
eRNAs Identify Immune
Microenvironment Patterns and
Provide a Novel Prognostic Tool in
Acute Myeloid Leukemia
Ziming Jiang1,2†, Junyu Long3†, Kaige Deng3, Yongchang Zheng3* and Miao Chen1*

1Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of
Medical Sciences, Beijing, China, 2Eight-Year MD Program, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing, China, 3Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China

Background: Enhancer RNAs (eRNAs) play an essential role in tumorigenesis as non-
coding RNAs transcribed from enhancer regions. However, the landscape of eRNAs in
acute myeloid leukemia (AML) and the potential roles of eRNAs in the tumor
microenvironment (TME) remain unclear.

Method: Gene expression data collected from The Cancer Genome Atlas (TCGA) project
were combined with Histone ChIP-seq so as to reveal the comprehensive landscape of
eRNAs. Single-sample gene set enrichment analysis algorithm (ssGSEA) and ESTIMATE
were employed to enumerate immune cell infiltration and tumor purity.

Results: Most prognostic eRNAs were enriched in immune-related pathways. Two
distinct immune microenvironment patterns, the immune-active subtype and the
immune-resistant subtype, were identified in AML. We further developed an eRNA-
derived score (E-score) that could quantify immune microenvironment patterns and
predict the response to immune checkpoint inhibitor (ICI) treatment. Finally, we
established a prognostic nomogram combining E-score and other clinical features,
which showed great discriminative power in both the training set [Harrell’s
concordance index (C index): 0.714 (0.651–0.777), p < 0.0001] and validation set [C
index: 0.684 (0.614–0.755), p < 0.0001]. Calibration of the nomogram was also validated
independently.

Conclusion: In this study, we systematically understood the roles of eRNAs in regulating
TME diversity and complexity. Moreover, our E-score model provided the first predictive
model for ICI treatment in AML.
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INTRODUCTION

Acute myeloid leukemia (AML) is the most common leukemia of
the hematopoietic system (De Kouchkovsky and Abdul-Hay,
2016; Estey, 2018), which is characterized by rapid
proliferation and invasion of immature myeloid cells in the
bone marrow (BM) and peripheral blood (PB), resulting in
hematopoietic failure of normal blood cells. Chemotherapy
and hematopoietic stem cell transplantation are the first-line
treatment for AML patients (Döhner et al., 2010; De
Kouchkovsky and Abdul-Hay, 2016; Tyner et al., 2018a; Estey,
2018), though only one-third of adult AML patients could get
durable remission (Vago and Gojo, 2020). A high risk of relapse is
considerable even after remission (Estey, 2018; Thol and Ganser,
2020). However, the cellular and molecular characteristics of
AML have been investigated to promote current therapies
(Yang and Wang, 2018; Vago and Gojo, 2020). For example,
high counts of regulatory T cells were observed in both PB and
BM of AML patients and inhibited effector T cells more
effectively than in control (Szczepanski et al., 2009; Williams
et al., 2019). Significantly, the immunosuppressive
microenvironment of BM was closely associated with a poor
prognosis (Vago and Gojo, 2020), which provided new insights
into therapeutic targets. The combination of ICI treatment and
chemotherapy showed great advantages. A more prolonged
median overall survival (OS) of 6.3 months was yielded in
Nivolumab combined with azacitidine group, compared with
the azacitidine group in 70 older, relapsed or refractory (R/R)
AML patients (Daver et al., 2019). Another PD1-blocking
antibody, pembrolizumab, with decitabine or azacitidine,
showed a similar response and survival advantage in R/R
AML patients (Lindblad et al., 2018; Gojo et al., 2019).
Nonetheless, a randomized phase II study of durvalumab with
azacytidine verse azacytidine alone did not show a significant
advantage in 214 newly diagnosed AML patients (Zeidan et al.,
2019), suggesting new models to predict the response of
immunotherapy are underexplored.

eRNAs are transcribed in specific enhancer regions and
considered as non-coding RNAs. It has been widely proven
that eRNAs play essential roles in tumor proliferation,
invasion, and migration. Several eRNAs, such as NET1e in
breast cancer (Zhang et al., 2019) and CCAT1 in squamous
cell carcinoma cells (Jiang et al., 2018), showed strong
interactions with target genes and contributed to cancer
progression. Recent studies identified eRNAs as a better
marker for active enhancers than H3K27ac, the histone
modification mediated by P300 (Tyssowski et al., 2018). Due
to their highly tissue-specific and disease state-specific
characteristics, eRNAs have been demonstrated as an excellent
marker to identify phenotypes such as ICI treatment response
compared with mRNAs (Chen and Liang, 2020), which has been
validated in a broad range of diseases including lung cancer (Qin
et al., 2020; Ma et al., 2021), glioblastoma (Guo et al., 2021), and
hepatocellular carcinoma (Cai et al., 2021). However, systematic
studies for eRNAs in AML are still under exploration.

Zhang et al. (2019) established a systematic strategy for
investigating eRNA in the RNA-seq of large patient cohorts.

