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Individualized stress detection 
using an unmodified car steering 
wheel
Stephanie Balters1, Nikhil Gowda2, Francisco Ordonez3 & Pablo E. Paredes1,4*

In-car passive stress sensing could enable the monitoring of stress biomarkers while driving and reach 
millions of commuters daily (i.e., 123 million daily commuters in the US alone). Here, we present a 
nonintrusive method to detect stress solely from steering angle data of a regular car. The method uses 
inverse filtering to convert angular movement data into a biomechanical Mass Spring Damper model 
of the arm and extracts its damped natural frequency as an approximation of muscle stiffness, which 
in turn reflects stress. We ran a within-subject study (N = 22), in which commuters drove a vehicle 
around a closed circuit in both stress and calm conditions. As hypothesized, cohort analysis revealed a 
significantly higher damped natural frequency for the stress condition (P = .023, d = 0.723). Subsequent 
automation of the method achieved rapid (i.e., within 8 turns) stress detection in the individual with a 
detection accuracy of 77%.

In 2007, the American Psychological Association started to flag stress as a major health problem in the US1. 
The report showed that one-third of Americans were living with extreme stress and nearly half of Americans 
(48%) believed that their stress had increased over the past 5 years. The numbers have increased even fur-
ther since2,3, and recently the COVID-19 pandemic has transformed stress into a national health crisis4–7. The 
adverse effects of repetitive acute stress and chronic stress can have physical, behavioural and/or neuropsychiatric 
manifestations8–10. The World Economic Forum and the Lancet Commission on Global Mental Health propose 
the advancement of digital technology, to both understand the early (prodromal) effects of environmental fac-
tors such as workplace stress and to advance interventions for the pre-disease (subsyndromal) stages of mental 
illness11. Advocates of Precision Health argue that we can intercept risk factors of disease by regular measure-
ments of biomarkers12–16. Passive sensors are an important application feature that enable frequent monitoring of 
health states without requiring designated changes in user behaviour12. Among the various spaces and scenarios 
where such smart sensing can occur on a frequent basis, the car can become a valuable source of data17. Given that 
123 million people in the US alone drive their own car to work18, an in-car stress sensing system could monitor 
about 87% of the US workforce and measure biomarkers of stress twice a day, every workday.

Early concepts of passive sensors tested in automotive simulator environments have shown promise to meas-
ure vital signs related to stress, such as heart rate and breathing rate assessments through Ultra Wide Band radar 
and WiFi signals19,20. Integration of these concepts into the moving vehicle is still an outstanding engineering 
challenge19,20 and the additional hardware cost is a hindarance. In contrast to such concepts that require addi-
tional sensor equipment, we introduce a novel “sensor-less”21 in-car stress sensing method to passively detect 
stress purely from steering wheel data. In modern passenger vehicles, these data are readily available on the vehi-
cle’s communication network. The proposed steering wheel stress sensing method is based on the psychophysi-
ological mechanism that stress has a direct effect on musculoskeletal activity mediated by the somatic nervous 
system. Muscle tension in the neck, shoulders, and arms increases with stress and anxiety22, even at physiological 
rest (i.e., without limb movement)23,24. Traditional laboratory stressors, such as mental arithmetic, have shown 
effects on the shoulder’s trapezius muscle, as demonstrated with electromyography (EMG) measures25. Crucially, 
the trapezius muscle is active during arm movements26, such as steering activity27. Researchers have indirectly 
assessed changes in muscle stiffness during everyday activities like clicking on a computer mouse28, typing on a 
keyboard29 or using a trackpad30. Sun et al.31 were the first to show a correlation between stress level and arm-
induced movement of using a computer mouse. In the present study, we adapted the movement-based approach 
from Sun et al.31 to a steering wheel in a moving car. Specifically, we applied an inverse filtering technique, called 
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linear predictive coding (LPC)32, on the steering angle data, to approximate a biomechanical Mass Spring Damper 
(MSD) model and used the damped natural frequency of the MSD as estimate for muscle tension (Fig. 1). This 
nonintrusive sensing approach is promising for future adoption by the automotive industry, as car data could 
be used to detect a driver’s stress levels at no additional hardware cost. Before conducting the present study in 
a moving vehicle, we generated pilot data within a simulator environment33. The related findings provided an 
early proof-of-concept of the proposed steering wheel stress sensing method. Working with a real car, however, 
presents additional technical and methodological challenges. For example, the steering angle data collected from 
a car’s controller area network (CAN) bus have a considerably lower sampling frequency and lower precision 
than a simulator steering wheel. Furthermore, in real world testing, multiple variables such as driving forces, 
road vibrations, tire dynamics, wheel mass inertia, and steering support torque are additional factors that can 
affect the biomechanical model of a driver’s arm. We therefore set out to address our first research question:

RQ1: Can we detect driver stress through steering wheel angle data in a moving car using an LPC-based 
biomechanical model?

