieved with less and even no slippage, as well as without any



Sensors 2020, 20, 4724 3 of 15

damage. Besides, the guidance and rules of force control during grasping and manipulating would also
be provided.

However, the deformation of silicon wafer under pressure is highly non-linear. It depends on
the range of the applied force beside the shape and the hardness of the contacted object. Additionally,
other factors can affect this relationship, such as the temperature of the membrane and the sensor
light intensity. Accordingly, non-linear relationships among triggered events and grasping force,
objects size, and material hardness exits. The correlation between accumulated events and the
image of the contact force over a pre-defined time interval is visualized in Section 4. Robust ML
approaches are adopted to capture the non-linear relationship over time in this work to obtain prior
knowledge of the object characteristics based on DAVIS triggered events. The existing ML methods for
sequence classification are categorized as feature based, sequence distance based, and model based
classifications [17]. Amongst them, sequence distance based methods are widely used and adopted for
time series classification. Particularly, SVM and KNN-DTW are superior for classification precision
when compared to other methods. SVM is a powerful method for building a classifier that aims to
create a decision boundaries between classes, so it enables the prediction of labels from one or more
feature vectors [18]. The SVM methodology has been successfully applied in many applications such as
genomics, financial data analysis, signal processing, and time series classifications, due to its robustness
for estimating predictive models from noisy, sparse, and high-dimensional data [19]. Moreover,
the similarity between time sequences is measured in the time-series classification problem. The most
popular methods calculate Euclidean distance to estimate the similarity, but they cannot find the best
alignment between time series. Dynamic Time Warping is well known for measuring the similarity
between two series in timing. It has been widely used in many fields, such as data mining [20,21],
gesture recognition [22], robotics [23], speech processing [24,25], and medicine [26]. Besides, K-Nearest
Neighbor is an unsupervised method of clustering, so it can be used as a density-based classifier.
K Nearest Neighbor has been successfully used in many applications, including handwritten digit
recognition [27] and gene expression classification [28]. Building on that, KNN is integrated with DTW
for object’s prior knowledge classification in this work.

To improve the performance of robotic sorting in industry, we propose a novel neuromorphic
vision based approach to overcome limitations of conventional cameras. Besides, a Machine Learning
approach utilizing SVM and DTW-KNN is developed for contact-level classification, in order to
acquire the prior knowledge of objects based on EBOG datasets created. Realizing the new direction of
parasitism theory [29] for evolving technology to explain the complex relationships between variables
in the systems, we can consider the robot robotic sorting as the host system, and event-based robotic
grasping and contact-level classification are the parasitic systems. In addition, the results for both
methods are compared for further real-time implementations. The contributions of this paper are
summarized, as following:

• a novel approach utilizing the developed neuromorphic vision based tactile sensor is developed
for contact level classification

• machine learning approaches utilizing SVM and DTW-KNN are developed to classify material
hardness, object size and grasping force. The classification accuracy indicates whether the object
is sorted successfully, and also has a paramount effect in helping gripper to re-adjust and re-grasp
to ensure a successful grasping and sorting;

• after conducting 243 experiments, an Event-Based Object Grasping (EBOG) dataset are generated.
To date, this is the first events dataset generated to analyze the grasping behavior in robotic
applications; and,

• scenarios of neuromorphic vision based robotics sorting in structured and unstructured
environment are presented.

In the following sections, we introduce the design of neuromorphic event-based tactile sensor
and EBOG dataset created. ML approaches including SVM and DTW-KNN are addressed in Section 3.
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The results of classification based on different approaches are presented and discussed in Section 4.
In addition, scenarios of robotic grasping and sorting applications based on events camera is illustrated
in Section 5. Conclusions of this work and the future work are discussed in Section 6.