The FANTOM5 database has generated approximately
65,000 high-quality and in vivo-transcribed enhancer loci with
CAGE-seq in hundreds of primary cells and cell lines (Andersson
et al., 2014). The ENCODE and Blueprint databases provided a
wealth of histone modification locus information, including
H3K4me1, H3K4me3, and H3K27ac annotation (Inoue et al.,
2017). The TCGA, Beat AML, and GEO databases provided
detailed data on gene expression profiles and clinical
annotations of AML patients (Weinstein et al., 2013; Tyner
et al., 2018b). In conclusion, comprehensive high throughput
sequencing provided detectable methods to identify eRNAs in
AML. We screened the TCGA database to identify eRNAs closely
correlated with clinical prognosis and TME abundance, thereby
exploring the characteristics of different immune subtypes
associated with eRNAs in AML patients. A scoring system was
established via machine learning to investigate the association
between immune microenvironment patterns and existing
clinicopathological stratifications, demonstrating that the TME
can supplement the current risk classification. As we expected, the
scoring system named E-score was found to correlate with the
response to anti-PD1/PDL1 agents computationally. Finally, we
developed a clinical prognostic model for AML patients based on
the E-score, which showed accurate predictive power.

METHODS

Data Collection and Preprocessing
We downloaded RNA-seq BAM files, mRNA expression
matrixes, and clinical features of acute myeloid leukemia
(TCGA-LAML) from the TCGA data portal (https://portal.gdc.
cancer.gov/) (Weinstein et al., 2013). The validation datasets were
downloaded from the Beat AML (http://www.vizome.org/)
(Tyner et al., 2018a) and Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/, GSE37642 (Li
et al., 2013), GSE12417 (Metzeler et al., 2008), and GSE10358
(Tomasson et al., 2008)). To ensure the stability of the prediction,
patients with survival time <1 month were excluded. The PRO-
seq BAM files, Histone ChIP-seq, and P300 ChIP-seq data of the
Kasumi-1 cell line were downloaded from the GEO database
(GSE83660 and GSE100446) (Zhao et al., 2016; Xu et al., 2019).
From the Encyclopedia of DNA Elements (ENCODE) portal
(https://www.encodeproject.org/), we downloaded the Hi-C
interactions data of K562 and GM12878 cell lines with the
following identifiers: ENCFF996XEO and ENCFF355OWW
(Inoue et al., 2017). The Histone ChIP-seq data of the
mononuclear cells of the bone marrow were collected from the
Blueprint project (IHEC portal: https://epigenomesportal.ca/
ihec/index.html, IHECRE00000277) (Adams et al., 2012;
Stunnenberg et al., 2016). The ribosome-deleted RNA-seq data
of two AML patients’ BM samples were obtained from GSE87285
(Loke et al., 2017). All detailed information on datasets
mentioned above is listed in supplementary table 1.

Quantification and Annotation of eRNA
Annotation of enhancer loci was downloaded from the FANTOM5
project (http://fantom.gsc.riken.jp/5/) (Andersson et al., 2014). We
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filtered out eRNA loci overlapping with known annotated elements
and 1 kb extension from both the transcription start site (TSS) and
transcription end site (TES) to eliminate introns, exons, promoters,
rRNA repeats, and other transcribed elements. The 3 kb of the
middle locus of the enhancer was designated as the potential eRNA
region (Zhang et al., 2019). RNA-seq data of the TCGA-LAML
cohort were mapped to eRNA regions by featureCounts and
normalized to reads per million (RPM) (Liao et al., 2014). eRNA
with RPM≥1 in at least one sample was defined as an active eRNA
(Zhang et al., 2019; Zhang et al., 2021). The enhancer loci from all the
human tissues and cell lines in the database were included in the
analysis. Liftover was used to convert genomic regions from various
genomic versions to the hg19 genome version (Rhead et al., 2010).
The annotation of enhancer loci was supported by R package
annotatr (Cavalcante and Sartor, 2017). The histograms of
promoters, enhancers, and random loci were created by HOMER
(http://homer.ucsd.edu/homer/) (Heinz et al., 2010). Immune-
related eRNAs (ir-eRNAs) were defined as at least correlated
with an immune cell type (absolute Spearman’s correlation Rs >
0.3, p < 0.05). We used univariate Cox regressions (p < 0.01, hazard
ratio (HR) > 1.1 or <0.9) to identify prognostic eRNA.

Identification of Enhancer–Gene Pair and
Validation of Chromatin State Analysis
The pair of eRNAs and protein-coding genes was identified based
on close distance (1 MB) and the corresponding expression level
(absolute Spearman’s correlation Rs > 0.3 and FDR <0.05)
concurrently (Zhang et al., 2019). We selected the defined
eRNA loci, promoter of protein-coding genes, and random
loci of the genome (0.5–4.5 kb away from the region of the
defined enhancer and excluded any overlapping annotation) to
exhibit the genome coverage. The Histone and P300 ChIP signal
was visualized by Deeptools, and the HiC data were illustrated by
HiCExplorer (Wolff et al., 2020).

Unsupervised Clustering Analysis
To investigate distinct patterns, we used the R package
ConsensusClusterPlus for unsupervised clustering analysis
(Wilkerson and Hayes, 2010). The number of iterations was
set at 1,000 to ensure clustering stability. The other
parameters, clusterAlg, distance, and linkage, were set as pam,
Pearson, and ward.D.

Gene Set Variation Analysis, Gene Set
Enrichment Analysis, and Gene Ontology
Annotation
GSVA is a nonparametric, unsupervised method for assessing
alternations in the activity of signaling pathways and biological
processes using expression datasets. We compared signaling
pathways across different ir-eRNA patterns using the R
package GSVA (Hänzelmann et al., 2013). The gene set “c2.
cp.kegg.v6.2. symbols” from the Molecular Signatures
Database (MSigDB) was used as the predetermined dataset.
Statistical significance was defined as an adjusted p value of less
than 0.05. We used the R package clusterProfiler to annotate

the ir-eRNA-related gene for Gene Ontology (GO) analysis by
biological processes (BPs) (p < 0.05, FDR <0.05) and the
differentially expressed genes (DEGs) for gene set
enrichment analysis (GSEA) by the Kyoto Encyclopedia of
Genes and Genomes (KEGG) with a default parameter.

