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Abstract

Our daily activities require vigilance. Therefore, it is useful to externally monitor and predict

our vigilance level using a straightforward method. It is known that the vigilance level is

linked to pupillary fluctuations via Locus Coeruleus and Norepinephrine (LC-NE) system.

However, previous methods of estimating long-term vigilance require monitoring pupillary

fluctuations at rest over a long period. We developed a method of predicting the short-term

vigilance level by monitoring pupillary fluctuation for a shorter period consisting of several

seconds. The LC activity also fluctuates at a timescale of seconds. Therefore, we hypothe-

sized that the short-term vigilance level could be estimated using pupillary fluctuations in a

short period and quantified their amplitude as the Micro-Pupillary Unrest Index (M-PUI). We

found an intra-individual trial-by-trial positive correlation between Reaction Time (RT)

reflecting the short-term vigilance level and M-PUI in the period immediately before the tar-

get onset in a Psychomotor Vigilance Task (PVT). This relationship was most evident when

the fluctuation was smoothed by a Hanning window of approximately 50 to 100 ms (including

cases of down-sampled data at 100 and 50 Hz), and M-PUI was calculated in the period up

to one or two seconds before the target onset. These results suggest that M-PUI can moni-

tor and predict fluctuating levels of vigilance. M-PUI is also useful for examining pupillary

fluctuations in a short period for elucidating the psychophysiological mechanisms of short-

term vigilance.

Introduction

Vigilance-related task performance fluctuates in different tasks ranging from flying [1] and

driving [2] to radiology [3]. Moreover, decreased vigilance could result in severe or even

deadly consequences. Therefore, it is beneficial to develop techniques that effectively monitor

real-time decrements in vigilance.
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A potentially helpful physiological marker for estimating vigilance decrement is the pupil-

lary response. It is known that there is a strong link between real-time pupillary responses and

activation of the Locus Coeruleus (LC) and Norepinephrine (NE) system (the LC-NE system

[4]). Furthermore, Oken, Salinsky, and Elsas [5] suggested that vigilance is innervated by the

NE system, including the LC. Based on these, numerous attempts have been made to use the

pupilar diameter as an indicator of task performance related vigilance, including driving [6],

flying [7], and radiology [8]. These studies have often calculated the extent of the pupilar

diameter.

Another possible approach to estimating the long-term vigilance level takes advantage of

pupillary fluctuations’ characteristics. This method measures the extent to which the pupilar

diameter fluctuated instead of its diameter. The stable autonomic nervous system (ANS)

under vigilance results in a relatively stable pupilar diameter. In contrast, fluctuations between

sympathetic and parasympathetic control under reduced long-term vigilance result in larger

fluctuations of the pupilar diameter [9], possibly controlled from the LC-NE system [10],

which are known as "sleepiness (or fatigue) waves." Very slow frequencies are typically charac-

teristic of sleepiness waves. For instance, Wilhelm, Wilhelm, Lűdtke, Streicher, and Adler sug-

gested that the Pupillary Unrest Index (PUI) calculated from pupillary fluctuation amplitude

(the degree of absolute changes in pupilar diameter) in the low-frequency band is designed to

capture pupillary fluctuations below 0.8 Hz [11]. An increase in the PUI is known to reflect a

decline in Psychomotor Vigilance Task performance every several hours [12] (i.e., a decrease

in the long-term vigilance level). Nevertheless, using the PUI to estimate participants’ vigilance

levels in real-time during a task is challenging. This is because a single PUI is calculated from

the time-series of pupilar diameters in the resting state for 11 minutes while interrupting the

task. However, estimating real-time (e.g., trial-by-trial) vigilance levels during a task is crucial

because it would facilitate identifying the viewer’s levels of vigilance for different activities.

