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Five long non-coding RNAs establish a
prognostic nomogram and construct a
competing endogenous RNA network in
the progression of non-small cell lung
cancer
Yong Yu1 and Kaiming Ren2*

Abstract

Background: Accumulating evidence has revealed that long non-coding RNAs (lncRNAs) play vital roles in the
progression of non-small cell lung cancer (NSCLC). But the relationship between lncRNAs and survival outcome of
NSCLC remains to be explored. Therefore, we attempt to figure out their survival roles and molecular connection in
NSCLC.

Methods: By analyzing the transcriptome profiling of NSCLC from TCGA databases, we divided patients into three
groups, and identified differentially expressed lncRNAs (DELs) of each group. Next, we explored the prognostic roles
of common DELs by univariate and multivariate Cox analysis, Lasson, and Kaplan-Meier analysis. Additionally, we
assessed and compared the prognostic accuracy of 5 lncRNAs through ROC curves and AUC values. Ultimately, we
detected their potential function by enrichment analysis and molecular connection through establishing a
competing endogenous RNA (ceRNA) network.

Results: One hundred ninety-seven common DELs were spotted. And we successfully screened out 5 lncRNAs
related to the patient’s survival, including LINC01833, AC112206.2, FAM83A-AS1, BANCR, and HOTAIR. Combing with
age and AJCC stage, we constructed a nomogram that prognostic prediction was superior to the traditional
parameters. Furthermore, 275 qualified mRNAs related to 5 lncRNAs were spotted. Functional analysis indicates that
these lncRNAs act key roles in the progression of NSCLC, such as P53 and cell cycle signaling pathway. And ceRNA
network also suggests that these lncRNAs are tightly connected with tumor progression.

Conclusions: A nomogram and ceRNA network based on 5 lncRNAs indicate that there can effectively predict the
overall survival of NSCLC and potentially serve as a therapeutic guide for NSCLC.
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Background
Non-small cell lung cancer (NSCLC) is one of the most
common and deadly cancers in the world. Despite ad-
vances in treatments, only 19% of patients with NSCLC
survival for more than 5 years [1, 2]. What’s worse, due
to lacking specific symptoms in the early stage, most pa-
tients seek treatment at an advanced stage, which misses
the best timing for a radical operation [3]. Therefore, it
is urgent to establish a prognostic risk-score model for
NSCLC patients, thereby providing a therapeutic guide
for NSCLC.
Long non-coding RNAs (lncRNAs) refers to non-

protein-coding transcripts over 200 nucleotides in length
[4]. Although lncRNAs do not directly encode RNA, it
can regulate protein expression at various stages of tran-
scription [5, 6]. Based on the ceRNA hypothesis,
lncRNAs, messenger RNAs, and pseudogenes can “talk”
to each other using miRNA response elements (MREs)
and assemble as a ceRNA network [7]. In this network,
lncRNA act as “sponges” to absorb and bind miRNA,
thereby weakening their binding ability to mRNA and
regulating gene expression. Accumulating evidence has
backed that lncRNAs were involved in the ceRNA net-
work of many types of cancers, including pancreatic can-
cer, gastric cancer, as well as NSCLC [8–10]. Notably,
LncRNAs have great advantages as biomarkers because
they are stable, highly tissue-specific, and easy to detect
in body fluids. Besides, some lncRNAs have been recog-
nized as a novel biomarker, for instance, BANCR in gas-
tric carcinoma, HOTAIR in colorectal carcinoma, and
MALAT1 in lung cancer [11–13]. Therefore, it is need-
ful to detect the prognostic relationship between
lncRNAs and NSCLC.
In this study, we performed a large sample analysis to

find out survival-related lncRNAs and validated it using
univariate, Lasson, and multivariate Cox proportional
hazards regression (CPHR). Moreover, combing with age
and AJCC stage, we constructed a nomogram based on
lncRNAs, which performed better prognostic prediction
than clinical factors, and we successfully assessed its effi-
ciency in LUAD and LUSC groups. Functional analysis
indicated that these lncRNAs also act important roles in
the progression of NSCLC, for example, the P53 signal-
ing pathway and cell cycle pathway. Next, we success-
fully constructed a ceRNA network related to 5
lncRNAs. Those results indicated that those lncRNAs
not only effectively predict the prognosis of NSCLC pa-
tients but also take part in the progression of NSCLC
and potentially serve as a therapeutic target.