Evaluating Cell Infiltration in the TME
By generating a gene set using cell-specific markers, single-sample
gene set enrichment analysis (ssGSEA) allows us to assess the
number of immune cells in AML BM samples. A previous study
yielded gene sets for labeling each kind of TME-infiltrated
immune cells, such as activated dendritic cells, activated CD8+

T cells, macrophages, active CD8 T cells, and regulatory T cells
(Barbie et al., 2009; Charoentong et al., 2017). The relative
abundance of TME cells in each sample was represented by
the estimated abundance score in silico. In addition, the
ESTIMATE method was also used to compute immune and
stromal scores, as well as tumor purity, corroborating the
ssGSEA approach.

Identifying DEGs in Different ir-eRNA
Patterns
Based on prognostic ir-eRNAs, AML patients were split into two
different expression patterns. To determine pattern-related genes,
we used the R package limma to compare the expression profiles
between the two patterns. An empirical Bayesian algorithm using
moderated t-tests was used to carry out this strategy. The adjusted
p value of 0.05, determined with Benjamini–Hochberg correction,
was set as the significant criteria for detecting DEGs (Ritchie et al.,
2015).

Generating Gene Signature and E-Score
We developed a scoring system to assess the immune pattern of
individual AML patients. First, we standardized the expression of
DEGs recognized from different immune subtypes in all TCGA
samples. Patients were divided into two subgroups by DEGs
through unsupervised clustering analysis. Next, we used a
univariate Cox regression model for prognostic analysis of
each gene in the signature (p < 0.01, HR > 1.1 or <0.9). We
calculated the correlation between different subtypes and
signature genes (Pearson correlation analysis). The positively
correlated genes were defined as gene set A, and the negatively
correlated genes were defined as gene set B. We then performed
principal component analysis (PCA) to construct pattern-related
signatures. The benefit of this strategy was that it concentrated the
scores on the dominant network of gene signatures while
downweighting contributions from genes that did not correlate
with other set members. Principal component 1 of each gene set
was extracted as PC1. A and PC1.B to calculate E-score, which
was defined in an approach similar to that of the Genomic Grade
Index (GGI) (Van ’T Veer et al., 2002; Zeng et al., 2019):

E score � ∑(PC1.Ai + PC1.Bi) ,
where i is the expression of a gene related to each signature
gene set.
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Statistical Analysis
Spearman’s rank correlation analysis evaluated the correlation
coefficient between the expression of ir-eRNAs and TME-
infiltrated immune cells (Sokol et al., 2017). We utilized the
R package survminer to identify the cutoff point between each
E-score subgroup based on the connection between the E-score
and the overall survival of the patients. To get the maximum
rank statistic, all possible cutoff points were evaluated
repeatedly. Patients were separated into high- and low-E-
score groups using log-rank statistics to minimize batch
effects for maximum selection (Kerschke et al., 2020). The
Kaplan–Meier curves were used to create survival curves for
prognostic analysis, and the significance of differences was
determined using the log-rank test. The hazard ratios (HRs)
and p values of ir-eRNAs and signature genes were calculated
using a univariate Cox regression model. To find independent
prognostic factors, we employed a multivariate Cox regression
model. The R package forestplot was applied to visualize the
results of univariate and multivariate Cox regression. Receiver
operating characteristic (ROC) curves were used to assess the
sensitivity and specificity of E-score, and the area under the
curve (AUC) was determined using the R package
survivalROC. The R package RCircos was used to illustrate
the chromosomal location of the ir-eRNAs and target genes.
The significance criterion for all statistical comparisons was
0.05, and all comparisons were two sided. R 4.0.2 was used to
conduct all statistical analyses.

Availability of Data and Source Code
All expression profiles and clinical annotation files were
downloaded from public databases. Our code is available on
request.

RESULTS

The Landscape of eRNAs in Acute Myeloid
Leukemia
The overview of the study is depicted in Figure 1. We started
by gathering approximately 65,000 enhancer loci from the
FANTOM5 project, a robust enhancer database including
enhancers from most human tissues and cell lines
(Andersson et al., 2014). Then, we identified 13,251
enhancer RNAs in the TCGA-LAML cohort, none of which
overlapped with annotated genomic regions. Active enhancer
loci were typically described as eRNA transcription and unique
epigenomic modification patterns, such as high H3K4me1,
high H3K27ac, low H3K4me3, and high P300 levels (Klemm
et al., 2019). To verify the reliability of enhancer loci in AML,
we then investigated the epigenomic modification patterns of
13,521 eRNA regions, which showed enhancer-like
epigenomic patterns compared with random loci and
protein-coding gene loci (Supplementary Figure S1). In
addition, the distribution of RNA transcription abundance
revealed obvious transcription peaks in a classic manner