The data for estimating the level of vigilance in real-time is the frequency of LC’s neuronal

activity, including long and short timescales (from 0.1 to 20 Hz) [13, 14]. Pupilar diameter

fluctuations that are conventionally observed as sleepiness-waves only capture the long time-

scale (below 0.8 Hz, in PUI), possibly reflecting ANS-related LC’s tonic activity from 0.1 to 5.0

Hz [13, 14]. Therefore, it takes a long time to collect reliable data on pupillary fluctuations,

which leads to limitations, such as the need to isolate participants for an extended period to

estimate their long-term vigilance levels. However, some LC activities occur at a high fre-

quency on short timescales, possibly reflecting LC’s phasic activity from 10 to 20 Hz [13, 14].

Such LC activities are assumed to be related to short-term states such as engagement with a

current task by enhancing task-relevant stimuli [13, 14] rather than with long-term states such

as sleepiness. Because LC activities fluctuate at a high frequency, pupillary fluctuations on

small timescales increase as the short-term level of vigilance may decrease on a short-term

(e.g., trial-by-trial) basis, assuming that randomness among neural activities in the LC at a

high frequency also increases as engagement with the task decreases [13, 15]. If pupilar diame-

ter fluctuations reflect LC’s vigilance state in the short term, then merely measuring pupillary

fluctuations during a task for a short period would enable estimating real-time vigilance levels

without interrupting the task.

Therefore, we propose using the Micro-Pupillary Unrest Index (M-PUI), which is calcu-

lated from the short-term pupillary fluctuation amplitude within a short time. Wilhelm, Wil-

helm, Lűdtke, Streicher, and Adler [11] described the original PUI calculation procedure. In

the M-PUI, similar to the PUI, the degree of ’unrest’ in the pupilar diameter is calculated by

adding absolute dilation values and pupillary fluctuation constrictions (calculating pupillary

fluctuation amplitude). However, we changed the timescale of pupillary fluctuations that we

captured. Frequencies of pupillary fluctuations captured by M-PUI have a sufficiently small

PLOS ONE Pupillary fluctuation amplitude reflects short-term vigilance

PLOS ONE | https://doi.org/10.1371/journal.pone.0256953 September 17, 2021 2 / 22

Competing interests: The authors have read the

journal’s policy and have the following competing

interests: The authors, JY, HT, MY, KM, HK, HO,

and HN, are paid employees of NTT. NTT has

signed a joint research agreement with TK and

provided a research grant. The authors would like

to declare the following patents/patent applications

associated with this research: PCT/JP2020/043246

and PCT/JP2021/008837. NTT has a pending

patent (in Japan, and possibly in the United States,

Europe, and China) for estimating task

performance using the amplitude of pupillary

fluctuations. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0256953


time resolution for assessing M-PUI in the short-term. We expected that LC activity fluctua-

tions during low vigilance periods would be reflected in larger pupilar diameter fluctuations

even in the short-term on a trial-by-trial basis within each participant.

We examined the intra-individual trial-by-trial relationship between short-term vigilance

levels and M-PUI calculated during a short period, just before measuring vigilance for an

ongoing task. Fig 1 shows the conceptual summary of the current study. From a practical per-

spective, establishing this relationship was considered the first step in estimating real-time vigi-

lance levels. Simultaneously, from a theoretical perspective, these trial-by-trial calculations

were considered to reveal the relationship between the short-term LC activities at a high fre-

quency and short-term vigilance levels. Thus the effectiveness of M-PUI in estimating the

short-term levels of vigilance was examined from both practical and theoretical perspectives.

Experiment

We examined the validity of M-PUI as an indicator of short-term vigilance levels using a sim-

ple reaction task [16] based on the Psychomotor Vigilance Task (PVT) [17]. The PVT partici-

pants were required to respond to a target presented at a variable interval by pressing a button

as quickly as possible. One essential measure indicating that task performance could be inter-

preted as reflecting vigilance is the decline in task performance over a long time (e.g.,