Methods
Data selection and process
As is well know that the majority of NSCLC is com-
posed of lung squamous carcinoma (LUSC) and lung

adenocarcinoma (LUAD). So we obtained the raw
counts of transcriptome profiling and clinical data from
TCGA-LUAD including 535 cancer samples and 59
non-tumor tissues, and data from TCGA-LUSC includ-
ing 502 cancer samples and 49 non-tumor tissues. We
obtained the RNA-Seq data for lncRNA and mRNA ana-
lysis and downloaded the miRNA-Seq data for miRNA
analysis.
Since there was only one patient in the TCGA-MESO

database, we included TCGA_LUAD and TCGA_LUSC
in the NSCLC group with 1145 patients. Then we di-
vided those data into three groups including the NSCLC
group, LUAD group, and LUSC group. All the raw count
data of lncRNAs, miRNAs, and mRNAs were obtained
from The Cancer Genome Atlas (TCGA) database and
were annotated through the Ensemble database (Homo_
sapiens.GRCh38.99) [14, 15]. Stepwise, all the data were
log2 (x + 1) transformed and normalized using the
“LIMMA” package [16]. The “LIMMA” package is a
widely used tool for calculating gene differential expres-
sion [17, 18]. This calculation process is performed auto-
matically by R software. Additionally, to avoid bias
caused by low expression genes, we removed differential
genes with low average expression. Then, we screened
out differentially expressed miRNAs (DEMIs) in three
groups by the “LIMMA” package with the criteria of
|log2FC| > 1, average expression > 1, and adjust P-value
< 0.05, and identified differentially expressed lncRNAs
(DELs) and differentially expressed mRNAs (DEMs) in
three groups with the criteria of |log2FC| > 2, average
expression > 2, and adjust P-value < 0.05, respectively.
Finally, we selected the DELs, DEMs and DEMIs that
both expressed in three groups for further analysis to re-
duce the bias caused by a single database.

Survival analysis
Additionally, we removed samples without survival time
or survival time less than 7 days to improve the reliabil-
ity of our study. We first estimated the association be-
tween overall survival (OS) and clinical parameters
through univariate and multivariate CPHR analysis. Fur-
thermore, we evaluated the relationship between survival
time and common DELs expression through Kaplan
Meier analysis and univariate CPHR method. Only DELs
that their P-value was lower than 0.05 and their expres-
sion consistent with prognosis were regarded as candi-
date survival-related lncRNAs. Combing with clinical
risk factors, we performed Lasson Cox regression ana-
lysis to obtain the best fitting variables. After selecting
the best-fit of OS-related variables by the calculation
mentioned above, we further verified their prognostic
value through multivariate CPHR analysis. And only var-
iables that P-value was lower than 0.05 in univariate and
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multivariate CPHR calculations were selected as quali-
fied lncRNAs and were chose for the next analysis.

Constructing a risk score formula and nomogram model
Combining with clinical risk variables and qualified
lncRNAs, we performed univariate and multivariate
CPHR analysis to identify OS-related biomarkers in 970
patients with NSCLC. Also, we calculated the prognostic
risk score of each patient through multivariate CPHR
analysis according to the formula as follows: risk score =
X1α1 + X2α2 + X3α3 + ... + Xnαn. And patients in the
NSCLC group were divided into high-risk groups and
low-risk groups based on the median value of risk score.
C-indexes were performed to assess the predictive per-
formances of our risk score formula. Next, we evaluated
the prognostic differences in high-risk and low-risk
groups by Kaplan Meier analysis and T-test. We assessed
the prediction performance of the risk formula through
ROC curves at 3 and 5 years and computed their AUC
values in three groups. Moreover, we established a
nomogram to vividly depict the predictive relationship
among clinical factors, lncRNAs, and OS. Calibration
curves of 3 and 5 years were calculated to assess the reli-
ability of OS prediction between predicted performance
and actual ability. All the analyses mentioned above were
conducted in NSCLC, LUAD, and LUSC groups,
respectively.

Functional enrichment analysis
We performed the Gene Ontology (GO) terms and
Kyoto Encyclopedia of Gene and Genomes (KEGG)
pathways enrichment analysis to elucidate the potential
functions of lncRNAs in the nomogram. The common
DEMs in the three groups were first identified. Next, the
correlation coefficient of each lncRNA with common
DEMs was calculated, respectively. To obtain an accur-
ate result, we only selected DEMs with a correlation co-
efficient greater than 0.2 for further enrichment analysis.
Then, we performed the GO and KEGG analysis of
lncRNA-related DEMs via the DAVID database, and the
Enrichr database [19, 20]. And we depicted the top 10
enriched GO terms and KEGG pathways through a bar
plot with the criteria of adjusting P-value < 0.05.