2. Event-Based Object Grasping Dataset

To build and train machine learning classifiers, the EBOG dataset is generated through conducting
243 set of experiments utilizing event-based camera for robotic grasping, holding, and releasing.
The neuromorphic vision-based tactile sensor is employed and positioned on the right side of Baxter’s
gripper, as illustrated in Figure 1. The Baxter robot has two arms that each arm consists of seven
joints and each joint has two degrees of freedom (DOF). A parallel gripper system is designed for
Baxter robot, which includes the metallic and the acrylic part. The metallic gripper is designed with
an adjustable camera holder and mounted on Baxter’s arm, which can enable a stable grasping and
eliminate the vibration due to the Baxter gripper elasticity. A camera holder is essential to help DAVIS
detect the interested area by adjusting its position and orientation. Besides, the transparent acrylic
material is attached to the electrical gripper, which helps in grasping the object. Its transparency allows
for DAVIS to observe the changes in the grasped object without occlusion. In addition, the ATI F/T
sensor (Nano17) is attached on the left gripper to measure the contact force at each time interval, which
is used as a ground truth to trace object grasping, holding and releasing phases. In addition, the soft
material-silicon wafer is attached on the inner side of the right gripper to bring a certain flexibility to
gripper. DAVIS is a dynamic active-pixel vision sensor, which captures per-pixel illumination changes
as events for moving object asynchronously. The stream of events encodes time t, position (x, y),
and polarity p. To enhance the gripper’s ability to grasp objects with different sizes and shapes to
a certain degree, a semi-transparent silicon wafer is attached on the inner side of the right gripper,
as mentioned in Section 1. Moreover, it ensures DAVIS camera’s ability to detect the tiny changes at
the contact surface during silicon deformation.

Figure 1. Experiment setup with neuromorphic event-based tactile sensor.

In this work, nuts are used as the sorting target, which are the basic and essential elements for
industrial machines and products [30]. Picking up, recognizing, and sorting various shapes of nuts
are not a difficult but tedious task for human, but they are actually pretty difficult tasks for machines
and robots. Though nuts come in thousands of shapes and sizes, hexagon nuts are the most common
ones that used for industrial as well as commercial use. Therefore, this work aims to sort hexagon nuts,
as shown in Figure 2a, according to their sizes. In this experiment, nuts with small (11 mm), medium
(13 mm), and large (17 mm) size are used for grasping and sorting. The grasping force sets as 10%, 50%,
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and 100% of gripper’s maximum grasping force. Moreover, the hardness of silicon wafer also varies in
the range of small, medium, and large degrees with thicknesses of 4 cm, 7 cm, and 10 cm, respectively.
For each setting condition, 9 experiments were conducted for the certain object size, grasping force,
and silicon hardness. Individual experiment includes three phases: grasping phase, holding phase,
and releasing phase. Therefore, total 243 (9× 3× 3× 3) sets of experiments data are obtained under
different conditions.

In grasping phase, the gripper closes in order to cage the object until the pre-defined gripping
force is reached. Simultaneously, the negative events, as shown in Figure 2b increase due to the
reduction in the light intensity. Subsequently, the object is held with the same grasping force for some
duration. In the last phase, the gripper moves back to the original position to release the object. Due to
losing contact between the object and the silicon wafer during gripper’s opening, more events with a
positive polarity are triggered, as shown in Figure 2c.

(a) Hexagon nuts (b) grasping phase (c) releasing phase

Figure 2. (a) Hexagon nuts with different sizes and images of events in grasping phase and releasing
phase. (b) red spots represents negative-polarity events which are dominant in grasping phase. (c) green
spots represents positive-polarity events, which are dominant in releasing phase.

Recognizing the inherent properties of DAVIS,which enables detecting events at the microsecond
level. Therefore, any small source of noise, such as gripper vibration, sensor temperature, and lighting
environment, would lead to a large effect on signal-to-noise ratio (SNR). Therefore, events are framed
over 1 ms to alleviate the noise impact. In this work, 243 sequences of raw, positive, and negative events
data are collected to the EBOG for all three phases. Figure 3 illustrates the number of events for a single
experiment over time. As depicted in Figure 3, the absolute contact force measured by F/T sensor
changes significantly in grasping and releasing phase, which is used to define and trace these three
phases. It is apparent that negative events and positive events are dominant in grasping and releasing
phases, respectively. The first peak in negative events represents the first touch between object and
silicon wafer, which indicates the increase in the contact force at the contact level. Similarly, the highest
peak of positive events indicates that the gripper is losing contact with the object in releasing phase.
Moreover, it can be observed that the raw events, positive and negative events fluctuate within some
range in the holding phase, due to the gripper’s vibration and noise in the vicinity. Hence, the triggered
events in the grasping phase represents the most valuable information for grasping and sorting.

