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Simple Summary: Breast cancer (BrCa) is the second leading cause of cancer-related deaths in
American women, and its incidence is on the rise. Insufficient understanding of the mechanisms
leading to BrCa limits the effectiveness of the treatment. In this article, we show the importance
of a chemokine axis-CXCR6/CXCL16 in supporting BrCa progression. We have delineated BrCa-
promoting mechanisms induced by this chemokine axis at the molecular level. This work projects
the therapeutic significance of CXCR6/CXCL16 signaling for the treatment of BrCa.

Abstract: Precise mechanisms underlying breast cancer (BrCa) metastasis are undefined, which
becomes a challenge for effective treatments. Chemokine signaling instigates the trafficking of cancer
cells in addition to leukocytes. This study aimed to ascertain the clinical and biological significance of
the CXCR6/CXCL16 signaling axis in the pathobiology of BrCa. Our data show a higher expression
of CXCR6 in BrCa cell lines and tissues. Stage-III BrCa tissues express significantly higher CXCR6
compared to stage-II tissues. The ligand, CXCL16, could remain tethered to the cell surface, and,
after proteolytic shedding of the ectodomain, the N-terminal fragment is released, converting it to its
oncogenic, soluble form. Like CXCR6, N-terminal CXCL16 and ADAM-10 were significantly higher
in stage-III than stage-II, but no significant difference was observed in the C-terminal fragment of
CXCL16. Further, stimulation of the CXCR6/CXCL16 axis activated Src, FAK, ERK1/2, and PI3K
signaling pathways, as per antibody microarray analysis, which also underlie CXCL16-induced
F-actin polymerization. The CXCR6/CXCL16 axis induces cytoskeleton rearrangement facilitating
migration and invasion and supports BrCa cell survival by activating the PI3K/Akt pathway. This
study highlights the significance of the CXCR6/CXCL16 axis and ADAM10 as potential therapeutic
targets for advanced-stage BrCa.

Keywords: breast cancer; chemokine; chemokine receptor; ADAM10

1. Introduction

Breast cancer (BrCa) is the most common malignancy and the second leading cause
of cancer-related deaths in American women [1,2]. Current predictions suggest that the
worldwide incidence of BrCa and related death is on the rise [3]. Hormone therapy,
surgery, chemotherapy, radiation, and targeted therapy are helpful; however, approxi-
mately 40,920 are expected to die from the disease [4]. This emphasizes the need to improve
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our understanding of BrCa progression to design more effective treatments. Many fac-
tors are implicated in BrCa metastasis; however, the precise mechanism involved in the
migration of cancer cells to distant organs is unclear [5,6].

Chemokines are proinflammatory chemoattractant cytokines that function primarily
in leukocyte trafficking and other biological activities, such as development, angiogenesis,
and hematopoiesis [7–9]. In addition to their role in several pathological conditions, it
has become progressively evident that chemokines and their receptors are significant in
determining cancer cells’ metastatic destination [1]. CXCL16 is a chemokine that func-
tions in its membrane tethered (insoluble) form and soluble form after proteolytic shed-
ding of the ectodomain [10–13]. Its trans-membrane form (Tm-CXCL16), on the surface
of macrophages, monocytes, and dendritic cells, functions as an adhesion molecule for
CXCR6-positive cells [11]. On the other hand, soluble CXCL16 (sCXCL16) is implicated in
instigating increased migratory and invasive potential of high CXCR6-expressing cancer
cells [14]. CXCL16 is also expressed in various cancers, including prostate, non-small cell
lung, colorectal, and breast [10,14–16]. It is the conversion of Tm-CXCL16 to sCXCL16
that is crucial for switching to its oncogenic form. However, the exact role of CXCR6 and
CXCL16 in BrCa progression [10] or the proteases involved in the release of sCXCL16
is unknown.

ADAMs are a family of proteins involved in proteolytic shedding of extracellular
fragments of membrane-bound proteins [17–19]. Increased levels of ADAM10 render
resistance to trastuzumab [20]. Interestingly, proteolytic shedding of CXC chemokine by
ADAM10 is essential for determining cellular migration and proliferation, and cellular
fate [12,18]. Therefore, ADAM10 could potentially promote the progression of BrCa by
the release of CXCL16 [18]. Here, we show the biological and clinical significance of
the ADAM10 and CXCR6/CXCL16 axis on activating molecular pathways involved in
BrCa progression.