After successful a validation of the steering stress sensing method on cohort level, we transitioned into idi-
osyncratic analysis. Specifically, we aimed to develop an automated version of the stress sensing method that can 
detect stress in the individual. Our second research question is as follows:

RQ2: Can we automate the LPC-based steering wheel stress sensing method to detect stress in individual 
drivers?

To answer these questions, we ran a within-subject experiment with frequent commuters (N = 24) driving an 
unmodified passenger car in a closed course. We collected CAN bus steering angle data during a stressful driving 
condition and a calm driving condition. Additionally, we captured subjective stress assessments and physiological 
measures (i.e., heart rate and heart rate variability) to validate stress responses; and measured ancillary driving 
behaviour data (e.g., average speed, acceleration) to control for driving behaviour that could potentially affect 
steering behaviour. We hypothesized that the LPC-based steering wheel stress sensing method enabled accurate 
detection of stress between the two conditions, both across the cohort and in the individual driver.

Results
Cohort analysis.  Stress stimulus validation.  Prior to evaluating the effectiveness of the proposed stress 
sensing method, we analysed both the self-reported stress assessments (i.e., perceived level of stress, arousal, 
valence, and tension) and the physiological measures (i.e., heart rate and heart rate variability) to validate that 
the applied calm and stress pre-driving stimuli worked as intended and participants were more stressed dur-
ing stress exposure compared to calm conditions. We expected perceived stress, arousal, valence, and tension 
and physiological heart rate (HR) measures to increase with stress, and heart rate variability (HRV) to decrease 
with stress. Specifically, we tested for differences between: (1) CALM STIMULUS and STRESS STIMULUS to 
test whether the stimuli worked; (2) CALM DRIVE and STRESS DRIVE to test whether the effects of the two 
stimuli were maintained while driving; (3) CALM STIMULUS and CALM DRIVE and (4) STRESS STIMULUS 
and STRESS DRIVE to test whether there were differences in stress induced by the pre-drive stimulus compared 
to the subsequent driving task. We min–max normalized self-reported and physiological data and corrected 
against baseline. In the next step, we used permutation tests for statistical analysis. First, we ran an original Stu-
dent’s t-test to obtain the t-statistic of the data across the population in Matlab 2021a (MathWorks, https://​www.​
mathw​orks.​com/​produ​cts/​matlab.​html). We then randomly permuted each group of values (per user) across all 
users. We generated 100,000 permutations and computed the t-statistic for each group. The observed t-statistic 
can be considered a random sample from the permutation distribution. We further counted how often a larger 
(or smaller) t-statistic was observed in contrast to the original data and divided that by the number of permuta-
tions performed. In this case, “P” is the probability of finding a test statistic for the group comparison at least 
as high (or low) as our original data34 (not to be confused with p values from traditional parametric tests). We 
assigned significance if a value was higher than 95% or lower than 5% percent results, and reported significance 
accordingly (1 – P; P). Bonferroni correction was used for multi-comparison.

Boxplots and results of statistical tests are depicted in Fig. 2. For perceived stress and tension, the mean 
values were significantly higher during STRESS STIMULUS compared to CALM STIMULUS as well as during 

Figure 1.   Individualized driver stress detection method using an unmodified car steering wheel.

https://www.mathworks.com/products/matlab.html
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STRESS DRIVE compared to CALM DRIVE. As expected, self-reported stress and tension levels were signifi-
cantly higher in the presence of the stress stimulus and were maintained during the driving task as we did not 
observe significant decreases between STRESS STIMULUS and STRESS DRIVING. Pearson correlation analy-
sis of the original values across all four conditions revealed high correlation between stress and tension with 
r = 0.869, p < 0.0001. Arousal was higher for STRESS STIMULUS versus CALM STIMULUS, but interestingly, 
there was no difference between the STRESS DRIVING and CALM DRIVING conditions. This lack of observed 
differentiation is perhaps because the arousal perceived due to driving itself is not perceived as stress. Valence 
results showed a significant decrease in CALM STIMULUS versus in STRESS STIMULUS and we observed 
similar results in CALM DRIVE versus STRESS DRIVE. These findings indicate that participants experienced 
a negatively valenced stress response (i.e., distress) during the stressful conditions. Overall, we observed large 
effect sizes (Cohen’s d) across the subjective measures, and we could confirm that the stress stimulus worked 
as expected—participants were more stressed during STRESS DRIVE than during CALM DRIVE. There was a 
reduction in the effect of the initial stimulus as participants carried on with driving. Note: Two participants did 
not report increased levels of perceived stress and muscle tension and are therefore excluded from analysis of 
RQ1 and RQ2 (i.e., resulting in N = 22).