Therefore, events of the grasping phase are the main focus for robotic grasping and sorting in this
work. From Figure 3, it is apparent that the amount of negative-polarity events shows the most dramatic
change, carrying the most significant and meaningful information. Thus, sequences of negative events
of the grasping phase is applied as input for prior knowledge classification. Building on that, three
variables, which are the grasping force, the size of object, and the hardness of silicon wafer are the main
targets for classification. In addition, the objects prior knowledge is required to be known in the early
stage of grasping. Classification accuracy is not only results for sorting objects, it is also used as a metric
for gripper’s decision on re-adjust and re-grasp to ensure a successful grasping and sorting.
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Figure 3. Events data of a single experiment which consists of grasping, holding and releasing phases.
Raw events represents the total amount of events in 1 ms interval, including both positive and negative
events.

3. Machine Learning Approach

For acquiring the contact-level information in the grasping phase, two machine learning
approaches: SVM and DTW-KNN are investigated in this work. The amount of negative events,
which represents the most significant information and collected during grasping phase, are used as the
classifier input. 243 sequences of negative events data are obtained and prepared through experiments.
189 (78%) and 54 (22%) sets are used for training and testing classifiers, respectively. Limited by the
small number of time series utilized for classification, general deep learning methods would be easily
prone to over-fitting. Therefore, machine learning approaches, a well known method that is capable to
handle the small dataset with reasonable accuracy, are used to tackle this problem. SVM is usually a
successful approach for time series classification and prediction, on account of its ability to handle
the non-linear relationship between parasite-host systems. Besides, DTW-KNN is also implemented
in order to handle the time characteristics of time series. Classifiers of SVM and DTW-KNN will be
compared according to classification results, then the one with better results will be nominated for the
future real-time sorting application.

3.1. Support Vector Machine

SVM is a supervised learning method, which aims to clearly classify diverse classes by optimal
hyperplanes which are also called as decision surfaces. In this work, SVM with Gaussian kernel is
used to classify non-linear events data. The expression of Gaussian kernel is

k(x, x′) = e(−||x−x′ ||2/2σ2) (1)

where x and x′ are two feature vectors, and σ is related to the fitting degree of SVM model. Hyperplanes
of SVM classifier can be generally represented as:

f =
n

∑
i=1

wi · yi · k(xi, x)± b (2)
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where w ∈ Rn , b ∈ R , n, xi, and yi ∈ {−1,+1} denote weight, bias, size of training data, the support
vector, and the corresponding output, respectively. The region bounded by hyperplanes is called the
separation “margin”, which is given by

ρ =
2√

wTw
(3)

The goal is to find the optimal values of w and b that can maximise the margin ρ.

3.2. KNN-DTW

KNN is a density-based unsupervised classifier, which classifies unlabeled data according to
the majority vote of k nearest labeled data. Before testing, the optimal value of k is selected through
conducting several trials with different values. Euclidean distance is generally used to present the
nearest distance in KNN. However, it ignores the dynamic characteristics of the time in time-series.
Therefore, DTW is applied in order to calculate the similarity between time sequences, which may vary
in speed. The principal of DTW is illustrated in Figure 4 and the best alignment shown in Figure 4a
can be obtained by calculating the distance matrix, as demonstrated in Figure 4b.

(a) Dynamic Time Warping (b) DTW distance

Figure 4. The principal of DTW. (a) The best alignment of two time sequences by DTW. (b) The distance
matrix of finding the DTW optimal path of alignment.

The distance of each point can be evaluated by adjacent points:

D(i, j) = D(xi, yj) + min


D(i− 1, j)
D(i, j− 1)
D(i− 1, j− 1)

(4)

where D(i, j) is distance between two time sequences with the best alignment and D(i− 1, j), D(i, j− 1),
and D(i − 1, j − 1) are the neighborhood cells. xi and yj are data in two different time sequences,
respectively, and D(xi, yj) is the distance between xi and yj. Figure 5 depicts the processes of k selection
and DTW-KNN classification.

Figure 5. The working flow chart of DTW-KNN classifier which includes two processes: k selection
described in both black and white blocks, and DTW-KNN classification described in black blocks.
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Blocks in gray belong to both processes of choosing k and testing classifier. After loading the
dataset, the DWT distance between two time series at a particular point is computed instead of
Euclidean distance. Then according to the majority vote from k neighbors, the unknown data can be
directly labeled. Blocks in white represent additional parts of optimal k selection. The classifier is
executed several times with different setting values of k. By comparing the voted labels to true labels,
the classification accuracy under conditions of different k are listed. Therefore, the optimal k is selected
as the one with the highest classification accuracy.