Fig 1. A conceptual summary of the current study. Previous studies, which correspond to the left panel, have confirmed the positive correlation between overall RTs in

each vigilance task session (e.g., the numbers of long RTs in each PVT session) and long-term pupillary fluctuations amplitudes measured over several minutes

immediately before each PVT session (e.g., PUIs below 0.8 Hz), which were acquired every several hours. The long-term increase in the overall RT is interpreted as a

decrement in long-term vigilance. The underlying mechanism of this relationship could be ANS-related tonic activity of the LC from 0.1 to 5.0 Hz. On the other hand, the

current study, which corresponds to the right panel, examined the positive correlation between the RTs per trial within one session of PVT and the short-term pupillary

fluctuations amplitudes per trial within one session of PVT (i.e., M-PUIs measured with a fine temporal resolution of 10 Hz or more immediately before the target

presentations during trials). In this study, the increase in RT per trial was defined as a decrease in short-term vigilance level. The underlying mechanism of this

relationship might include the phasic activity of the LC from 10 to 20 Hz.

https://doi.org/10.1371/journal.pone.0256953.g001
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throughout a day) [17]. Therefore, a standard procedure for measuring long-term vigilance

levels is to repeat a task at intervals (e.g., for several hours) during continuous wakefulness and

observing any possible decreases in task performance [5]. PVT is established as the standard

task for capturing pure performance decrements over some time after excluding the practice

effects of repeated trials [17]. As a result, the number of "lapses (long RTs over 500 ms)" in

each PVT session increases (i.e., long-term vigilance level decreases) in each repeated session

[18], along with an increase in long-term pupillary fluctuation amplitudes (i.e., PUI) [12].

Therefore, PVT is considered a vigilance task, and PUI indicates the long-term vigilance level.

As noted in the Introduction, LC’s tonic activity could be the underlying mechanism of these

relationships.

Short-term vigilance level fluctuation mechanisms during PVT have been investigated

recently. Recent studies have used RTs per trial as an indicator of short-term vigilance levels

and examined their psychophysiological correlations [19, 20], suggesting the role of LC-NE in

short-term vigilance levels. For example, it has been reported that trials with shorter RTs in

participants with normal sleep have been associated with greater involvement of the sustained

attention networks, which are closely related to the cortical activation levels regulated by the

LC-NE [19, 21]. Moreover, shorter RTs are associated with greater pupilar diameter reflecting

LC-NE activation [20]. This previous study also discussed that LC’s phasic activity could

explain these short-term relationships’ underlying mechanisms [20]. However, the intra-indi-

vidual trial-by-trial relationship between short-term pupillary fluctuation amplitude (i.e.,

M-PUI) and RT has not been established (cf. Fig 1).

We also used RTs per trial as a measure of short-term vigilance levels. It was expected that

an increase in M-PUI would be associated with an increase in RT on a trial-by-trial basis,

probably via LC activity fluctuations, which are reflected in larger pupillary fluctuation ampli-

tudes in a short timescale. If M-PUI reflects RT changes, we expected that these short-term

pupillary fluctuations would indicate a participant’s vigilance level on a trial-by-trial basis.

Method

We examined the extent to which the M-PUI reflects the short-term levels of vigilance by cov-

ering a wide range of cases, from simple analyses that follow practical guidelines to sophisti-

cated analyses with theoretical implications. In these analyses, we believe that there is a trade-

off between practice and theory.

From a practical perspective, it is appropriate to examine the relationship between short-

term vigilance and M-PUI using a hard threshold that needs no adjustment for background

factors, assuming a real-world situation in which such factors cannot be considered or con-

trolled. The effect size of M-PUI should be large enough to show statistical significance even in

such a ’practical’ situation.

On the other hand, such an analysis does not provide generalizable results in terms of the-

ory because the effect of M-PUI and the background factors are not separated. Therefore, from

a theoretical perspective, it is also necessary to examine the exact effect size of M-PUI under a

’theoretical’ setting in which the background factors are controlled.

Based on these assumptions, we considered individual differences to be background factors,

and we conducted data analyses that progressed from those that do not take individual differ-

ences into account to those that do. We first examined the relationship using a hard threshold

that needed no adjustment for individuals. We then used individually adjusted thresholds to

produce equivalence for all individuals, thus controlling RT differences among individuals.