2. Materials and Methods
2.1. Tissue Specimens

Tissue microarray (TMA) slides containing breast cancer tissues were procured from
Cooperative Human Tissue Network (CHTN), UAB at Birmingham. Retrospectively
collected de-identified tissues were used. TMA consisted of 12 stage-II and 63 stage-III
BrCa tissue samples. A qualified pathologist confirmed the histopathology and validated
the class and tumor grade of each TMA core.

2.2. Immunohistochemical Staining and Evaluation of CXCR6/CXCL16 and ADAM10

TMAs were stained for CXCR6, CXCL16, and ADAM10 using methods we have
described previously [14,21]. Virtual slides were created with an Aperio ImageScope
(Aperio Technologies) to analyze the immunohistochemical staining. True-color digital
images of each stained sample were viewed using Aperio ImageScope v.6.25 software.
An algorithm for determining the intensity of membrane-specific staining was used to
calculate, for each sample, the staining intensity and percent of the target label by digitally
analyzing the color intensity. A color markup image for each slide was obtained based on
the membrane staining intensity. The output was viewed as determinations of staining
intensity ranging from 0–3 to correlate with conventional manual scoring methods (where
0 = negative and 3 = strong staining), and statistical analyses were performed using the
mean values.

2.3. Cell Culture

The normal mammary epithelial cells (MCF-10A) and BrCa cell lines MCF-7 and MDA-
MB-231 were obtained from ATCC. Complete growth medium for MCF10A was prepared
by supplementing the base medium (MEBM) with 100 ng/mL cholera toxin provided
with the kit (MEGM, Kit Catalog No. CC-3150) procured from Lonza. MCF-7 cells were
maintained and cultured in MEM (Hyclone), while MDA-MB-231 were cultured in L-15
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containing 10 µg/mL insulin. Culture media for both BrCa cell lines were supplemented
with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin, and amphotericin-B.
Cultures were grown at 37 ◦C with 5% CO2.

2.4. Cancer Signaling Phosphorylation Antibody Array

CXCL16/CXCR6-induced changes in the phosphorylation of various cancer-associated
proteins in BrCa cells were assessed using cancer signaling antibody array containing 273
antibodies. These included antibodies against different phosphorylation sites of molecules
involved in cancer signaling. Vehicle-treated cells served as the control. Protein lysates were
processed and probed onto cancer signaling phospho-antibody microarray slides as per the
manufacturer’s protocol (Fullmoon Biosystems Inc., Sunnyvale, CA, USA). Briefly, protein
lysates were collected using beads followed by their biotinylation. Biotinylated protein
samples were then incubated with the array slides bearing the antibodies, followed by
labeling with a dose of 0.5 mg/mL Cy3-Streptavadin as per the manufacturer’s instructions.
Slides were then scanned and quantified using an Axon GenePix 4000B microarray scanner
(Molecular Devices, Sunnyvale, CA, USA).

The median signal intensity for each antibody was obtained using six replicate spots
and was normalized to the median signal of GAPDH. Fold changes in the P/N ratio
(phosphorylated/total protein) were calculated by dividing normalized average signal
intensities for CXCL16-treated samples by that of controls. The CIMminer platform (https:
//discover.nci.nih.gov/cimminer/oneMatrix.do (accessed on 29 June 2021)), developed
by the Genomics and Bioinformatics Group at the National Cancer Institute, was used to
generate a heat map based on the data obtained. Results were divided into datasets and
uploaded into Ingenuity Pathways Knowledge Database as text files containing GenBank
accession numbers.

2.5. Image-Based Analysis of CXCR6 Expression

Briefly, BrCa cells (5 × 106) were harvested and stained with PE-conjugated anti-
CXCR6 for 40 min at 4 ◦C, and the nucleus was stained with DRAQ5™ (Biostatus Ltd.,
Shepshed, UK). ImageStream was used to acquire images of CXCR6-expressing cells.
Analysis was done using the Image Data Exploration and Analysis Software “IDEAS”
(Amnis Corp, Seattle, WA, USA).