4. Contact-Level Classification

As mentioned in Section 1, the contact-level classification is an useful tool for acquiring prior
knowledge of targets in industrial applications such as sorting objects. The tree diagram contact-level
classification process is illustrated in Figure 6, the material hardness is classified and selected first
due to its nonlinear relationships with other variables and events. Subsequently, object size and
grasping force are independently classified under the specific material hardness selected according
to events. In this section, the classification processing by SVM and DTW-KNN approaches and the
results are discussed.

Figure 6. The tree diagram of contact-level classification.

4.1. Selection of Silicon Hardness

In this paper, three variables: object size, contact force, and silicon hardness are the main concern
for neuromorphic vision-based contact-level classification. However, the silicon wafer shows different
degrees of deformation under different object sizes and contact forces. For instance, the amount of
events increases when the hardness of silicon wafer decreases. This happens, since the softer material
deforms more severely when applying the same force. To reduce the complexity of relationships
among events and other variables, the hardness of the silicon wafer is determined first.

Machine learning approaches based on SVM and DTW-KNN are developed in order to classify
the hardness of silicon wafers utilizing events captured during the grasping phase and collected to
the EBOG dataset. As mentioned in Section 2, the input of classifiers is time sequences of the amount
of negative-polarity events, which is accumulated over every 1 ms interval in the grasping phase.
The results of hardness classification using SVM and DTW-KNN classifier are displayed in Tables 1
and 2, respectively. Becasue both precision and recall values should be high as possible, it is difficult
to compare the models with low recall and high precision or vice versa. Therefore, F1 Score is used
to measure both Precision and Recall simultaneously. F1 Score is calculated as Harmonic mean of
Precision and Recall that F1score = 2 ∗ ((precision ∗ recall)/(precision + recall)).

It can be observed that SVM outperforms DTW-KNN in silicon hardness classification from
Tables 1 and 2. Both of the methods provide consistent results in the classification of the softest silicon
wafer classification which attains the best performance for all metrics. Additionally, the F1 score for
class 0 (10% material hardness) reaches 100% and 82.1% using SVM and DTW-KNN sequentially,
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which is the highest among all three hardnesses. This is due to the nature of soft material that deforms
acutely during grasping. Consequently, more valuable information of negative events can be captured
by DAVIS with softer silicon wafer. Therefore, it manifests that the material hardness is one of the
crucial elements for contact-level applications utilizing DAVIS, which can directly affect on the amount
of information to be detected. Generally, the softer material can provide more details for DAVIS due to
more events triggered accordingly. Hence, in this work the experimental data under the condition of
the softest silicon wafer with 4 cm thickness is used for classifying the other two variables. Capitalizing
on that, the softer material is more suitable for applications that require detailed information and high
observing sensitivity, such as grasping slip detection. Nonetheless, the thicker soft material, which can
filter out some details, are preferable for applications that demand low noise environment.

Table 1. Silicon hardness classification by SVM. Class 0, Class 1 and Class 2: silicon wafer with 10%,
30% and 50% hardness. Support: the number of samples in each class. Acc: the ratio of samples that
are classified correctly out of all the classes. Precision: the percentage of each correctly classified label.
Recall: the ratio of correctly classified samples out of all the positive classes. F1 Score: Harmonic mean
of Precision and Recall.

Terms Precision Recall F1 Sore Support Acc

Class 0 100% 100% 100% 18 -
Class 1 70% 77.8% 73.7% 18 -
Class 2 75% 66.7% 70.6% 18 -

Ave/Total 81.7% 81.5% 81.4% 54 81.5%

Table 2. Silicon hardness classification by DTW-KNN. Class 0, Class 1, and Class 2: silicon wafer with
10%, 30%, and 50% hardness.Support: the number of samples in each class. Acc: the ratio of samples
which are classified correctly out of all the classes. Precision: the percentage of each correctly classified
label. Recall: the ratio of correctly classified samples out of all the positive classes. F1 Score: Harmonic
mean of Precision and Recall.