FIGURE 1 | Overview of the study.
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among enhancer regions, demonstrating that the expression of
enhancer regions was not the transcription background noise
(enhancer loci vs. random loci, Figure 2A). On average, the
expression level of eRNAs was less than that of protein-coding
genes (enhancer loci vs. random loci and transcription start
site (TSS) of protein-coding gene vs. random loci, Figures
2A,B). Enhancers usually play roles as cis-elements (Klemm
et al., 2019). Previous studies revealed that eRNAs were
excellent markers for active enhancers, so eRNAs usually
correlated with adjacent genes. To illustrate the
characteristics of eRNAs, pairwise Pearson correlation
analysis revealed that eRNAs were more correlated with
neighboring genes in a distance-related way, which
indicated that eRNA has a stronger association with the
closest gene than distal ones (Figure 2C). The closest
coding genes near active eRNAs (RPM >1) exhibited a
higher expression level than those near nonactive eRNAs
(p < 0.001, Wilcoxon test; Figure 2D). Similar to previous
studies, we observed that most eRNAs were mapped to interact
with one adjacent gene (51.20%, 1,171/3,459, Figure 2E), and
most genes were only matched to a single eRNA as well
(59.74%, 2,664/4,459, Figure 2F). In conclusion, we
demonstrated the reliability of the defined enhancer loci
and presented the landscape of eRNA in AML. Our results
and recent studies suggested that eRNA levels were intimately
associated with the expression of nearby genes (Andersson
et al., 2014; Chen and Liang, 2020).

Prognostic ir-eRNAs Correlated With the
Tumor Microenvironment in the Bone
Marrow
We then concentrated on eRNAs correlated with prognosis, which
may play crucial roles in tumor progression and proliferation. We
filtered out 258/13,251 prognostic eRNAs (Supplementary Table
S2) by univariate Cox regression. To explore the potential functions
of prognostic eRNAs, co-expression analyses were performed.
Correlated mRNAs in the 1Mb region were identified as
potential target genes (Rs > 0.3, Spearman correlation analysis).
Functional enrichment analysis revealed that the bitter taste-related
pathway and several vital oncogenic signaling pathways such as
PI3K-Akt-mTOR and MAPK were enriched in GO enrichment
analysis (Figure 3A) (Nepstad et al., 2020; Kim et al., 1999).
Surprisingly, prognostic eRNAs were most concentrated on
immune-related pathways, such as myeloid leukocyte activation
and granulocyte migration (Figure 3A). Therefore, we suggested
that AML blasts shape immunemicroenvironment patterns through
eRNAs and related genes. We evaluated the immune cell abundance
of each sample by ssGSEA and filtered 72 eRNAs correlated with
immune cell abundance (Supplementary Figure S2), which were
defined as ir-eRNAs. Due to the diverse expression of ir-eRNAs in
different samples, we explored whether ir-eRNAs exhibited distinct
expression patterns in AML. Unsupervised clustering analysis was
performed, and two clusters were identified (Supplementary
Figures S3A–E, Figure 3B). One cluster defined as an immune-
resistant subtype showed a higher infiltration level of suppressive

FIGURE 2 | Landscape of eRNAs in AML. (A–B) Expression coverage of enhancers (A) and protein-coding genes (B) in AML patients. TSS: transcription start site
of the protein-coding gene; enhancer: enhancer loci from FANTOM5 project; and random: random loci. (C) Pairwise Pearson correlation analysis of detectable eRNAs
and their nearby genes. 1st, the closest gene, 2nd, the second closest gene, 3rd, the third closest gene, and 4th, the fourth closest gene. (D) Expression levels of protein-
coding genes near active and nonactive eRNAs (Wilcoxon test, p < 0.001). (E) Distribution of the number of protein-coding genes co-expressed with per eRNA. (F)
Distribution of the number of eRNAs co-expressed with per protein-coding genes.
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FIGURE 3 | ir-eRNAs regulate the development of the tumor microenvironment in the bone marrow. (A) GO analysis of 258 prognostic eRNAs showed immune-
related functional activation. (B) Two eRNA clusters showed different clinical and gene expression characteristics, illustrated by a heatmap. (C) Analysis of the immune
infiltration level of 23 immune cell subtypes in two eRNA clusters (ns, p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001,Wilcoxon test). (D) ESTIMATE score of stromal, immune
components in the TME in two eRNA clusters (Wilcoxon test, ***p < 0.001). (E) ESTIMATE score of tumor purity in two eRNA clusters (Wilcoxon test, ***p < 0.001).
(F)Cell clustering revealed correlations among 23 immune cell subtypes (Spearman correlation, p < 0.001, log-rank test, p < 0.05). (G)Univariate Cox regression showed
prognostic relevance of different immune cell infiltrations. (H) Survival analysis showed different survival outcomes between two eRNA clusters (log-rank test p < 0.001).
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cells, including dendritic cells, macrophages, regulatory T cells, and
myeloid-derived suppressive cells (MDSCs). The other cluster
defined as the immune-active subtype showed a lower level of
suppressive cells and a trend of a higher level of activated T cells
without statistically significant at the 5% level (Figure 3C). The
stromal and immune scores determined by ESTIMATE were also
higher in the immune-resistant subtype (stromal score, p < 0.001,
Wilcoxon test; immune score, p < 0.001, Wilcoxon test; Figure 3D),
while the immune-active subtype had a higher tumor purity (p <
0.001, Wilcoxon test; Figure 3E), in line with the work of Yan et al.