2.6. Cell Migration and Invasion Assay

Migration and invasion of BrCa cells-MCF-7 and MDA-MB-231 were assessed using
BD Bio-coat migration or Matrigel invasion chamber systems (BD Biosciences), respectively,
as described earlier [16]. Briefly, matrigel inserts were hydrated for 2 h with warm serum-
free bicarbonate-based medium (DMEM) in an incubator at 37 ◦C with 5% CO2. After
hydration, the media was gently aspirated from the chambers. Next, 800 uL of respective
medium containing 2% FBS supplemented with or without CXCL16 (100 ng/mL) were
added to the bottom chamber. Then, 104 cancer cells treated with mouse anti-human
CXCR6 antibodies (1 µg/mL) or small molecule inhibitors of PI3Kp110α (PI-103, 3 µM),
PI3Kp110β (TGX221, 1 µM), and PI3Kp110γ (AS605240, 3 µM), wortmannin (1 µM), Src
(SU6656, 5 µM), FAK (PF-573228, 5 µM), or ERK (10 µM) in 400µL of 2% FBS-containing
media were added to the top chamber of the inserts and incubated overnight. After
incubation, cells on the upper surface of the membrane that did not migrate or invade were
removed with a cotton swab. Cells on the bottom surface of the insert were fixed with
100% methanol for 2 min, stained for 30 min in 1% crystal violet, and rinsed twice with
distilled water. The membranes were cut and placed on glass slides. Images were captured
at 20X magnification, and cells were then counted. The invasion index was calculated by
dividing the mean of cells invading through the Matrigel insert membrane by the mean of
cells migrating through the control insert membrane multiplied by 100. These assays were
repeated three times.

https://discover.nci.nih.gov/cimminer/oneMatrix.do
https://discover.nci.nih.gov/cimminer/oneMatrix.do
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2.7. Actin Polymerization

BrCa cells (104 cells/chamber) were cultured on chamber slides and were treated with
100 ng/mL CXCL16 for 10 min with or without pretreatment of anti-CXCR6 (1 ug/mL) or
Src (2.5 µM SU5565) or FAK (1 µM PF-573228) or ERK (20 µM PD98059) inhibitors. Then,
actin was stained with rhodamine-phalloidin (1.0 ug/mL) for 20 min, and the nucleus was
stained with DAPI using the procedure as described in our publication [22]. Images were
taken using a confocal microscope.

2.8. Statistics

The statistical significance for differences in CXCL16, CXCR6, and ADAM10 expres-
sion between groups was analyzed using Mann–Whitney U test. Student’s t-test was used
to analyze migration and invasion data. For all tests, p values < 0.05 were considered
significant. Statistical analyses were performed using Prism software (GraphPad, La Jolla,
CA, USA).

3. Results
3.1. Expression of ADAM10, CXCL16, and CXCR6 in BrCa Tissues and Cell Lines

Expression analysis of CXCL16 and ADAM10 in BrCa tissues is important because
of the CXCL16-CXCR6 ligand-receptor system in cancer development and the ability of
ADAM10 to cleave Tm-CXCL16. Expression levels of CXCR6, as assessed by IHC using
BrCa tissue microarray, were higher in advanced BrCa tissues (Figure 1A). The expression
of ADAM10 and N-terminal CXCL16 levels were significantly higher in stage-III BrCa
tissues than in stage II (Figure 1B). The levels of C-terminal CXCL16 were not considerably
different in stage-II versus stage-III BrCa tissues (Figure 1B). BrCa cells were found to
express more CXCR6 compared to normal mammary epithelial cells. More tumorigenic
MDA-MB-231 cells expressed significantly higher CXCR6 than MCF-7 cells and MCF10A
(Figure 2A,B).