Terms Precision Recall F1 Score Support Acc

Class 0 88.9% 76.2% 82.1% 18 -
Class 1 77.8% 73.7% 75.7% 18 -
Class 2 55.6% 71.4% 62.5% 18 -

Ave/Total 74.1% 73.8% 73.4% 54 74.1%

4.2. Contact-Level Classification

For sorting application, the contact-level classification is the core part. The negative-polarity
events that are obtained for softest material are used as the input to classify the object size and the
grasping force, respectively. Because of the one-to-many relationships between inputs and outputs,
single classifiers for each variable are developed, which can provide more detailed information of
complex and correlated relationships between each variable and events. As explained in the previous
subsection, the object size and grasping force classifications examined under the conditions of 10%
silicon hardness. Subsequently, 81 (9× 3× 3× 1) sequences of events data for different grasping force
and object size are used. For observing more intuitive relationships between variables, 27 (9× 3× 1× 1)
sequences of negative events for individual experiments under the same condition are accumulated
and traced, as shown in Figure 7. Figure 7a depicts behaviors of accumulated negative events when
grasping objects of small, medium, and large sizes. Similarly, trends of accumulated negative events
when grasping objects with 10%, 50%, and 100% of maximum grasping forces are plotted in Figure 7b.
A consistent behavior of accumulated events under different object sizes is observed from Figure 7a;
however, the behavior of accumulated events for forces depicted in Figure7b lacks a consonant
pattern.Therefore, data preprocessing is required before classification for building and training ML
models. When compared with the whole pattern of 500 ms, it is obvious that the accumulated data
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before 340 ms reveals a similar pattern in Figure 7a. Therefore, the sequences of data in the duration of
0 to 340 ms are used for grasping force classification.

(a) Accumulated events under conditions of
different object sizes

(b) Accumulated events under conditions of
different grasping forces

Figure 7. The negative events in the grasping phase are accumulated with time for a certain type of
sizes or forces.

For size and force classifications, the SVM and DTW-KNN approaches are employed. 63 out of
81 sequences of data are randomly selected for training, and the remaining 18 sequences are used
for testing. To obtain compatible results, the same training and testing data of SVM classifiers are
utilized as labeled and unlabeled data to build DTW-KNN model. In the DTW-KNN approach, values
in range of 1 to 10 are tested in order to initialize k value of neighbored data for majority voting.
The highest accuracy is reached when 4 neighbored data are included for majority vote, as shown
in Figure 8. Therefore, k = 4 is selected in the DTW-KNN approach for object size and grasping
force classifications.

(a) Object size classification (b) Grasping force classification

Figure 8. Relationships between KNN classification accuracy of object and grasping force with different
values of nearest neighbor data for majority vote.

In performance evaluation, classification accuracy and elapsed time are the metrics used for SVM
and DTW-KNN approaches. The accuracy of classifiers that are trained by different approaches are
shown in Table 3. Support Vector Machine and Dynamic Time Warping-K Nearest Neighbor obtain
the same accuracy (88.9%) for object size classification. However, from Table 4, the metrics, including
Precision, Recall, and F1 Score demonstrate that SVM performs better in object size classification.
For grasping force classification, the SVM classifier outperforms the DTW-KNN classifier with
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accuracies of 77.8% and 72.2%, respectively. However, both DTW-KNN and SVM present poor
performance of grasping force classification when compared to size classification. Moreover, the soft
finger utilizes silicon material as the skin interface; such an interface deforms upon contact and exhibits
a highly nonlinear relationship between observed events and variables. Thus, it impacts the object size
and grasping force classification accuracy.

Table 3. Comparison of classification accuracy of object size and grasping force in case of softest silicon
wafer by SVM and DTW-KNN.

Testing Accuracy DTW-KNN SVM

Object Size Classification 88.9% 88.9%
Grasping Force Classification 72.2% 77.8%

Table 4. Comparison of object size classification results by DTW-KNN and SVM. Support: the number
of samples in each class. Acc: the ratio of samples that are classified correctly out of all the classes.
Precision: the percentage of each correctly classified label. Recall: the ratio of correctly classified
samples out of all the positive classes. F1 Score: Harmonic mean of Precision and Recall.

Terms Precision Recall F1 Sore Support Acc

DTW-KNN 91.1% 91.1% 69.2% 54 88.9 %
SVM 92.6% 91.7% 91.1% 54 88.9%

Besides, the elapsed time of the prediction model is used in order to assess performances of
SVM and DTW. Table 5 shows the elapsed time of DTW-KNN keep high in both cases. However,
the elapsed time of SVM is approximately 10 times smaller than the one of DTW-KNN. According
to the observed results, the SVM model is more efficient and has the potential to be used in real-time
sorting applications.