Finally, in the most theoretical test, we examined the relationship between individually nor-

malized M-PUIs and individually normalized RTs on all trials, without thresholding. We also
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conducted two analyses that provide significant insights from practical and theoretical per-

spectives (see details in the data analysis section; Fig 4).

Participants. Participants in the experiment were people with a normal or corrected-to-

normal vision that applied for a part-time job (N = 20, 15 females Age range 20–43 years).

They were recruited from outside the laboratory and received payment for their participation.

Recruitment of participants and experimental procedures was approved by the NTT Commu-

nication Science Laboratory Research Ethics Committee (Reference Number H29-004) and

was conducted according to the 1964 Declaration of Helsinki. We obtained the written

informed consent from all observers in this study.

Apparatus and stimuli. Participants were seated 60 cm from an LCD monitor (144Hz,

27-in., 1920×1080 pixels). Stimuli were presented using Python and Psychopy2 on a black

background. The target was a white dot (2.9 visual angles) in the center of the screen. The SR

Research Eyelink 1000 was used to record eye movements at a sampling rate of 1,000 Hz. Data

from the participants’ left eyes were used. We independently stabilized each participant’s head

with a chin-rest during the entire task.

Procedure and design. Each participant performed eight tasks, one of which was analyzed

for this study. The order of the tasks was randomized. Each task took about ten minutes and

was followed by a break of ten minutes. In each session, two participants were paired, and one

of them took a break while the other performed a task. The total procedure was 180–210 min-

utes, including task preparation.

The PVT ran for about 10 min. After providing informed consent and calibrating the eye

tracker, participants performed the PVT (Fig 2). Participants were instructed to respond to a

target presented at a variable interval (equally distributed from 1,000 to 8,000 ms in 250 ms

increments) by pressing the "space" key on the keyboard as quickly as possible. Participants

performed four trials×29 interval conditions. In response to the "space" keypress, reaction time

was displayed for 1,000 ms. If a response was made before the target’s appearance, then the

Fig 2. The serial flow of elements in one trial of the Psychomotor Vigilance Task. After a random interval (1,000 to 8,000 ms), a target (white dot) appeared.

Participants were asked to press a key for the appearance of the target as quickly as possible. After the keypress response, the time from the appearance of the target

to the keypress was displayed. The section for measuring the pupilar diameter is illustrated (from the start of the trial to the target appearance).

https://doi.org/10.1371/journal.pone.0256953.g002
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message "False Alarm!" was displayed. If a response was not made within 60 seconds, the mes-

sage "Miss!" was displayed. In each case, after the message disappeared, the subsequent trial

restarted.

M-PUI calculation. The time interval from the start of the trial to the target appearance

was defined as the measurement section. We excluded the time-series of the pupilar diameter

when the eye was closed before the calculation. Blink detection was conducted by assuming

that a blink has occurred when the pupilar diameter’s constant value fell below the threshold

and continued to fall until it exceeded the threshold. The threshold was determined as the

median pupilar diameter of the entire task × 0.5 to account for individual differences in the

pupilar diameter baseline. The blinking time and 200 ms before and after blinks that could

cause artifacts were also defined as blinks (cf. [22]).

As mentioned above, the M-PUI calculation procedure was inspired by Wilhelm, Wilhelm,

Lűdtke, Streicher, and Adler [11], who suggested that low-pass filtered time-series of pupilar

diameter should be differentiated, and the absolute values of the differentiated values should

be averaged as PUI. PUI was originally designed to capture the very slow pupillary fluctuations

below 0.8 Hz in the resting state, whereas M-PUI is designed to capture the degree of absolute

change in pupillary fluctuations that occur in seconds. Therefore, the time-series of the pupilar

diameter smoothed by different time windows, which were smaller than those used in the orig-

inal PUI calculation, were differentiated, and their absolute values were averaged as M-PUI.