3.2. Molecular Pathways Activated by the CXCR6/CXCL16 Axis

Upon binding to cell surface receptors, chemokines stimulate intracellular signal-
ing pathways that play a key role in regulating cellular processes to reorganize the actin
cytoskeleton [23]. Major mediators of these intracellular signaling pathways are overex-
pressed in several types of cancers [16] and invasive tumor cells in breast tumors [24].
To understand which of these mediators were activated in CXCR6-expressing BrCa cells
when stimulated with CXCL16, we screened 273 different proteins associated with sur-
vival, invasion, migration, and rearrangement of the cytoskeleton. Proteins differen-
tially phosphorylated in response to CXCL16 in MDA-MB-231 and MCF-7 compared to
MCF10A (Figure 3A) included: Beta-Catenin (Ser37), BRCA1 (Ser1423), Chk1 (Ser345), C-
Jun (Ser243 and Ser73), eIF2a (Ser51), Histone H2A.X (Ser139), IKB-alpha (Tyr42), IKK alpha
(Thr23), NFkB-p100/p52 (Ser869), NFKB-p65 (Thr254), p21Cip1(Thr145), p27Kip1(Ser10),
PDK1(Ser241), SAPK/JNK (Thr183), STAT3 (Tyr705), and STAT5A (Ser780). Of these,
phosphorylation of SAPK/JNK (Thr183), c-Jun (Ser73), IKK-alpha (Thr23), STAT3 (Tyr705),
and STAT5A (Tyr694) were significantly reduced in both BrCa cells after treatment with
CXCL16. Phosphorylation of Chk1 (Ser345), c-Jun (Ser243), IkB-alpha (Tyr42), NFkB-
p100/52(Ser869), and NFkB-p65 (Thr254) was significantly increased. Mainly, the signaling
molecules of the JNK and NFKB pathways were hyperactivated while checkpoints and
apoptosis-inducing signals were reduced.
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Figure 1. Expression of ADAM10, CXCR6, and CXCL16 in breast cancer tissues. Tissue microarrays consisting of stage-II
(n = 12) and stage-III (n = 63) BrCa tissues were analyzed by immunohistochemistry. Representative images of tissue sections
along with TMA spots are shown in Panel (A). Brown (DAB) color shows CXCL16 staining, and magenta shows CXCR6
or ADAM10 expression. Quantitation of immunohistochemistry is shown in Panel (B). Expression of CXCR6, N-terminal
CXCL16, and ADAM 10 was higher in stage-III than stage-II BrCa tissues. There was no significant difference in the levels
of C-terminal CXCL16 in BrCa tissues of different stages. The statistical significance for differences in expression between
groups was analyzed using the Mann–Whitney U test.
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Panel (A) shows representative images of few cells. Panel (B) shows the analysis after spectral correction using Image Data
Exploration and Analysis Software (Amnis, Seattle, WA, USA).
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Figure 3. Analysis of CXCR6-mediated phosphorylation of cell signaling molecules using antibody microarray.
Phosphorylation-specific antibody array was performed for the qualitative analysis of differentially phosphorylated
proteins after treating BrCa cells with CXCL16 (100 ng/mL for 5 min). The BrCa cells treated with vehicle were used as
the control. The antibody array consisted of 273 highly specific antibodies against proteins significant for cancer signaling
pathways, with β-actin and GAPDH serving as internal positive controls. The median signal intensity for each antibody
was obtained using six replicate spots (n = 6) and was normalized to the median signal of GAPDH. The heat map shown in
Panel (A) represents a fold change in the phosphorylation status of specified proteins in CXCL16-treated BrCa cells. Heat
map was generated from normalized intensity data using the CIMminer tool. Each cell in the heat map shows the ratio of
phosphorylated (P) to non-phosphorylated (N) protein in a treated vs. nontreated sample. Red indicates an increase, while
green represents a decrease in phosphorylation signaling molecules. The intensity of the color is dependent on the degree
of phosphorylation. Panel (B) shows the predicted signaling pathway induced by CXCR6-CXCL16 activation leading to
neoplastic progression. Changes in the phosphorylation of signaling molecules obtained from antibody microarray analysis
were uploaded into Ingenuity Pathways Knowledge Database as text files containing GenBank accession numbers. The
chart shows possible activation (red) of the FAK-Src, PI3K/Akt, and Jak/Stat pathways along with the reorganization of the
cytoskeleton, which would increase the potential of BrCa cells to survive and invade.