Figure 2.   Results of the stressor validation analysis to establish a ground-truth assessment of whether 
participants were more stressed during stress exposure compared to calm conditions. (a) Boxplots of normalized 
and baseline corrected subjective and psychophysiological metrics. Permutation probability P values are 
corrected for multiple-comparisons with ***P < 0.001; **P < 0.01, and *P < 0.05. (b) Permutation results with 
adjusted probability p values after Bonferroni correction, and Cohen’s d as effect size measure reference.
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The HR permutation test showed that STRESS STIMULUS was higher than CALM STIMULUS and STRESS 
DRIVE. Hence, the stressor elicited a physiological stress which decreased as the drive progressed. Similarly, 
the HRV measure “Root Mean Square of Successive Differences (RMSSD) between heartbeats” showed the 
expected tendencies of decreased values in the presence of stress; however, after Bonferroni correction, signifi-
cance thresholds were not reached (P = 0.061). The overall results validate that the experimental stimuli were 
effective; individuals were experiencing more stress during the stress conditions compared to the calm conditions.

Normal driving behaviour validation.  As the last validation step, we verified that the experimental setup did 
not have an impact on driving behaviour, which could contaminate the stress signal in the steering angle data. 
For example, a participant could drive faster during the STRESS DRIVE condition, which in turn, would influ-
ence the steering input due to increased longitudinal and/or lateral forces. Because both forces are a function of 
speed35, we validated that there were no differences in the metrics speed during turn segments (mph) and duration 
of turn segments (sec) between the two conditions. We extracted speed data from the vehicle’s CAN bus, sampled 
at 50 Hz. As described below, we tested for two driving durations (i.e., ENTIRE DRIVE and INITIAL 8 TURNS). 
Permutation tests for neither duration revealed significant differences for any of the driving dynamics metrics 
(Table S1 in the supplementary material). These findings suggest that there were no differences in driving behav-
iour between CALM DRIVE and STRESS DRIVE, and therefore, our stimuli did not elicit a signal other than 
steering behaviour. As a result, we were able to test our experimental hypotheses.

LPC‑based steering wheel stress sensing method (RQ1).  Experimental hypotheses.  We tested the 
stress sensing method for the entire duration (i.e., ENTIRE DRIVE) of the two driving conditions as well for a 
shorter duration (i.e., INITIAL 8 TURNS). The rationale for the shorter duration was that we aimed to develop a 
rapid stress sensing method which could enable just-in-time stress management interventions during the com-
mute (e.g., in-car slow breathing interventions36,37). Our pilot study in the simulator determined that a minimum 
of eight turns was needed to find a difference in damped natural frequency across stress and calm conditions33. 
Specifically, we formulated following experimental hypotheses:

H1: LPC-modelled damped natural frequency (ω) is higher during the STRESS DRIVE compared to the 
CALM DRIVE for the ENTIRE DRIVE.
H2: LPC-modelled damped natural frequency (ω) is higher during the STRESS DRIVE compared to the CALM 
DRIVE for the INITIAL 8 TURNS.

LPC model fit validation.  Prior to testing our hypotheses, we evaluated the quality of the LPC model fit by 
inspecting the variance of the residual errors on the ENTIRE DRIVE, as well as the INITIAL 8 TURNS which 
represents the initial 110 s of driving. We calculated Tukey Anomaly outlier thresholds for STRESS DRIVE and 
CALM DRIVE for both the ENTIRE DRIVE and INITIAL 8 TURNS and used the minimum of the four values as 
overall LPC model fit threshold (i.e., fitting threshold = 0.0093) (Fig. S1 in the supplementary material). This out-
lier correction method eliminated 7.8% of ENTIRE DRIVE data and 8.2% of INITIAL 8 TURNS data. Overall, 
we observed a median of the variance of the residual error of 0.0050, with minimum values around 0.0016 and 
maximum values 0.0093 (Fig. 3a). The LPC model error variance was overall low38,39. While examining if there 
were differences across the driving conditions, permutation tests revealed no differences between CALM DRIVE 
and STRESS DRIVE for INITIAL 8 TURNS (P = 0.143); however, for ENTIRE DRIVE, the LPC variance of the 
residual error was higher during CALM DRIVE than STRESS DRIVE (P = 0.006; with low effect size d = 0.125). 
To assure that this difference in LPC model fit did not impact further analyses, we executed a correlation analysis 
between residual errors and damped natural frequency values. Results showed no correlation between the two 
metrics (P = 0.290), and small differences across conditions shall not affect analysis moving forward.