We used the time-series of the pupilar diameter smoothed by the mountain-like distributed

weights arrays (in this case, Hanning windows) of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120,

140, 160, 180, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 ms. Smoothing was performed

by calculating the moving averages while moving the Hanning windows in the time-series data

of raw pupilar diameters. These procedures in which the blinks were carefully removed in two

stages are shown in Fig 3. Firstly, the time-series of pupilar diameter before smoothing were

linearly interpolated during the blinks to ensure stable smoothing. Secondly, the smoothed

time-series of pupilar diameter during the blinks were excluded when calculating the M-PUI

after smoothing.

Data analysis. The data analysis examined the extent to which the M-PUI reflects short-

term vigilance levels by examining a wide range of cases based on the trade-off between prac-

tice and theory (Fig 4). Trials were divided into the fastest and slowest RTs using individually

adjusted thresholds (i.e., percentile points) in previous studies examining physiological corre-

lates of trial-by-trial RT variations in PVT. The physiological indicators were compared

between these groups of trials [19, 20]. This analysis corresponds to the top middle panel of

Fig 4. We expanded the previous analysis for both practical and theoretical purposes.

First, from a practical perspective, it is appropriate to examine the relationship between

short-term vigilance and M-PUI using a hard threshold that needs no adjustment for individ-

ual differences (top left panel of Fig 4). If M-PUI reflects the short-term levels of vigilance even

without taking individual differences into account, we can show the effectiveness and robust-

ness of M-PUI in practice. This is because the mere fact that physiological indicators (i.e.,

M-PUIs) differ according to relative RTs within an individual does not indicate any practical

effects. For example, imagine that we are trying to prevent an automobile accident, and the

drivers have to react in some way within a fixed time that is common to everyone, regardless

of their individual levels of overall vigilance. In such cases, it is necessary to estimate the abso-

lute levels of short-term vigilance rather than relative vigilance. For this purpose, we first

examined differences between the mean M-PUI calculated from trials with an RT over 500 ms

(long RT) and the mean M-PUI calculated from trials with an RT less than or equal to 500 ms

(short RT) per participant. Note that 500 ms was chosen to ensure the relevance of M-PUI to

previous studies that have traditionally used the number of "lapses (of RT of more than 500
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ms)" as an indicator of decreased long-term vigilance [12]. One-tailed paired-samples t-tests

were used to compare the means of each group. We excluded from further analyses trials with

misses, false alarms, or anticipatory responses (RT< 150 ms) and trials conducted with the

eyes closed during the complete measurement phase. We also examined cases in which the

threshold was reduced by 50 ms to 450 and 400 ms. If M-PUI reflected the fluctuating level of

vigilance in each trial, we expected larger M-PUIs for longer RTs than for shorter RTs.

Next, following previous studies [19, 20], we divided the trials into two short-term levels of

vigilance based on a threshold that would be the same for all individuals while controlling RT

differences among individuals (the top middle panel of Fig 4). The adjustment of the threshold

for each participant was necessary to provide results that could be generalized theoretically,

although it lacked the simplicity of estimation in real-world settings. In this analysis, the RTs

of each individual were sorted in order of length, and RTs longer than the 90th percentile

point (long RT) were considered to be trials performed with a low short-term vigilance level,

while RTs shorter than the 90th percentile point (short RT) were considered to be trials per-

formed with a high short-term vigilance level. We then examined differences between the

mean M-PUI calculated from trials with long RT and the mean M-PUI calculated from trials

with short RT. We also examined cases in which the threshold was reduced by 30 percent to

the 60th and the 30th point.

In the most theoretical test, we examined the relationship between intra-individually nor-

malized M-PUIs and intra-individually normalized RTs on all trials (the top right panel of Fig

4), rather than dividing the data by the threshold. This is because previous studies’ dichoto-

mous approach [19, 20] might not be theoretically adequate to explain the relationships

between the overall RT distribution and physiological indicators such as M-PUIs. Therefore,