Establishing a ceRNA network
To explore the potential interaction between 5 lincRNAs
and miRNAs, the LncBase database that provided miR-
NAs and lncRNAs interactions according to MREs sites
was applied to predict the downstream miRNA of 5
lncRNAs with the criteria of Prediction score > 0.8 [21].
Only miRNAs expressed on the NSCLC group, LUAD
group, LUSC group, and LncBase database were chosen
as qualified miRNAs. Additionally, the miRDB database
and the miRTarBase database are a widely-used tool for

miRNA target prediction that were employed to find out
potential mRNAs binding to qualified miRNAs [22, 23].
Only miRNAs that validated in miRDB database, miR-
TarBase database, and DEMs were considered as candi-
date mRNAs. Finally, to vividly display the interaction of
5 lncRNAs with qualified miRNAs and candidate
mRNAs, we constructed a ceRNA network by Cytoscape
software (Version 3.7.2) [24].

Statistical analysis
We performed all the statistical analyses mentioned
above using R software (version 3.6.1). Briefly, OS was
analyzed using the Kaplan–Meier test, and the log-rank
T-test was applied to calculate the statistical significance.
Univariate and multivariate CPHR analyses were con-
ducted through “Survival” packages (Version 3.2–7) [25].
Lasson CPHR was performed using “Survival” and
“glmnet” packages (Version 4.0–2) [26]. A nomogram
was constructed by “Survival” and “rms” packages (Ver-
sion 6.1–0) [27]. And a time-dependent ROC analysis
was performed by the “survivalROC” package (Version
1.0.3) [28], C-index by “survival” package, and calibra-
tion curve by “rms” package. The ceRNA network was
constructed by Cytoscape software. And we set a p-value
lower than 0.05 as s statistical significance.

Results
Screening differentially expressed RNAs
A total of 1145 NSCLC patients were enrolled from the
TCGA database. We divided those data into three
groups including the NSCLC group, LUAD group, and
LUSC group. Then, we identified the DELs and DEMs in
three groups by standards of |log2FC| > 2, average ex-
pression > 2, and adjust P value < 0.05, respectively.
There are a total of 426 DELs in the NSCLC group, 312
DELs in the LUAD group, 687 DELs in the LUSC group,
and 197 common DELs in three groups (Fig. 1a–d).
There is a total of 1905 DEMs in the NSCLC group,
1434 DEMs in the LUAD group, 2641 DEMs in the
LUSC group, and 1131 common DEMs in three groups
(Supplementary Figure 1A–D). And there is a total of
130 DEMIs in the NSCLC group, 133 DEMIs in the
LUAD group, 163 DEMIs in the LUSC group, and 89
common DEMIs in three groups (Supplementary Fig-
ure 5A–D) with the criteria of |log2FC| > 1, average ex-
pression > 1, and adjust P-value < 0.05. Also, we present
the top 10 up and down-regulated DELs spotted in three
groups (Fig. 1e). Common DELs in three groups were
selected for the next survival analysis (Supplementary
Table 5).

Survival analysis
After excluding insufficient survival data or survival time
less than 7 days, 970 NSCLC patients remained in our
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study. We displayed the clinical information of each
group in Supplementary Table 1.
Briefly, the age of our cohort ranges from 33 to 88.

There were 746 smoking patines among 970 NSCLC pa-
tients. And there were 23 EGFR mutations in the 98

patients and 24 KRAS mutations in the 68 patients.
Additional details are available in Supplementary Table 1.
We first performed univariate and multivariate CPHR to
figure out the association between clinical parameters
and OS. The results indicated that age and AJCC stage