To further understand which biological pathways related to BrCa were altered by
CXCR6/CXCL16 signaling, we fed the antibody microarray data in the Ingenuity Pathways
Knowledge Base (IPKB). The analysis showed more neoplasia conducive signaling in
BrCa cells than MCF10A after treatment with CXCL16 (Figure 3B). Specifically, Src, FAK,
ERK1/2, and PI3K/Akt pathways were activated after the CXCR6 stimulation of BrCa
cells. These pathways cumulatively affect the metastatic potential of cells by reorganizing
actin polymerization, migratory capacity, and basement membrane invasion [25–28].

3.3. CXCR6 Signaling Promotes BrCa Cell Migration through Src, FAK, and ERK1/2 Pathways
and Invasion through the PI3K Pathway

Chemokine receptor signaling plays a crucial role in the metastasis of cancer cells to
distant organs. BrCa cells showed ~45% more migratory potential under the chemotactic
gradient of CXCL16 than the control cells not subjected to the gradient (Figure 4A). Similarly,
more BrCa cells invaded under the CXCL16 gradient than controls with no chemoattractant
(Figure 4B).
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Figure 4. CXCR6 signaling promotes BrCa cell migration and invasion through Src, FAK, ERK1/2, and PI3K/Akt pathways.
The addition of chemotactic gradients of CXCL16 resulted in the migration of CXCR6-expressing BrCa cells compared to
untreated cells, as shown in Panel (A). Open and solid bars represent the results for MDA-MB-231 and MCF-7, respectively.
Blocking of the chemokine and receptor interaction with anti-CXCR6 antibody reduced the migration of BrCa cells. Src
(SU6656, 5 µM), FAK (PF-573228, 5 µM), and ERK inhibition also significantly reduced the migration of these cells. A
significant number of MCF-7 (solid bar) and MDA-MB-231 (open bar) cells also invaded to the lower chamber towards
higher CXCL16 in a CXCR6-dependent manner as shown in Panel (B). Inhibition of PI3Kp110α (PI-103, 3 µM), PI3Kp110β
(TGX221, 1 µM), and PI3Kp110γ (AS605240, 3 µM), wortmannin (1 µM) impaired the CXCL16-led invasion of BrCa cells.
Significant differences between groups were analyzed by student’s t-test using mean values obtained from three independent
experiments (n = 3). For all tests, p values < 0.05 were considered significant. #, p-value < 0.05 compared to a vehicle-treated
group of the corresponding cell line; **, p-value < 0.01 compared to the CXCL16 group of the corresponding cell line.

CXCR6 receptor blockade using anti-CXCR6 antibody reduced CXCL16-induced
migration as well as invasion of BrCa cells. With CXCR6 blockade, the migration and
invasion of BrCa cells were comparable to control cells not subjected to the CXCL16
gradient (Figure 4A,B).

When BrCa cells were pretreated with ERK, FAK, and Src inhibitors, their migratory
potential towards the CXCL16 chemotactic gradient was significantly reduced (Figure 4A).
Further, to understand the mechanisms involved in the invasive potential of the BrCa
cells, multiple PI3K inhibitors, namely Wortmannin, PI-103 (PI3K 110α inhibitor), TGX-
221 (PI3K 110β inhibitor), and AS605240 (PI3Kγ inhibitor), were used. Each of these
inhibitors impaired the CXCL16-mediated invasion of MDA-MB-231 and MCF-7 BrCa cells
(Figure 4B). Thus, taken together, MAPK/ERK and FAK/PI3K pathways play a significant
role in the CXCR6-mediated migration and invasion of BrCa cells.

3.4. CXCR6 Signaling Promotes F-Actin Polymerization in BrCa Cells

BrCa cells treated with CXCL16 showed increased F-actin polymerization, and this
actin polymerization was blocked when the activation of CXCR6 by CXCL16 was blocked
with anti-CXCR6 (Figure 5A,B). To further define the CXCR6/CXCL16 axis-induced sig-
naling involved in actin polymerization, BrCa cells were pretreated with Src, FAK, and
ERK inhibitors prior to CXCR6 activation. Reduction in actin polymerization was noted
with Src, FAK, and ERK inhibitors, suggesting CXCR6-mediated activation of these signal-
ing molecules is involved in cytoskeletal rearrangement during BrCa cell migration and
invasion (Figure 5A,B).
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Figure 5. CXCR6 signaling promotes F-actin polymerization in breast cancer cells. Immunofluorescent images show
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represent three independent experiments (n = 3).