Fig 3. A Conceptual example of M-PUI calculation. The purple arrows in this figure represent the flow of M-PUI calculation. The black

line in the first block represents the raw pupilar diameter’s time series. First, a blink was detected using the rule that a blink occurs when the

pupilar diameter’s constant value falls below the threshold. Second, the pupilar diameter’s time series was linearly interpolated during the

blink. Third, noisy time series with raw pupilar diameters were smoothed. Different smoothed data are obtained using differently sized time

windows (orange, purple, and blue lines). Note that small fluctuations can be seen for smoothing with small timescales, but not for other

cases. Fourth, we calculated M-PUI in the smoothed pupilar diameter’s time series by using a medium timescale in this example. Then, we

calculated the absolute value for the degree of change (the sum of the magnitude of red arrows) in pupillary fluctuations. Finally, the

absolute degree of change was divided by the length of a specific interval (the sum of the magnitude of green arrows).

https://doi.org/10.1371/journal.pone.0256953.g003

Fig 4. Positions of data analyses in the practice-theory trade-off.

https://doi.org/10.1371/journal.pone.0256953.g004
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we used correlation coefficients between intra-individually normalized M-PUIs and intra-

individually normalized RTs to evaluate the "steepness" of the linear relationship between

M-PUIs and RTs. Note that the two variables normalized to the zero mean and one standard

deviation used in this analysis make the correlation coefficient between these two variables

identical to the regression slope (i.e., "steepness" of the linear relationship). In this procedure,

we first normalized RT and M-PUI within individuals (and within different smoothing sizes,

in the case of M-PUI). The normalization was conducted to compare correlation coefficients

between RT and M-PUI without contamination by the variation differences in RT and M-PUI

among individuals (and among different sizes of smoothing, in the case of M-PUI). The corre-

lation coefficients were calculated with M-PUI and RT normalized within individuals (and

within different sizes of smoothing, in the case of M-PUI). We logarithmically transferred the

RT, subtracted it by the mean RT, and divided it by the standard deviation of the RT within

each participant (i.e., we obtained z-scores with zero mean and one standard deviation). The

identical procedure was followed to normalize the M-PUI within each size of the smoothing

window size. It is not statistically appropriate to calculate correlation coefficients by including

independent and non-independent data points (i.e., some data points obtained from one indi-

vidual and others obtained from different individuals). Therefore, the correlation coefficients

were first calculated within each individual. Then, we examined the mean correlation coeffi-

cients between M-PUI and RT among individuals and the statistical significance of correlation

coefficients per participant. Fisher’s z-transformation was performed on Pearson’s correlation

coefficient r, then back-transformed to the r-value after the mean z was calculated to elucidate

the mean correlation coefficients following the recommended statistical procedures [23]. Non-

parametric permutation tests were used to determine whether the correlation coefficients were

statistically significant. We expected a positive correlation between M-PUI and RT if the

M-PUI reflected fluctuating levels of vigilance per trial.

Finally, we conducted two analyses that provide significant insights from both practical and

theoretical perspectives. We expected that one analysis would indicate whether RTs would also

be reflected in M-PUI as measured by other eye trackers with low temporal resolution and

would also evaluate the effectiveness of M-PUI for different temporal resolutions in a way dif-

ferent from the previous correlation coefficient analysis (the panel in the middle row of Fig 4).

For this purpose, we down-sampled the pupilar diameter’s time-series before the M-PUI calcu-

lation and then examined the mean correlation coefficients between intra-individually normal-

ized RTs and intra-individually normalized M-PUI calculated from the down-sampled time-

series of pupilar diameter. Down-sampling was done on the time-series of pupilar diameters at

a ratio of 1/10 (from 1,000 Hz to 100 Hz), 1/20 (to 50 Hz), and 1/40 (to 25 Hz). Hanning win-

dows of 5, 10, and 20 points were used to smooth the data. These correspond to windows sizes

of 50, 100, and 200 ms in the down-sampled case of 100 Hz, 100, 200, and 400 ms in the down-

sampled case of 50 Hz, and 200, 400, and 800 ms in the down-sampled case of 25 Hz. We con-

ducted the identical normalization as above within each individual for each down-sampled

data. If M-PUI reflected short-term vigilance levels robustly, we expected to find positive corre-

lation coefficients even in the down-sampled data. In addition, if the effective time resolution

was robust, the M-PUI from the size of the window that produced a large effect size in the previ-

ous correlation coefficient analysis should also have a significant effect size in this analysis.