Fig. 1 Screening differentially expressed lncRNAs (DELs) in three groups. a–c The volcano plots of DELs in the TCGA_NSCLC group, TCGA_LUAD
group, and TCGA_LUSC group with thresholds of |log2FC| > 2, average expression > 2, and adjust P-value < 0.05, respectively. The red dots and
blue dots represent the up-regulated and down-regulated DELs, separately. d The intersection of DELs in three groups. e The top 10 up and
down DELs identified in three groups. FC, fold change
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are independent survival factors as depicted in Supple-
mentary Table 2. Next, univariable CPHR and Kaplan-
Meier analysis were performed to assess the survival
roles of common DELs. There a total of 14 lncRNAs
that are not only related to OS but also show a statistical
difference in univariable CPHR analysis with a P-value <
0.05. Combing with age and AJCC stage, a Lasson CPHR
analysis was further applied to assess the best fitting var-
iables in our cohort. The results suggested that only 12
variables that are best suitable for our further analysis as
displayed in Fig. 2a-b. Furthermore, we assess the sur-
vival value of 12 variables through multivariable CPHR.
Only 7 variables show statistic difference with a P-value
< 0.05 as shown in Fig. 2c. We depicted the expression
value and prognostic roles of 5 lncRNAs in Fig. 3a-e.
There are 3 lncRNAs (LINC01833, FAM83A-AS1, and
HOTAIR) that are not only high expression in the
NSCLC group but also show worse survival. And there
are only BANCR and AC112206.2 that are low expres-
sion with better survival. Ultimately, we identify five
lncRNAs combined with age and AJCC stage which
could predict the survival outcome of NSCLC patients.

Developing a risk score formula and prognostic
nomogram
Using multivariable CPHR analysis, we divided NSCLC
patients into high-risk and low-risk groups based on the
value of the median risk score. And we developed a risk
score formula to understand the relationship between
overall survival and lncRNAs with clinical variables. The
formula was as shown as follows: Risk Score = (0.152 ×
age) + (0.370 × AJCC) + (0.127 × Expression
LINC01833) + (0.250 × Expression FAM83A-AS1) +
(0.127 × Expression HOTAIR) - (0.124 × Expression
BANCR) - (0.283 × Expression AC112206.2). We
depicted the distributions of risk score and the status of
overall survival in the NSCLC group (Fig. 4a). Also, we
validate the distributions of risk score and the status of
overall survival in the LUAD group (Supplementary Fig-
ure 2A) and LUSC group (Supplementary Figure 2B).
Furthermore, we found that the high-risk group of
NSCLC patients had a worse prognostic outcome than
patients with lower risk scores (Fig. 4b). And this ten-
dency also appeared in the LUAD group (Supplementary
Figure 2C) and LUSC group (Supplementary Figure 2D).
We performed the time-related ROC curves to compare
the sensitivities and specificities of predictive formula in
NSCLC. The result suggested that the AUC value of 3
and 5 years was 0.703, 0.667, respectively (Fig. 4c). But
the AUC value of clinical variables was only 0.632 and
0.618, which indicate that the prognostic prediction of
our nomogram was better than the traditional age and
AJCC stage (Fig. 4d). Also, we assessed the predictive
ability of formula in LUAD and LUSC group. In the

LUAD group, the AUC value of 3 and 5 years was 0.749,
0.735, respectively (Supplementary Figure 2E). The AUC
value of 3 and 5 years was 0.65, 0.619 in the LUSC
group, respectively (Supplementary Figure 2F). To viv-
idly displayed the prognostic performance of OS-related
variables, a nomogram was established. As shown in Fig.
5a, the nomogram could usefully predict the prognosis
of 3 years and 5 years in NSCLC patients (Fig. 5a). Add-
itionally, calibration curves suggested that the nomo-
gram had a superior agreement between the predicted
and actual OS of 3-year and 5-year in the NSCLC group
(Fig. 5b-c) as well as in the LUAD group (Supplementary
Figure 3A-B) and LUSC group (Supplementary Fig-
ure 3C-D). Moreover, we evaluated the relationship be-
tween our risk models and clinical variables. Our result
indicated that the high-risk score of our risk model was
related to age, male, smoking status, AJCC stage, and
EGFR mutation with a statistical difference (P < 0.05).
But there was no statistically significant difference in
KRAS mutation (Supplementary Figure 6).

Functional enrichment analysis
We performed the GO term and KEGG pathway ana-
lysis to detect the functional roles of 5 lncRNAs. We
first calculated the correlation coefficient of 5
lncRNAs and selected DEMs with a correlation coeffi-
cient greater than 0.2 for enrichment analysis. There
are 275 qualified DEMs in the correlation analysis of
five lncRNAs. There are a total of 183 GO terms and
11 KEGG pathways that are primarily enriched in
those DEMs including 119 terms in biological pro-
cesses (BP), 37 terms in cellular components (CC), 27
terms in molecular functions (MF). We demonstrated
the top ten BP, CC, MF, and KEGG Pathway in Sup-
plementary Figure 4A–D. Briefly, the most enriched
terms of GO were DNA metabolic process in BP,
spindle in CC, and protein kinase binding in MF
(Supplementary Figure 4A–C). Additionally, several
cancer-related pathways were detected in the KEGG
pathway analysis, for example, the p53 signaling path-
way, MicroRNAs in cancer pathway, and Cell cycle
pathway (Supplementary Figure 4D). Overall, the re-
sults from functional enrichment analysis were tightly
linked with NSCLC.