Experimental hypothesis testing.  In the first step, we tested for the ENTIRE DRIVE of 10 laps in both stress con-
ditions (MCALM DRIVE = 11.9 min, SD = 1.9; MSTRESS DRIVE = 11.6 min, SD = 2.1). During CALM DRIVE we obtained 
(M = 62 turn segments, SD = 9) per participant and for the STRESS DRIVE condition we obtained (M = 60 turn 
segments, SD = 9) per participant. A permutation test revealed no difference between in damped natural fre-
quencies ωCALM DRIVE and ωSTRESS DRIVE. During the INITIAL 8 TURNS there was an average of (M = 8.6 turn 
segments, SD = 2.2) per participant during CALM DRIVE and (M = 9.8 turn segments, SD = 2.2) per participant 
during STRESS DRIVE. Permutation test revealed a significant difference between ωCALM DRIVE and ωSTRESS DRIVE, 
with a strong effect size (Cohen’s d = 0.723) (Fig. 3b). These results confirm our experimental hypothesis of a sig-
nificantly higher damped natural frequency in stressed driving conditions for the data segment of the INITIAL 
8 TURNS.

Individualized steering wheel stress sensing (RQ2).  After validating the steering wheel stress sens-
ing method across cohort, our next aim was to develop an automatic (data-driven) turn segmentation process 
that provides automated stress assessment in the individual. We developed the process based on cohort data 
and applied the process to individual data thereafter. Because we aimed at generating a rapid sensing method, 
we used the INITIAL 8 TURNS cohort data of the previous section (which had been corrected for outliers, 
i.e., fitting threshold < 0.0093). Prior to inspecting the cohort data, we defined three design considerations for 
the automatic turn segmentation process: (1) good quality of LPC model fit (i.e., low variance of residual error 
values); (2) multiple curve segments to have sufficient input data for the stress sensing method (e.g., eight turn 
segments); (3) assessment of the damped natural frequency values over a range of upper bound values (in con-



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20646  | https://doi.org/10.1038/s41598-021-00062-7

www.nature.com/scientificreports/

trast to using a single upper bound value) to avoid Type II errors. To generate an automated turn segmentation 
process, we inspected the variance of residual error and average number of turn segments across the iterated 
upper bond segmentation parameters (Fig. 4). We observed that the variance of residual error decreased with an 
increase in upper bound values (Fig. 4i). This relation is expected since longer turn segments include more data, 
and hence model fit is better. Additionally, we observed that the average number of turn segments first increased 
(Fig. 4ii) and then decreased after a peak at 120° (Fig. 4iii) (Note: This result is expected because we used the fit-
ting threshold and all curve segments with small steering amplitudes got deleted during pre-processing as part 
of our procedure). As a trade-off between all three design considerations, we decided to design a process that 
automatically selects the data of the first quartile after the maximum average number of turn segments (Fig. 4). 
We then integrated a simple binary classification that contrasted the median of damped natural frequency across 
that interval between CALM DRIVE and STRESS DRIVE.

In the next step, we applied the automatic turn segmentation process to each individual data. The individual 
maximum average number of turn segments peaks ranged between 70° and 150° upper bound across participants. 
Results revealed that the individualized method correctly detected stress in 77% of the cohort. The process out-
puts showed the incorrect output for five individuals. All of these five participants had upper bound thresholds 
(i.e., ranging between 70° and 110°) that were lower than the averaged upper bound threshold across participants 
(i.e., 120°).

Discussion
In this study, we explored whether it is possible to detect stress, expressed through muscle tension in the driver’s 
arm and shoulder, from steering angle data in an unmodified production car. We developed an LPC-based 
stress sending method that is (I) Passive: measuring non-intrusively, without changes to user behaviour; (II) 
Software-based: no need to retrofit additional sensors, instead we used steering angle data via CAN bus that are 
available in all modern cars; and (III) Rapid: capable of generating an accurate and rapid classification of driver 
stress (e.g., within 1–2 min of driving) for timely stress management interventions29,36,37. We tested the method 
across cohort and further automated the procedures to detect stress in the individual driver. Results revealed 

Figure 3.   Results for cohort analyses. (a) LPC model fit with minimum, median, maximum variance of the 
residual errors across participants. Overall LPC models showing good quality of fit in all three examples. 
(b) Shows median values and boxplots of damping frequencies, with “c” = calm drive, “s” = stress drive, and 
‘d” = Cohen’s d. P values need to fall below 0.0125 to be significant due to Bonferroni correction for multi-
comparison.
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that the method successfully detected stress within the initial eight turns of the drive across the cohort. Further 
analysis revealed that the automated individualized stress sensing method achieved rapid (i.e., within 8 turns) 
stress detection in the individual with a detection accuracy of 77%. These results add to the emerging literature 
of nonintrusive and ubiquitous stress sensing.