4. Discussion

Chemokines are small molecular weight (8–14kDa) chemotactic cytokines that coordinate
the migration and positioning of cells by activating the G-protein-coupled chemokine recep-
tors (GPCRs) [29,30]. Aberration in the expression of chemokines and their cognate receptors is
associated with several types of cancer development and metastasis [8]. The CXCR4/CXCL12
chemokine axis’s role has already been established in BrCa metastasis [31,32]. Muller et al.
(2001) reported that CXCR4/CXCL12 axis blockade suppresses BrCa metastasis to the
lung [31]. Expression of CXCR6 and CXCL16, comprising another significant chemokine
axis, is evaluated in several cancers, such as renal [33], rectal [34], pancreatic ductal ade-
nocarcinoma [35], nasopharyngeal carcinoma, and melanoma [36]. We have shown the
significance of CXCR6 and CXCL16 in the lung and prostate in our previous studies [14,16].
The current study shows upregulation of the receptor and ligand in advanced BrCa tissues
and that stimulation of cellular CXCR6 with CXCL16 induces cytoskeleton remodeling
and increases migration and invasion of BrCa cells. The effect is CXCR6 dependent. These
results substantiate that increased expression of CXCR6 and CXCL16 leading to hyperacti-
vation of the ensuing signaling is associated with BrCa progression.

Newly synthesized CXCL16 is transported to the cell surface and suppresses the
tumor proliferation while tethered to the membrane [36,37]. Certain conditions induce
proteolytic cleavage of the Tm-CXCL16, causing the release of the N-terminal fragment,
the oncogenic (sCXCL16) form [36,37], to the outside of the cell [38]. ADAM10 has often
been proposed to cleave CXCL16 from the cell membrane [38]. We observed elevated
expression levels of ADAM10 and N-terminal CXCL16 in stage III versus stage II BrCa
tissues. Consistent with our results, Gaida et al. (2010) also observed an upregulation of
ADAM10 in pancreatic cancer and demonstrated its involvement in cancer cell migration
and invasion of cells [39]. ADAM10 also increases the migration potential of cancer cells
through the Notch 1 signaling pathway [40]. It could also promote cell migration via
αVβ5 integrin in an ERK- and FAK-dependent manner by cleaving L1CAM [41]. Similar
to this, the role of CXCL16 in supporting cell migration via αVβ3 integrin in prostate
cancer cells is established [16]. We observed that BrCa cells expressing CXCR6 selectively
migrated and invaded towards CXCL16 in a CXCR6-dependent manner. Thus, this axis
plays an equally important role in BrCa progression by promoting the metastatic capacity
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like in other malignancies [14,16]. The migration and invasion-promoting effect of the
CXCR6/CXCL16 chemokine axis depends on Src, FAK, and ERK1/2 activity in BrCa cells
since FAK and Src pathway suppression decreased the migratory and invasion potential.
These intracellular tyrosine kinases (FAK, PI3K/Akt, ERK1/2, and Src) play a significant
role in cancer metastasis either independently or in conjunction with other pathways that
affect cell adhesion, migration, invasion, and proliferation [6,42–47].

BrCa cells stimulated with CXCL16 showed changes in the phosphorylation status of
molecules key to cancer signaling. CXCL16 increased IkB-alpha Tyr42 phosphorylation
that would release sequestered NFkB; CKII phosphorylates this site under oxidative stress
conditions. Surprisingly, however, IKK-alpha, a kinase that phosphorylates IkB-alpha to
release NFkB, was mostly in its dephosphorylated, less active state after CXCR6 activation.
These, together with phosphorylation of NFkB polypeptides, including Ser869 and Thr254,
imply that CXCR6 activation in BrCa cells would enhance NFkB processing. Intriguingly,
L1CAM (product of ADAM activity) facilitates NFkB signaling, promoting cell motility
in colon cancer [48]. Therefore, based on our data and previous findings, it is very likely
that ADAM10-induced CXCL16 cleavage could trigger classical NFkB signaling promoting
stem cell renewal, epithelial-mesenchymal transition (EMT), and metastasis via L1CAM–
Ezrin-integrin signaling.