Construction of a ceRNA network
Based on the miRNA prediction from 5 lncRNAs, we
identified 294 downstream miRNAs by the LncBase
database (Supplementary Table 3). And we evaluated
the expression of 294 miRNAs in the NSCLC group,
LUAD group, and LUSC group. There are a total of
20 common miRNAs in four groups (Supplementary
Figure 5D). Next, miRDB and miRTarBase databases
were employed for screening miRNA-linked mRNAs.
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And we validated their expression in the DEMs of
three groups. There are a total of 91 common
mRNAs in four groups. According to prediction in
Supplementary Table 4, we have found out 22 pairs
of lncRNA-miRNA interactions, 145 pairs of miRNA-

mRNA interactions. Finally, we constructed a ceRNA
network in Fig. 6 to vividly display the interactions of
5 lncRNAs with 20 miRNAs and 91 mRNAs. Overall,
this evidence has revealed that those lncRNAs not
only effectively predict the survival outcome of NSCL

Fig. 2 Identifying survival-related lncRNAs and building a risk score formula. Lasson analysis was applied to get the best cut-fit variables of the
risk score formula. a LASSO coefficient profiles of all prognostic variables. b Validating the error rates of prognostic variables and calculating the
best cut-fit variables. c Identifying and computing the most survival-related variables
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C patients but also take part in the progression of
NSCLC and potentially serve as a therapeutic target.

Discussion
It is well acknowledged that the AJCC stage has been ex-
tensively used to estimate the survival outcome of tumor
patients [29]. However, some limitations of the AJCC
stage can be found in our clinical practice. For example,
patients with similar anatomic sites and AJCC staging
can exhibit variable responses to treatment and different
survival outcomes. This difference may result from
tumor heterogeneity, which partly arises from genetic
mutations [30, 31]. Furthermore, recent studies have

indicated that age and gender are also effective predic-
tors for OS [32, 33]. So, we attempted to establish a new
staging system that combines clinical variables with gen-
etic mutations. Also, some evidence has indicated that
lncRNAs not only act a regulatory role in the progres-
sion of NSCLC, but also have great potentials as bio-
markers because they are stable, highly tissue-specific,
and easy to detect in body fluids. For example, serum
exosomal MALAT-1 was identified as a diagnostic pre-
dictor for NSCLC patients when they are in early-phase
or metastasis [13]. High expression of HOTAIR was
closely related to progressive disease, worse survival, and
more potential in tumor recurrence after radical

Fig. 3 Screening and validating the expression roles and prognosis values of survival-related lncRNAs in NSCLC. a-e Validating expression roles
and prognosis values of LINC01833, FAM83A-AS1, HOTAIR, AC112206.2, and BANCR in the NSCLC database, respectively. (*P < 0.05)
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operation [34]. Low expression of GAS6-AS1 was con-
nected with the occurrence of lymph node metastasis
and an independent biomarker for the prognostic out-
come of NSCLC [35]. Therefore, it is urgent to set up a
reliable prognostic model for NSCLC.
In this research, we successfully identified a survival

nomogram based on lncRNAs and clinical variables of
NSCLC. We combined age and AJCC staging with 5
lncRNAs into a risk formula and weighted each param-
eter to detect their relationship with overall survival.
And a nomogram was established to vividly quantify the
OS probability of each variable. Notably, we weighted
each lncRNA into a nomogram instead of integrating 5
lncRNAs as a whole [36, 37]. Because it is difficult to test

all variables at a time in clinical practice. In our nomo-
gram, we weighted a risk point to every variable and cal-
culated patient survival at 3 or 5 years based on the total
risk point. And the predictive performance of our nomo-
gram was superior to the traditional age and AJCC stage.
Moreover, our nomogram is easy to understand. Its sim-
plicity will allow clinicians to quickly evaluate survival
outcomes and make decisions about individual NSCLC
patients. Even individuals without a medical background
can easily understand the meaning of our nomogram.
Those features will make our nomogram an accurate
and effective biomarker for clinical applications.
Additionally, the functional analysis indicated that 5