Results of cohort analyses demonstrated that the damped natural frequency (as a measure of muscle stiff-
ness and thus stress) was higher during the stress condition compared to the calm condition for the INITIAL 
8 TURNS, however, not for the ENTIRE DRIVE period. These findings are partially in contrast to the previ-
ous findings in the simulator that showed consistent differences also for the entire drive33. The fact that stress 
cannot be observed through the entire drive (versus the initial eight turns) aligns with our physiological stress 
observations measured from the ECG data, where we identified a reduction in stress response over time. Results, 
however, also revealed that the induced stress response upon stress stimulus was higher in this study (Cohen’s 
d = 1.343) compared to the work in the simulator (Cohen’s d = 0.633). The combined findings suggest that lower 
sampling frequency and increased noise in a moving vehicle study did not allow accurate capture of the distress 
response in participants. Another potential explanation for the missing significance for ENTIRE DRIVE might 
be the observed difference in LPC-model fit. For ENTIRE DRIVE, the LPC variance of the residual error was 
higher during CALM DRIVE than STRESS DRIVE, which might have resulted in reduced signal-to-noise ratio. 
For the INITIAL 8 TURNS, we saw a similar effect size (i.e., Cohen’s d = 0.723) compared to the simulator study 
(i.e., Cohen’s d = 0.758). Overall, we can confirm our research hypothesis for the INITIAL 8 TURNS duration.

The results in this study provided further evidence that it is possible to detect stress in the individual. The 
binary stress sensing classifier reached an accuracy of 77%. Interestingly, all five incorrectly classified participants 
had AVERAGE NUMBER OF TURN SEGMENTS-peaks that were smaller than the average peak at 120° upper 
bound across participants. This finding indicates that our method requires further engineering to account for 
different driving speeds and steering behaviour which will potentially increase the classifier accuracy. An overall 
strategy could be to engineer the sensing method to increase sensitivity (as opposed to specificity) and favor the 
reduction of false negatives over the reduction of false positives. Nonetheless, with an accurate stress assessment 
of 77% our study results provide the first proof-of-concept towards stress sensing in the individual. Beyond the 
collection of the daily stress biomarker, this rapid sensing (i.e., 8 turns) could further allow for just-in-time stress 
management interventions, e.g., at the start of commute time after a taxing day in the office. This advantage 
may also be a limitation given that the stress sensing method is inherently limited to driving areas with turns.

A major strength of this study is that we tapped into CAN bus data and did not attach any supplementary sensors. 
A potential implementation of our method would require only a software upgrade by the car manufacturer, and no 
mechanical retrofitting of the vehicle. In addition, the stress sensing method does not require any specific human 
behaviour change, such as using both hands while driving, or consistently driving in the same body position or system 
calibration (our solution is passive). We did not provide any instructions to the participants that would change their 
natural driving behaviour, and only invited frequent commuters who are experienced drivers. However, it is important 
to note that as we move forward towards naturalistic experiments in peoples’ own cars, familiarity with the vehicle may 
be a factor that needs to be considered, as this may affect the way people handle the steering wheel.

We should note three limitations of this study. First, the sampling size of this study is N = 24, although based 
on the power analysis on the prior simulator data33, we estimated a sampling size of N = 29 (with α = 0.05 and 
power = 0.8). We were only able to secure exclusive use of the underground parking garage on the Stanford 