BrCa cells treated with CXCL16 also showed decreased GSK3B-mediated phosphory-
lation of B catenin Ser37, which suggests increased B-catenin stability, which in turn would
support survival, EMT, and metastasis. Additionally, Wnt/B-catenin and NFkB signaling
can influence each other at multiple levels to promote oncogenesis.

Besides, c-Jun Ser243 phosphorylation, representing Ser/Thr phosphatase calcineurin
activity, increased in BrCa cells in response to CXCR6 activation. This increase is associated
with decreased protein stability and increased tumorigenic ability [49]. Ser73 phospho-
rylation of c-Jun mediated by SAPK/JNK mediates transcription-dependent apoptotic
signaling in neurons [50]. Treatment with CXCL16 reduced this Ser phosphorylation
in BrCa cells, which suggests decreased SAPK/JNK activity that is evident from the re-
duced phospho-Thr183 levels as well. Thus, CXCL16 affects c-Jun signaling in BrCa cells.
However, its effect on proliferation and survival needs to be further investigated.

In addition to enhancing the pro-survival and EMT signaling, CXCL16 also negatively
affected apoptotic signaling and cell cycle checkpoints. A significant reduction in phospho-
rylation of Ser1423 in both cell types and Ser1524 residues in MCF-7 compared to normal
epithelial cells indicates reduced caspase-3-mediated apoptosis in BrCa cells. CXCL16
also reduced Ser216 phosphorylation of CDC25C that could lead to increased cell division.
Thus, stimulation with CXCL16 could suppress apoptotic signaling, facilitate overriding
cell cycle checkpoints, promote EMT, and ultimately confer a survival benefit to BrCa cells
via its effects on Akt, NFkB stability and processing, BRCA, and the SAPK/JNK pathway.

One of the first events of the cell migration in response to chemoattractant is cell polar-
ization mediated by actin polymerization [6,51,52]. FAK plays a vital role in focal adhesions,
and it activates other molecules involved in cell movements, such as p130cas, crk, and
paxillin [53]. The FAK inhibitor effectively reduced BrCa (MCF-7 and MDA-MB-231) cell
migration and invasion towards CXCL16 gradients in our study. Similarly, a decrease in cell
migration and invasion was noted after inhibiting Src in BrCa cells. Further, inhibition of
FAK and Src also reduced CXCL16-induced F-actin polymerization. Thus, our results show
that CXCR6/CXCL16 signaling induces migration and invasion of BrCa cells mediated
through FAK- and Src-triggered F-actin polymerization.

The ERK pathway is one of the MAPK pathways that regulate cell proliferation; its
deregulation is linked to several human cancers [54]. Studies have shown that activa-
tion of ERK1/2 triggers a cascade of Rho activation-inhibition of cofilin to induce F-actin
polymerization [10]. It controls the rate and actin polymerization timing [6,55]. Interest-
ingly, chemokines are known to activate the MAPK/ERK pathway [8,56]. Stimulation
with CXCR4/CCR7 ligands activates the ERK1/2 pathway in metastatic BrCa cells but
not in non-metastatic cells [7]. Using ERK1/2-specific inhibitor, we demonstrated that
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the CXCR6-CXCL16 axis promotes migration via the MAPK/ERK pathway, which in-
duces F-actin polymerization. We did not deduce the exact mechanism; however, our
results show that CXCR6-stimulated migration of BrCa cells involves ERK-dependent
F-actin polymerization.

In conclusion, our study provides evidence that the CXCR6-CXCL16 axis promotes
F-actin polymerization, eventually enhancing the migration and invasive potential of BrCa
cells by the Src, FAK, and ERK1/2 pathways. The CXCR6-CXCL16 axis also activates
signaling pathways supporting cell survival, apoptosis, and EMT in BrCa cells. In addition
to this, our study shows higher ADAM10 expression in advanced BrCa tissues. ADAM10
may be significant in promoting BrCa progression by proteolytically releasing sCXCL16 and
activating oncogenic CXCR6 signaling. Although further studies are required to elucidate
the function of ADAM10 in BrCa progression, our observations imply that controlling the
release of CXCL16 by targeting ADAM10 could be an effective way to treat advanced BrCa.
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