Another analysis examined the time range relative to the target onset to estimate short-

term vigilance (the panel in the bottom row of Fig 4). This indicates how many seconds the

effect of M-PUI lasts, which is important from both practical and theoretical perspectives. This

analysis compared the mean correlation coefficients between intra-individually normalized

RT and intra-individually normalized M-PUI calculated at different time points using a Han-

ning window size of 50 ms. M-PUIs were calculated from eight types of pupilar time-series:
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from 1,000 ms before the target presentation to the target presentation (including all the trials),

from 2,000 ms before the target presentation to 1,000 ms before the target presentation

(including trials with a waiting time above 2,000 ms), from -3,000 ms to -2,000 ms (including

trials above 3,000 ms), from -4,000 ms to -3,000 ms (including trials above 4,000 ms), from

-5,000 ms to -4,000 ms (including trials above 5,000 ms), from -6,000 ms to -5,000 ms (includ-

ing trials above 6,000 ms), from -7,000 ms to -6,000 ms (including trials above 7,000 ms), and

from -8,000 ms to -7,000 ms (including trials of 8,000 ms). We conducted these identical nor-

malizations within each individual for each time point. If M-PUI reflected real-time vigilance

levels, then we expected that the larger the correlation coefficient, the closer the M-PUI calcu-

lation would be to the target’s point of appearance.

Results

Nineteen participants provided valid pupilar data after excluding one participant due to tech-

nical errors. Two participants that had their eyelids closed during one part of the experiment

were excluded from the analysis. The total number of trials was 1,972. The participants

responded correctly to most trials, with no miss trials, only nine false alarm trials, which

included anticipatory reactions with RTs of 150 ms or less, and 52 invalid trials, in which the

eyes were entirely closed. Thus we excluded from the analysis 61 of 1,972 trials. The average

number of valid trials for each participant was 112.41 (SD = 4.10). The distributions of RTs on

all valid trials are shown in Fig 5.

We compared the mean M-PUI calculated from trials with long RT) and short RT (the top

left and top middle panels of Fig 4).

First, in the case of the fixed thresholds of 500, 450, and 400 ms (the top left panel of Fig 4),

paired-samples t-tests revealed that, for all the thresholds, mean M-PUIs were larger for long

RTs than for short RTs for Hanning window sizes from 20 ms to 140 ms, with the largest effect

sizes for 70 or 80 ms windows (corrected significance level of p< .0022). A summary of these

statistics is provided in the upper part of Table 1.

Next, we conducted paired-samples t-tests for individually adjusted thresholds of 90, 60, 30

percentile points (the top middle panel of Fig 4), revealed that mean M-PUIs of all thretholds

were larger for long RTs than for short RTs for 20 ms to 180 ms Hanning windows (p<
.0022). The largest effect was observed for 90 to 120 ms windows. A summary of these statistics

is provided in the lower part of Table 1.

The "Threshold" column shows RT thresholds dividing the trials. The "Mean M-PUI" col-

umn shows the mean M-PUIs for cases the "Lower limit," "Maximum effect," and "Upper

limit" of the smoothing window size used in calculating M-PUIs. The "Lower limit " represents

the smallest window size with a significant difference in mean M-PUIs, and the "Maximum

effect" represents the window size for the largest effect size. The "Upper limit " represents the

largest window size with a significant difference in mean M-PUIs. The "Mean RT" and the

"Mean number of trials" columns separately show the mean RTs across participants and the

mean number of trials per participant. The "Long RT" and "Short RT" rows separately list the

statistics in trials with long and short RTs. The "Smoothing window" row lists the specific win-

dow sizes for which the M-PUIs are calculated along with the results of statistical tests. The

plus-minus signs represent standard deviations. One participant was excluded from the fixed

500 and 450 ms threshold for the lack of long RTs (>450 ms).