Figure 4.   Variance of residual error and average number of turn segments across the iterated upper bound 
segmentation parameters, with decreasing variance of residual error (i) and increasing average number of turn 
segments (ii) across upper bound values. The peak in average number of turn segments is at 120° upper bound 
(iii). Please find the definition of upper bound in the Methods section.
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University campus for a limited period of time, and 24 was the maximum number of participants we could 
accommodate for the test run. Second, to create comparable data between participants and to ensure safety, it 
was beneficial to run the study in a parking garage before moving into real traffic. Though we mapped the track 
for eight turns, each of a different radius and approach speed, the parking garage environment prohibited testing 
the stress sensing method with higher speeds (e.g., as it might be the case at large traffic intersections). A third 
limitation is the level of ecological validity of the stress stimulus. Because the math stressor was relatively short 
(i.e., three minutes of length), real-life mental stress was approximated. Absolute stress between calm and stress 
increased by M = 4.09 points, out of 10 (SD = 2.58), and two participants did not report increases in perceived 
stress. Thus, the stress stimulus induced only a moderate stress response. Inducing stress within an experimental 
context is a major limitation of stress research in general, for us even more so given the dynamic environment 
of a moving car. At the same time, inducing stress during a driving experiment has ethical limits and includes 
the risk of accidents. We selected the particular stress stimulus because the TSST math stressor is widely used in 
other experimental environments40 and prior research in a moving vehicle graded this math stressor as safe37.

Future studies should test the stress sensing method under realistic conditions, that is, on-the-road with 
varying speeds, turn radii, and traffic conditions. Other inverse filtering techniques, along with more advanced 
algorithms and machine learning approaches can potentially increase the binary stress assessment accuracy 
and allow an extension of the method to real-time stress assessments. Additional engineering research should 
explore how much more we can decrease the number of turns and still get reliable output. At large, we envision a 
context-aware, personalized system that can sense a driver’s stress state to apply health enhancing interventions. 
It will be therefore important to collect longitudinal data of individuals. Potential biases, such as muscle fatigue 
and natural changes over the day (e.g., morning versus evening commute), must be accounted for.

In conclusion, this study demonstrates that stress can be inferred via steering angle data obtained from a 
regular production car within the first eight turns of a drive, allowing for a software-only implementation. We 
extended prior work in the simulator showing that stress, expressed through muscle tension in the arm and 
shoulder, can be estimated from angular movement data even under the effects of noise while driving. Further 
engineering of the individualized stress detection method presented here could potentially allow timely moni-
toring of daily stress biomarkers along with just-in-time stress management interventions while commuting.

Methods
Steering wheel stress sensing method.  LPC‑based modelling.  The movement of a steering wheel is 
a rapid, goal-directed, and skilled movement. Research in biomechanics has shown that a rapid goal-directed 
movement can be modelled as a step response of a linear second order system, i.e., an MSD system41–45. Follow-
ing previous work30,31, we make an assumption that the movement of the arm in a steering task can be also mod-
elled as an MSD system. In this context, the mass element represents an aggregate sum of the mass of the arm, 
hand, and steering wheel (Fig. 1). The spring element represents the stiffness provided the muscles’ tension in 
the arm, while the damper element represents the total friction in the system of the arm and the steering wheel. 
It can then be postulated that the input force F(t) of the arm produces an output movement X(t) in the steering 
wheel. The MSD responds with an oscillation frequency driven by the spring component (k) and a characteristic 
decay function determined by the friction of the damper component (c). This damped oscillatory behaviour can 
be fully characterized by the damped natural frequency (ω) and the damping ratio (ζ). For a system with constant 
mass, the damped natural frequency is proportional to the spring coefficient: ω ∝

√
k.

In Fig. 5a, we present a typical steering wheel movement over time. Since we only have the output signal of 
this MSD system (i.e., movement X(t) in the steering wheel), we require a model that would allow us to infer 
the system’s properties, and the damped natural frequency in particular. The motivation is further to implement 
an inference model that requires minor computational resources. For this purpose, we apply an inverse filter-
ing technique named linear predictive coding (LPC)32. LPC builds a predictive model of future samples based 
only on linear combinations of observed signals from the past32. In other words, LPC allows reconstruction of a 
shape of curve that best fits a given steering wheel signal. The crux is that we can use a linear second-order LPC 
model, similar to the MSD system, in which cases their coefficients are directly transposable within the Laplace 
domain46. If we build a second-order LPC model that best fits a series of samples, we can recover the MSD 

Figure 5.   Steering wheel stress sensing method. (a) A typical steering wheel movement and corresponding LPC 
trajectory. (b) Steering angle data for one participant with negative values for counter clockwise rotation; and, 
(c) processed steering angle data along with the selected turn segments.
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parameters. Recent work has shown that theoretical MSD parameters and LPC-inferred parameters correlate 
strongly using computer mouse movement data30. For a mathematical introduction to the proposed LPC-based 
inference method, we refer the reader to Kim et al.30. In the present study, we apply an LPC model using an 
interpolation order of (p = 4) to obtain a sequence of coefficients that can effectively model the underdamped 
MSD system. The complex roots (r) of this polynomial characterize the MSD’s behaviour. The absolute value 
of the imaginary part represents the damped natural frequency (ω =|ℑ(r)|), while the ratio of the real part to its 
absolute value represents the damping ratio ( ζ = |R(r)|

�r�  ). This damped natural frequency and damping ratio 
enable the inference of muscle stiffness and, hence, stress.