(2019). Cell clustering revealed complicated correlation networks of
23 immune cells and their prognostic significance by the log-rank
test (Figure 3F). In addition, Figure 3G shows the detailed hazard
ratio of each immune cell by univariate Cox regression analysis.
Plasmacytoid dendritic cell and macrophage, previously reported as
cancer-promoting cells, had hazard ratio >1 (HR, 2.06
(1.314–3.228), p = 0.001; HR, 1.694 (1.083–2.648), p = 0.023,
respectively) (Miari et al., 2021; Xiao et al., 2021). The
Kaplan–Meier curves validated the poor prognosis of several
immune cells, and the representative cell types are shown in

FIGURE 4 | S100-enhancer and S100-eRNA play a role in shaping the immunosuppressive microenvironment. (A) GSEA of immune-related pathways confirmed
different pathway activation models between immune-resistant and immune-active subtypes. (B) The chromosomal locations of potential target genes of ir-eRNAs
identified in our study. Red ones were S100-eRNA and five S100 proteins. (C)Higher expression level of the nine genes regulated by S100-enhancer and S100-eRNA in
the eRNA immune-resistant subtype compared with the immune-active subtype (ns, p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001, Wilcoxon test). (D) Correlations
between the S100 protein family and immune checkpoint-related genes (Spearman correlation test, *p < 0.05; **p < 0.01). (E) The survival relevance of the S100 protein
family in pan-cancers (red, risky factors; blue, protective factors; and grey, p > 0.05). (F) Schematic illustration of the putative mechanism by which S100-enhancer
regulates immune infiltration. A phrase-separated structure is shown.
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Supplementary Figures S3F–P (log-rank test, cutoff determined by
R package survminer). Furthermore, patients of the immune-
resistant subtype had a significantly shorter overall survival time
than patients of the immune-active subtype (log-rank test, p < 0.001,
Figure 3H). In general, we discovered that two clinically significant
immune subtypes characterized by distinct ir-eRNAs profiles existed
in AML, suggesting that ir-eRNAs played vital roles in modulating
the immune microenvironment of BM. The immune-resistant
subtype was characterized by a high level of suppressive and
cancer-promoting immune cells. The immune-active subtype was
accompanied by a relatively high level of protective immune cells.
Although the absolute abundances of activated T cells, including
CD4 T cells and CD8 T cells, were not significant between the two
types, fewer suppressive immune cells in the immune-active subtype
provided an immune microenvironment with less immune evasion
and T-cell dysfunction.

S100-Enhancer and S100-eRNAMay Induce
a Poor Immune Microenvironment in AML
Based on the abovementioned findings, we applied the GSVA
algorithm to explore pathways that differed between two immune
subtypes. The result showed that the immune-resistant subtype
was highly associated with innate immune response pathways,
while the immune-active subtype was related to the T-cell
receptor signaling pathways (Supplementary Figure S4A).
The GSEA of immune-related pathways further confirmed that
the NF-κB pathway and other innate immune response pathways
were highly enriched in immune-resistant subtypes (Figure 4A).
Surprisingly, the PDL1 expression and PD1 checkpoint pathway
showed a close connection to the immune-resistant subtype,
leading to the following analysis to predict the response to ICI
therapy. To further explore the possible biological roles of each
immune subtype, we identified 1,057 ir-eRNA-related
differentially expressed genes (DEGs) between immune-
resistant and immune-active subtypes by the limma package
(Supplementary Table S3). To investigate whether the DEGs
directly correlated with ir-eRNAs, we subsequently screened
genes with correlation index >0.3 in the approximately 1 Mb
adjacent regions of ir-eRNAs (Zhang et al., 2019; Zhang et al.,
2021) and identified 148 potential target genes (Supplementary
Table S4). The Venn diagram illustrated that 55 genes showed
both different expression levels between two clusters and
correlations with ir-eRNAs, which suggested that these genes
might be directly activated by immune-related enhancers
(Supplementary Figure S4B). Most of these genes were
reported as immune-related genes in AML (Li et al., 2020;
Brenner and Bruserud, 2018; Borrego, 2013). Among these
genes, we focused on five genes (S100A4, S100A6, S100A8,
S100A9, and S100A12) from the S100 protein family that was
widely reported in AML. The five genes were correlated to a
specific eRNA transcribed from a chromosomal region (chr1:
153488459–153488748) (supplementary table 4, Figure 4B). We
defined this enhancer and eRNA as S100-enhancer and S100-
eRNA, respectively. In addition, Supplementary Figure S4C
indicates the compact correlation among the five genes.
Figure 4C reveals that the five genes exhibited consistent

higher expression in the immune-resistant subtype
(S100A4 p < 0.001, S100A6 p = 0.001, S100A8 p = 0.014,
S100A9 p = 0.006, S100A12 p = 0.056, Wilcoxon test).
Brenner and Bruserud (2018) summarized that the S100
protein family promoted tumor growth by enhancing a
suppressive immune microenvironment in AML. Thus, we
examined the relationship between S100-eRNA and immune
cells and found a strong correlation with suppressive immune
cells, including MDSC, macrophage, and regulatory T cell, as was
expected (Supplementary Figure S4D). Figure 4D demonstrates
that the S100 protein family tightly correlated with the immune
checkpoint-related gene expression, suggesting the potential
efficacy in predicting response to ICI treatment. Because S100
proteins were positively correlated with the immune-resistant
subtype, a relatively poor prognosis would be observed.
Supplementary Figures S4E–I demonstrate the hypothesis.
We then expanded the S100 protein family to pan-cancer
survival analysis. S100 proteins represented general risky
factors in the pan-cancer scale, except for S100A6/A8/A9 in
Sarcoma (SARC) and S100A4/A8 in Head and Neck
Squamous Cell Carcinoma (HNSC) (univariate regression
analysis, Figure 4E). These results suggested that the S100-
enhancer and S100-eRNA generally facilitated a suppressive
inflammatory microenvironment, resulting in a worse outcome
via the S100 protein family and related pathway, as Figure 4F
illustrates. The illustration of the genomic region revealed that the
S100-enhancer and correlated genes were in the same
transcription activation domain (TAD) in leukemia cells,
which suggested S100-enhancer interacted with nearby genes
and induced their transcription (Figure 5). Additionally, PRO-
seq demonstrated an active transcription event in the enhancer
region, and histone modifications confirmed the epigenomic
characteristics of S100-enhancer.