Table 5. Elapsed time of training model and prediction by SVM and DTW-KNN for object size and
grasping force classification.

Elapsed Time (s)
Object Size Classification Grasping Force Classification

SVM DTW-KNN SVM DTW-KNN

Training Model 0.039278 0.603076 0.033888 0.335808
of Prediction 0.025083 0.283062 0.011765 0.177691

5. Sorting Application Scenario

Integrating event-based contact level classification and neuromorphic vision based tactile sensor,
structured and unstructured sorting applications can be targeted. Objects are highly organized in
the structured sorting task. Subsequently, robots can easily implement the sorting task according to
the presetting information. However, for unstructured sorting, a small change of objects, such as the
orientation, will probably affect robotics grasping and sorting result. Thus, robots are required to make
a decision on whether re-grasp and re-adjust, in order to ensure an efficient grasping and a successful
sorting in an uncertain environment.

These two types of robotic grasping and sorting tasks can be implemented based on the prior
knowledge obtained by the contact-level classification according to EBOG dataset. The sorting
application consists of three phases: caging, grasping, and re-adjusting, and dropping. In operating
platform, there are three objects with small, medium and large size are placed in front of the gripper.
Besides, three corresponding boxes are placed on the side of it. The goal of this sorting task is to
automatically pick up a nut, perform events-based classification, and drop it into the corresponding box.

Figure 9 describes the flow chart of the sorting scenario . Firstly, the position information of the
object will be obtained via object detection techniques. According to the object’s position, gripper will
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move to a proper place for caging.In this work, the contact-level classification is focused. Accordingly,
an ideal and simplified scenario is assumed, as shown in Figure 10, where object detection and gripper
manipulation have already been implemented. Subsequently, in caging phase, the object size and
grasping force will be classified simultaneously. If the accuracy does not meet the requirement due to
the improper grasp such as the misaligned grasp and the incomplete view of object for camera, it will
be considered to be an unsuccessful caging. In addition, the wrong classification of object size would
directly result in a failure to the sorting task. Accordingly, the grasping will be re-adjusted until the the
object is properly gripped and high accuracy of classifications is reached. Subsequently, dropping the
object into the corresponding box according to the classified object size.

Figure 9. The flow chart of sorting application’s scenario

Figure 10. Three phases of sorting application. The large-size nut object is placed on the holding base to
be grasped, then object size and grasping force are classified simultaneously during caging. According
to classification results, gripper makes decision on re-grasping or placing the object.
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6. Conclusions

In this paper, events camera DAVIS is utilized to develop the neuromorphic vision-based tactile
sensor for sorting application. DAVIS has low latency and low power consumption when compared
to conventional cameras. In addition, two ML methods, SVM and DTW-KNN, are developed to
classify object size, grasping force, and material hardness. A special type of EBOG dataset is generated
by conducting 243 experiments for training the classifiers. The material hardness is first selected
in this work due to the complex relationship with events. According to the three-level hardness
prediction, the softest silicon wafer is used for contact level classification, as it provides the highest
classification accuracy (100%). It manifests that severe deformation of softer material results in a
high sensitivity of observation. However, for other works that detail information is not necessary or
noise is required to be filtered, the thick material with higher hardness will be suitable due to its light
deformation. Moreover, soft skin interface deforms upon contact that makes objects size and grasping
force classifications challenging. Both SVM and DTW-KNN approaches used to classify object sizes
and provide a same accuracy (88.9%), but SVM classifier performs better on metrics of Precision, Recall,
and F1 Score. Moreover, the trained SVM model provides a more precision result (77.8%) for grasping
force as compared to DTW-KNN. When considering the elapsed time aspect, the SVM method has
more potential for real-time applications.

This event-based contact-level classification benefits robotic sorting for its high sampling rate,
which enables the robot to respond faster and re-adjust grasping to ensure a successful action.
In addition, contact-level classification can be used for initial grasping force estimation and slip
detection to improve the grasping performance in robotic sorting. For future work, the accuracy of
the object size and grasping force classifications by SVM and DTW-KNN can be improved. Both
approaches involve supervised methods, which are limited to classify the same or similar objects, as
being used to infer a function from labeled training data by mapping inputs and outputs. Therefore, it
is suggested to use unsupervised approach, Spiking Neural Networks (SNNs), to improve classification
performance in future work. Additionally, developing a data augmentation technique for time series
will help to avoid the over-fitting problem.
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