Angular data processing.  As a driver makes a turn in our study, the steering wheel angle movement is cap-
tured at 100 Hz, with a resolution of 0.1° and maximum absolute degree of freedom of 450° in each direction. 
Prior to applying the LPC transformation, we pre-processed the signal by: (1) eliminating repeated time stamps; 
(2) transforming steering wheel data from a + (right)/ − (left) representation into its absolute values (0°–450°) 
(Fig. 5b); and (3) selecting only monotonically increasing segments between valleys (local minima) and peaks 
(local maxima). In contrast to prior work in the stimulator that chose turn segmentation parameters based 
on theoretical assumptions33, for this study, we chose an empirical approach (i.e., video coding) for our ini-
tial cohort analysis (RQ1). Subsequently, we developed a data-driven process that identified the segmentation 
parameters automatically (RQ2).

Empirical turn segmentation process.  For our cohort proof-of-concept analysis, we manually selected the turn 
segmentation parameters based on video coding. Specifically, we inspected time-synched video data of the steer-
ing behaviour along with steering angle CAN bus data over a randomly selected two-minute driving segment for 
each participant. To capture the activation of large muscle groups in arm and shoulder, mostly affected by stress, 
first we eliminated turn segments that are smaller than 40° (lower bound). We then analysed time-synchronized 
video of the steering behaviour along with steering angle data over a randomly selected two-minute driving 
segment for each participant. Video analysis revealed a second steering impulse when a drivers’ initial steer-
ing input was followed by a change of grip. We determined the steering angle for starting this second-impulse 
(upper bound) threshold to be at (M = 150.2°, SD = 23.2) across participants. For turns with steering angles larger 
than 150°, we cut the curve at this upper bound threshold. Figure 5c shows example data of the resulting TRUN-
CATED TURN SEGMENTS for one participant. In our cohort analysis, we apply LPC to each of the selected 
TRUNCATED TURN SEGMENTS to derive the segments’ damped frequencies.

Automatic turn segmentation process.  Angular steering wheel movement will change with driving environment 
and driving behaviour. To operationalize a real-world implementation of our stress sensing method, it is neces-
sary to automate the process of selecting turn segments that will serve as input to the LPC-based stress sensing 
method. We chose a data-driven approach to develop the automatic turn segmentation process. Specifically, 
we used cohort data to define process steps and applied this process to individual data to test the effectiveness 
of the sensing method. We computed the LPC-MSD parameters for various upper bound values changing in 
increments of 10° until the maximum steering angle was reached. From the resulting upper bound vector (all 
segments versus all participants), we defined processing steps that considered (a) accuracy of fit, approximated 
by LPC residual error; (b) number of TRUNCATED TURN SEGMENTS; and (c) the sensitivity of the sensor 
towards variance in damped natural frequency interval values. The process steps are described in the “Results” 
section.

Main study.  Participants.  This study was approved by the Stanford University Institutional Review Board 
and the experiment was performed in accordance with relevant guidelines and regulations. Informed consent 
was obtained for all participants. We recruited via social media and email. Participants were provided auto-
insurance for the duration of the experiment after providing proof of a valid driver’s license. We recruited N = 24 
participants (12 female, 12 male), with age of M = 45.3 years (SD = 14.5, min = 20, max = 69), and driver’s license 
possession of M = 28.2 years (SD = 14.6) for the experiment. We selected participants to closely represent the 
population of American commuters (M = 42.4  years, SD = 14.4)18. All participants had normal/corrected to-
normal vision and hearing, and no participant had any neck, arm, or shoulder injury during the past 6 months.