Immune Infiltration Patterns Indicate a
Novel Clinical Classification and Potential
Response to Immunotherapy
To explore the roles of immune microenvironment patterns in
predicting clinical prognosis and potential response to
immunotherapy, we created a gene signature based on
prognostic DEGs between immune-resistant and immune-
active subtypes (246/1,057 prognostic DEGs, Supplementary
Table S5). Random Forest regression, a machine learning-
based algorithm, was used to get representative genes (66/246
after Random Forest regression, Supplementary Table S5). We
then performed an unsupervised clustering analysis with the 66
signature genes and obtained two gene clusters (Supplementary
Figures 5A–D). The immune infiltration and survival analysis
based on both ir-eRNAs and signature genes were similar, thus
supporting the robustness of immune subtypes (Supplementary
Figures 5E–G). The result of PCA revealed the well-defined
characteristics of immune subtypes as well (66 signature genes,
Figure 6A).

The abovementioned results demonstrated that ir-eRNA
alteration had a significant impact in generating distinct TME
patterns. These findings, however, were limited to the population
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level and could not properly predict the immune profiles of AML
at the individual level. Given the alternative heterogeneity and
diversity of ir-eRNA-mediated immune profiles, we developed a
scoring system based on these phenotype-related genes to
quantify the TME pattern of individual patients in AML
through the PCA algorithm, which was named eRNA-derived

score (E-score) (see Methods, Figure 6B). E-score well
distinguished the two immune subtypes as was expected (p <
0.001, Wilcoxon test; Figures 6B,C). The high-E-score group had
a better prognosis than the low-E-score group (log-rank test, p <
0.001, Figure 6D). Nearly all immune-active subtypes were
stratified into the high-E-score group (Figure 6C).

FIGURE 5 | S100-enhancer and correlated genes in the same transcription activation domain (TAD). Upper panel: Hi-C analysis of the genomic region containing
the S100-enhancer gene in the K562 cell line, compared with the control cell line. Arrow pointed out the enhancer location. Medium panel: UCSC gene annotations and
PRO-seq analysis within ±0.5 Mb region of the S100-enhancer gene, including five correlated genes located in the same TAD (bold). Lower panel: PRO-seq analysis and
enhancer-related epigenomic modification analysis (H3K4me1, H3K4me3, and H3K27ac) within the S100-enhancer gene region. S100-enhancer is highlighted in
yellow.
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FIGURE 6 | Clinical classification with eRNA and prediction of response to immunotherapy. (A) Principal component analysis showed distinguished characteristics
between the two gene clusters determined by 66 signature genes. (B) Two gene clusters showed distinct eRNA-derived score (E-score) (Wilcoxon test, p < 2.22 ×
10−16). (C) Stratifications according to eRNA clustering, gene clustering, and E-score, as well as the correlation among the three stratifications. (D) Survival analysis
showed different survival outcomes between two E-score groups (log-rank test p < 0.001). (E) Gene expression heatmap and clinical characteristics (CAGLB risk
classification, FAB classifications) in high- and low-E-score groups. (F) Distribution of CAGLB risk classification groups (favorable, intermediate, and poor) in high- and
low-E-score groups. (G) Distribution of FAB subtypes (M0–M7) in high- and low-E-score groups. (H) Distribution of fusion types in high- and low-E-score groups. (I)

(Continued )
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AML was commonly classified by the
French–American–British (FAB) classification and the
morphology, immunology, cytogenetics, and molecular biology
(MICM) classification via genetic, immunophenotypic,
pathological, and clinical features. CALGB cytogenetics-based
risk classification and ELN 2017 risk classification provided
widely used predictive models based on the integration of
cytogenetics and mutational status (Döhner et al., 2017;
Tallman et al., 2019). We examined the efficacy of E-score in
distinguishing various clinical characteristics by the TCGA
cohort and another independent cohort, Beat AML. It was
found that the high- and low-E-score groups showed distinct
clinical characteristics (Figure 6E). When favorable CALGB risk
patients were almost concentrated in the high-E-score group, the
low-E-score group contained a greater proportion of intermediate
and poor CALGB risk patients (Figure 6F). The M3 subtype was
categorized exclusively into the high-E-score group, while M4
and M5 subtypes were most concentrated in the low-E-score
group (Figure 6G). Furthermore, PML-RARα translocations only
existed in the high-E-score group (Figure 6H). On the contrary,
CBFB-MYH11, GATA2-MECOM, and MLLT3-KMT2A only
occurred in the low-E-score group (Figure 6H). Differences in
other clinical features, including the response to chemotherapy,
ELN2017 risk classification, and WHO classification, are shown
in Supplementary Figures 5H–J. The group with both low
E-score and intermediate/poor risk showed poor prognosis
compared with the other groups, which indicated that a good
proportion of patients with intermediate/poor risk showed
relatively better outcomes (Figure 6I). We have mentioned
that the immune-resistant subtype was enriched in the PD−L1
expression and PD−1 checkpoint pathway (Figure 4A). The
immune-resistant TME with abundant suppressive immune
microenvironment generally adopted a better response to
immune checkpoint therapy, such as the anti-PD1/PDL1
agents, in solid tumors (Turan et al., 2018). We predicted the
response to immunotherapy in the two groups. TheMicrosatellite
Instability (MSI) score and T-cell dysfunction score of Tumor
Immune Dysfunction and Exclusion (TIDE) were higher in the
low-E-score group, suggesting a predictive better response to
immunotherapy (Figure 6J). We also detected other non-
redundant immune checkpoints and checkpoint-related gene
expression between the two clusters (Figure 6K). Several
checkpoint molecules, including IFNG, TNFRSF9, CTLA4,
CD86, TIM-3, and PD-L2, had significantly increased
expression in the low-E-score group, and their effects on
T-cell dysfunction and immune escape have been verified in
AML (Hobo et al., 2018; Kikushige, 2021). However, there was no
significant difference, but only a trend, in the expression of PD1
and PDL1, implying that the TMEmodulation is complicated and
understudied. On the other side, our result partly explained the
reason why current clinical trials of anti-PD1 agents exhibited