lncRNAs were also involved in several cancer pathways,

Fig. 4 Assessing the prognostic performance of the risk score formula in the NSCLC group. a The risk score distribution and OS status of the
formula in the NSCLC group. b Kaplan-Meier curves for OS based on the formula in the NSCLC group. The tick-marks on the curve represent the
censored patients. c ROC curve analysis of the formula for predicting OS in the NSCLC group. d ROC curve analysis of the age and AJCC staging
for predicting OS in the NSCLC group
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for example, p53 and MicroRNAs in cancer pathways.
Moreover, some studies have found their role in the pro-
gression of NSCLC. The high expression of HOTAIR is
involved in many types of biological processes in NSCL
C. For instance, HOTAIR contributes to the down-
regulating expression of p21WAF1/CIP1, thereby indu-
cing the cisplatin resistance of A549 cells [38]. Wang
et al. demonstrated that HOTAIR was reported to

facilitate the proliferation and migration of A549 and
H838 cells through sponging with miR-326, thus control
the expression of phox2a [39]. The high expression of
HOTAIR can be controlled by Col-1, thereby promoting
the formation of microenvironment and progression of
NSCLC [40]. Several studies have recently revealed that
the lower expression of BANCR was related to the initi-
ation and progression of NSCLC. Sun et al. found that

Fig. 5 Nomogram construction and evaluation. a Nomogram to predict OS of patients with NSCLC. b-c Calibration curves of a nomogram to
evaluate the prediction performance of 3-years and 5-years in the NSCLC group

Yu and Ren BMC Cancer          (2021) 21:457 Page 9 of 13



lower expression of BANCR can encourage the
epithelial-mesenchymal transition of A549 and SPC-A1
cells and improve their ability in invasion and metastasis
[41]. Up-regulating BANCR was tightly linked with
radiotherapy for lung cancer [42]. Jiang et al. discovered
that BANCR was able to moderate the ability of invasion
and metastasis in lung cancer through the p38 MAPK
and JNK pathway rather than the ERK MAPK pathway
[43]. LINC01833 was demonstrated to promote the infil-
tration and metastasis of LUAD by adsorbing miR-519e-
3p through a sponge and regulate S100A4 expression
[44]. FAM83A-AS1 was proved to enhance cell migra-
tion, invasion and EMT by modulating the miR-150-5p/
MMP14 pathway [45]. So, the lncRNAs in the

nomogram can not only serve as a prognostic biomarker
but also function as a regulator in the occurrence and
progression of tumors. Notably, those lncRNAs can act
as a ceRNA network, thereby participating in cancer
progression. For instance, HOTAIR/miR-149-5p/
HNRNPA1 axis promotes the cell growth, migration,
and invasion in NSCLC [46]; FAM83A-AS1/miR-150-
5p/MMP14 regulates LUAD progression and invasion
[45]; BANCR/miR-338-3p/IGF1R network regulated Raf/
MEK/ERK pathway, thereby encouraging the prolifera-
tion, migration, invasion and epithelial-mesenchymal
transition (EMT) of esophageal cancer [47]. Those stud-
ies indicated that the lncRNAs in the nomogram can
function as a therapeutic target for NSCLC.

Fig. 6 Schematic representations of 5 lncRNA-related ceRNA regulatory network in the progression of NSCLC
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Although our lncRNAs-related nomogram showed
good performance in survival prediction of NSCLC,
some limitations can be detected in our research. First,
our study is a retrospective study. But 970 patients is a
large sample. So our results are reliable. Additionally,
our data lacked information such as chemo-radiotherapy
history, smoking history, and patients’ disease history.
This may result from the limitations of our data. So, fur-
ther clinical studies are needed to verify our results
when applied to clinical practice. Last, we identified
survival-related lncRNAs to construct the nomogram,
which might overlook some valuable information. All in
all, despite these limitations in our study, we believe that
our persistent efforts will eventually establish an ideal
prognostic model in clinical practice.

Conclusions
In summary, by a large sample analysis, we successfully
constructed a nomogram based on lncRNAs and clinical
variables that predicts the survival of NSCLC patients.
And the predictive performance of our prognostic
nomogram was better than the traditional AJCC stage
and age. In addition to the survival prediction of our
nomogram, functional analysis and ceRNA network also
indicate that they might involve in cancer progression
and potentially serve as a therapeutic target for NSCLC.
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statistical difference. (F) But there was no statistically significant difference
in KRAS mutation (P = 0.3895).

Additional file 7 : Supplementary Table 1. Clinical characteristics of
NSCLC patients in this study.
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multivariate Cox regression analysis in NSCLC.
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