Experimental protocol.  The study procedure consisted of four phases (Fig. 6a): (1) PHYSIOLOGICAL BASE-
LINE and DRIVING FAMILIARIZATION, (2) a STRESS STIMULUS followed by a driving under stress (STRESS 
DRIVING) period, (3) wash out (REST) period and (4) a CALM STIMULUS followed by a CALM DRIVING 
period. Phases 2 and 4 were counterbalanced to avoid ordering effects. During PHYSIOLOGICAL BASELINE, 
participants watched a calming video showing a beach scenario for a duration of 3 min. Thereafter, participants 
drove ten laps on the driving track to complete DRIVING FAMILIARIZATION, which aimed to reduce learning 
and adaptation effects. The STRESS STIMULUS lasted for three minutes. The stressor was a modified version of 
the Trier Social Stress Test47, in which for three minutes, participants had to calculate backwards from 1521, in 
steps of 13. If a wrong answer was given or if an answer was not provided within four seconds, which ever came 
first, the participant had to start over. The STRESS STIMULUS lasted for three minutes. Thereafter, the partici-
pants begun the STRESS DRIVING period, in which they drove ten laps while heavy metal music was played to 
maintain the higher levels of stress33,48—the song “At the Heart of Winter” by Immortal https://​www.​youtu​be.​
com/​watch?v=​VeOlP​QqJR-o) was played. After three minutes of washout REST period, participants watched 
a calming beach scenario video for three minutes (CALM STIMULUS), before driving for ten laps during the 

https://www.youtube.com/watch?v=VeOlPQqJR-o
https://www.youtube.com/watch?v=VeOlPQqJR-o
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CALM DRIVING period listening to the participant’s favourite relaxing music titles or genre (collected during 
recruitment). All participants stated to dislike heavy metal music in the post-study questionnaire.

Apparatus and driving course.  We used an unmodified 14-in. diameter steering wheel on a 2016 Infinity Q50 
sedan (Fig. 6b). We conducted the experiment in an underground parking garage secured exclusively for this 
experiment (Fig. 6c,d). We marked out a 10 ft. wide driving course with masking tape to simulate a typical city 
road49. The driving course was 0.65 miles long and included four left and four right turns of varying radii, and 
four intersection stop signs, making all eight turns different from one another (Fig. 6d). Each participant drove 
10 laps, covering a total of 6.5 miles and 80 turns. The experimenter instructed the participants to imagine driv-
ing in the city and did not specify a speed limit. Importantly, we refrained from providing any driving instruc-
tions and gave the drivers the discretion to adjust their seating positions and steering manner (i.e., one-arm 
versus two-arm driving).

Driving data.  We collected steering wheel data via the controller area network (CAN) bus, which is a standard 
protocol used in the on-board diagnostic (OBD-II) for all cars and light trucks sold in the United States since 
199650. Thus, our approach could potentially be translated to any other car manufactured after that year. Steer-
ing wheel data was sampled at 100 Hz, with a resolution of 0.1° and maximum angle of 450° in each direction. 
Positive angle rotations are recorded when the wheel turns clockwise, i.e., when the car turns right, and negative 
angle rotations are recorded when the wheel turn counter clockwise, i.e., when the car turns left. The data were 
noticeably inferior in quality to the 11-inch diameter Logitech G29 Gaming Steering Wheel51 data with a 916 Hz 
sampling rate and an angular resolution of 0.056° from the simulator pilot study33. Additionally, we collected 
ancillary driving behaviour data such as speed and acceleration. Finally, three cameras captured the frontal and 
side views of the participant, and the frontal view of the road.

Psychophysiological data.  Participants wore a Zephyr Bioharness 3.052 to record ECG data (at 250 Hz), to derive 
heart rate and heart rate variability. To derive HR and HRV from the ECG signal, we used Kubios 2.2 HRV 
software 2.253. We excluded one participant due to corrupted ECG data, likely because the sensor belt was not 
fastened properly and therefore induced noise. We first ran the automatic peak detection, and then visually veri-
fied the results to remove false positives and false negatives and extracted the corresponding mean HR (bpm) 
and HRV-RMMSD (msec) values.

Self‑report data.  Self-reported data was collected five times (once after each phase of the study procedure). Self-
reported stress (SRS) was obtained from a simplified version of the Perceived Stress Scale54 (“How stressed do you 
feel right now?”) with 10-point scale ranging from “0-low” to “10-high”. Additionally, we collected level of arousal 
(“How energized do you feel right now?”) with an adapted 10-point scale ranging from “0-sleepy” to “10-energized”; 
and level of valence (“How pleasant do you feel right now?”) with an adapted 10-point scale from “0-unpleasant” 
to “10-pleasant”—derived from the Affect Grid55. As an ancillary measure we collected the level of physical tension 
(“How physically tense do you feel right now?”) with a 10-point scale ranging from “0-low” to “10-high”.

Received: 24 May 2021; Accepted: 23 September 2021

Figure 6.   Experimental methodology. Procedure of the experiment (a), in which frequent commuters drove in 
a regular car (b), within a large parking garage (c), on a fixed 0.65 miles driving course that included eight turns 
per lap (d).
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