controversial results. A group of intermediate/poor-risk patients
with low E-score might be the potential population benefiting
from the ICI treatment, which requires clinical trials for further
validation. Based on the aforementioned results, our E-score
system firstly proposed a quantizable system to predict
response to ICI therapy in AML.

E-Score Associated With Genetic Risk
Stratification Serves as an Independent
Prognostic Factor in AML
To discover whether E-score could provide satisfactory predictive
efficacy in AML, we proved that E-score was an independent
prognostic factor in 4 validation cohorts (Beat AML, GSE37642,
GSE12417, and GSE10358). Consistent survival differences were
observed in all the validation cohorts mentioned above (Beat
AML cohort, log-rank test, p = 0.021; GSE37642, log-rank test, p =
0.020; GSE12417, log-rank test, p = 0.003; and GSE10358, log-
rank test, p = 0.019; Figures 7A–D). Both univariate cox
regression and multivariate cox regression confirmed the
independent predictive power of age, CAGLB risk
classification, and E-score (TCGA-LAML cohort,
Supplementary Figure 6A). Log-rank regression of these
clinical features also revealed that age and CAGLB risk
classification were independent predictors (TCGA-LAML
cohort, Supplementary Figures 6B–F). E-score showed a high
area under the curve (AUC) in a time sequence (AUC1year =
0.741, AUC3year = 0.730, AUC5year = 0.810, Figure 7E).
Additionally, compared with other clinical characteristics
(gender, age, race, FAB subtype, and CAGLB risk
classification), the E-score exhibited the best capability at
predicting OS in the TCGA cohort (Figure 7F). Given that
the E-score showed an excellent predict power in OS, we
constructed a nomogram integrating E-score with other
clinical features (TCGA-LAML cohort as the training cohort,
Figure 7G). The calibration curves of the nomogram for 1-year,
3-year, and 5-year survival probability exhibited excellent
consistency with the ideal performance, indicating the high
accuracy of our nomogram (TCGA-LAML cohort,
Figure 7H). The nomogram discrimination as evaluated by C
index was 0.714 (95% CI = 0.651–0.777, p < 0.0001), which was
superior to that of the E-score alone (0.674, 95% CI =
0.608–0.740, p < 0.0001), CAGLB risk classification (0.594,
95% CI = 0.526–0.663, p < 0.0001), and age (0.661, 95% CI =
0.596–0.726, p < 0.0001) in the TCGA-LAML cohort. The
nomogram was externally confirmed in the validation cohort,
the Beat AML cohort. The C index was 0.684 (95% CI =
0.614–0.755, p < 0.0001; Beat AML cohort), indicating a
significant discriminative ability. The calibration curve
presented a good agreement for 1-year OS rates in the
validation cohort (Supplementary Figures 6G). However,

FIGURE 6 | Patient stratification based on the CALBG risk classification (favorable, intermediate, and poor) and E-score group (high and low) and corresponding
prognosis (log-rank test p < 0.001). (J) Enrichment of immunotherapy-related markers in high- and low-E-score groups (ns, p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001,
Wilcoxon test). (K) Expression of immune checkpoints and related genes in two E-score groups (ns, p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001, Wilcoxon test).
eRNA.cluster.A and gene. cluster.A, immune-resistant subtype; eRNA.cluster.B and gene. cluster.B, immune-active subtype.
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calibration curves exhibited underestimated 3- and 5-year OS
rates (Supplementary Figures 6H–I). In all, the E-score system
had outstanding predict power in both OS and response to ICI
therapy, which improved the current predictive models and made
it potential for clinical practice.

CONCLUSION

This study identified immune-related prognostic eRNAs (ir-
eRNAs) for AML. Clustering of ir-eRNAs revealed two distinct
immune subtypes, the immune-resistant subtype and the

FIGURE 7 | Prognostic power of E-score and a prognostic nomogram established. (A–D) Survival difference between high- and low-E-score groups validated in
the Beat AML (A) (log-rank test p = 0.021), GSE37642 (B) (log-rank test p = 0.020), GSE12417 (C) (log-rank test p = 0.003), and GSE10358 (D) (log-rank test p = 0.019)
cohort. (E) Predictive power of E-score for 1-, 3-, and 5-year survival, evaluated by AUC (0.741 at 1 year, 0.730 at 3 years, and 0.810 at 5 years). (F) Predictive power of
E-score for overall survival compared with other clinical characteristics, evaluated by AUC. (G) The nomogram constructed by integrating E-score and other clinical
features. (H) Calibration curves of our nomogram on the estimation of 1-, 3-, and 5-year overall survival.
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immune-active subtype. S100-eRNA was found to lead to
worse outcomes with the activation of the S100 protein
family and subsequently induced a suppressive TME. A
novel eRNA-derived scoring system (E-score) was
developed and showed great stratification power for patients
in terms of the immune microenvironment and clinical
characteristics. Finally, we established a prognostic
nomogram with satisfactory accuracy by integrating E-score
and other clinical features. This study provided a
comprehensive understanding of the impact of eRNAs on
shaping the immune microenvironment in AML and
developed eRNA-derived tools to predict prognosis.

DISCUSSION

In this study, we identified that AML bone marrow samples can
be classified into immune-resistant and immune-active subtypes
by ir-eRNAs. Then, we revealed the underlying rationality of the
immune classification by an enhancer–gene pair. Finally, we
developed a prognostic model based on immune scoring,
E-score, for predicting overall survival and response to
immunotherapy in AML patients.

Our study revealed that the high suppressive immune
microenvironment with high counts of regulatory T cells
and MDSCs correlated with poor prognosis. In this paper,
we used eRNA, a non-coding RNA, for effective clustering and
suggested that enhancer plays an important role in the
construction of the BM microenvironment. We cautiously
inferred the conclusion based on the fact that eRNAs are
excellent markers for active enhancers that facilitated the
transcription of target genes (Andersson et al., 2014). We
demonstrated that a large amount of eRNAs was correlated
with the abundance of immune cells in AML. Moreover, the
putative genes in the vicinity of these ir-eRNAs have been
experimentally validated to correlate with the invasion and
progression of AML (Borrego, 2013; Brenner and Bruserud,
2018; Li et al., 2020). Bulk-level RNA-seq data of the current
public database were the confounding profiles of the different
cell types, which compromised the power of mRNAs to predict
the molecular and clinicopathological features of tumor cells.
The essential TME-promoting mRNAs expressed in AML
blasts could be averaged by the background expression of
other cell types in the TME. However, eRNA has been
reported to associate with tumor traits, such as response to
immunotherapy, more powerfully because of the strong cell
lineage specificity (Chen and Liang, 2020). E-score derived
from eRNA classification had a higher AUC (0.810 vs. 0.68)
compared to other risk scores derived from immune cell
abundance as a predictor of OS (Wang et al., 2021),
implying that eRNA-based immune subtypes had better
efficacy to predict the OS of AML patients.

The interaction between tumor cells and the
microenvironment together promoted tumorigenesis and
tumor progression. The S100 protein family provided a
suppressive immune microenvironment in a variety of
tumors, promoting tumorigenesis and metastasis (Brenner

and Bruserud, 2018). Among the genes with a high
correlation with S100-eRNA, our attention was focused on
S100A8/A9, a heterodimer that is overexpressed in many
cancers and associated with suppressive TME. S100A8/A9 is
an activator of monocytes and macrophages and leads to
neutrophil infiltration, correlating with a poor prognosis of
patients. S100A8/A9 promotes tumor development and
invasiveness by increasing leukemic cell growth through
RAGE and secretion of pro-inflammatory cytokines through
the TLR4-NFκB pathway (Hiratsuka et al., 2008). Kaikkonen
et al. (2013) have reported that eRNA takes part in the
activation of the TLR4-NFkB pathway in macrophages by
promoting enhancer–promoter looping and regulating
mediator recruitment, which increases our confidence in
that the S100-eRNA-S100 protein family axis is potentially
involved in shaping the immune microenvironment.

In this study, we first systematically concluded the
prediction of response to immunotherapy linked to
immunophenotyping in AML. Several clinical trials about
checkpoint inhibitors therapy have been pursued in AML
and got controversial conclusions (Ghosh et al., 2020).
Identification of specific populations who might benefit
from ICI therapy would be the ideal strategy to solve this
problem. Our study firstly developed a method to predict the
potential population that benefited from ICI therapy and
implied that other ICIs, including TIM-3, might be more
attractive targets. We collected general predictors of
response to ICI therapy. T-cell exclusion score was excluded
due to suspiciously overestimated MDSCs. In addition, the
tumor mutation burden (TMB) was also omitted because TMB
is generally quite low in AML. Further validation of our model
requires further detailed survival data of the immunotherapy
cohort. Our results suggest E-score may be a promising
predictor for the choice of immunotherapy, especially for
M4/M5 patients with high E-score and abundant
suppressive immune infiltration.

It is important to note that limitations existed in our study.
First, because of the similarities between leukemia cells and
myeloid-derived cells such as MDSC and monocytes, a
possible overestimation of MDSC and monocyte existed. We
carefully based the conclusion on the abundance of these cells.
Whether eRNA functions as an initiation factor of vital gene
transcription needs further functional experiment because eRNA
may be only a marker of enhancer active transcription instead of a
functional factor. The enhancer–gene pairs were determined by
co-expression analysis as in other studies (Zhang et al., 2019),
which was the best strategy for large clinical cohorts currently.
More advantages of single-cell RNA-seq or single-cell ATAC-seq
could improve the accuracy of prediction and support further
analysis.

In conclusion, our study distinguished AML into immune-
resistant and immune-active subtypes by ir-eRNA for the first
time. The important roles of these eRNAs in the clinic require
investigation, which may provide new insight into the
pathogenesis of AML. The predictive model with high
accuracy provides new tools for physicians. This study
increases the understanding of the important roles of
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enhancers on the BM microenvironment and might provide
novel therapeutic targets.
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