In the most theoretical test, we examined the correlation coefficients (Pearson’s r) between

intra-individually normalized M-PUI and intra-individually normalized RT for all trials (the

top right panel of Fig 4). The scatterplot and distributions of correlation coefficients between

the normalized RT and normalized M-PUI are shown in Fig 6 for the 50 ms window. Although
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there are variations among participants, there is a shared positive correlation coefficient with a

mean of 0.30 between M-PUI and RT within each participant.

Fig 7 shows the mean correlation coefficients (Pearson’s r) among participants for each size

of the Hanning window and the numbers of participants whose correlation coefficients

reached a significance level of p< .05. All the mean correlation coefficients were a positive,

except the 10 ms Hanning window (possibly caused by measurement noise). The mean corre-

lation coefficients were slightly larger for windows between 30 and 200 ms than those outside

this interval, and the number of participants that reached significance was largest for windows

between 50 and 100 ms. As indicated in Figs 6 and 7, the largest mean correlation coefficient

was for the 50 ms window (mean r = 0.30, SEM = 0.15), with the largest number of participants

reached significance (N = 14). All the data points in the correlation coefficient calculation

must be independent. Therefore, we do not consider the correlation coefficients between nor-

malized M-PUI and RT calculated from all data points as formal. However, the results, in this

case, were nearly identical.

Fig 5. Distributions of RTs on all valid trials. The upper panel shows a histogram of the RT distributions of all participants.

The lower panel shows RT distributions of individual participants, starting with the individual with the shortest mean RT.

The different colors represent histograms of different individuals, which are common to the upper and lower figures. Note

that two trials (4,988 ms and 1,662 ms, respectively) were not shown for visual purposes.

https://doi.org/10.1371/journal.pone.0256953.g005
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Finally, we conducted two analyses that provide important insights from practical and theo-

retical perspectives (the panels in the middle and bottom row of Fig 4). We examined the cor-

relation coefficients between intra-individually normalized RT and intra-individually

normalized M-PUI calculated from the down-sampled time-series of pupilar diameters (Fig

8). Positive correlations between normalized M-PUI and normalized RT were found for all

Hanning windows, although mean correlation coefficients were slightly larger for windows

between 100 and 200 ms than those outside this interval. The largest correlation was for the

100 ms window (mean r = 0.28, SEM = 0.15). Most participants reached significance for the

100 ms window (N = 13, for 100 and 50 Hz), while the largest number of participants reached

significance for the 200 ms window (N = 14, for 100 and 50 Hz).

Further, we compared the mean correlation coefficients between intra-individually normal-

ized RT and intra-individually normalized M-PUI for the Hanning window of 50 ms, calcu-

lated from different time points (the panel in the bottom row of Fig 4). The results (Fig 9)

indicated that the normalized M-PUIs calculated from time intervals within 1,000 ms before

the target presentation had the largest positive correlation (r = 0.27, SEM = 0.15) with normal-

ized RT, with the largest number of participants that reached significance (N = 13). The corre-

lation coefficient decreased as the time intervals moved away from the time of target

presentation, with the number of participants that reached significance also decreasing. Only

Table 1. Summary of statistics testing differences between mean M-PUIs calculated from time-series for all smoothed pupilar diameters for long and short RTs.

Threshold Mean M-PUI Mean RT (ms) Mean number of

trialsLower limit case Maximum effect case Upper limit case

Fixed at 500

ms

Long RT 0.67 ± 0.26 0.49 ± 0.21 0.44 ± 0.20 665.27 ± 177.62 10.53 ± 8.33

(Minimum = 3)

Short RT 0.55 ± 0.20 0.35 ± 0.11 0.31 ± 0.10 374.69 ± 27.67 101.88 ± 9.90

(Minimum = 75)

Smoothing

window

20 ms (t(15) = 3.51,

d = 0.50)

70 ms (t(15) = 3.66,

d = 0.79)

180 ms (t(15) = 3.37,

d = 0.76)

― ―

Fixed at 450

ms

Long RT 0.69 ± 0.28 0.50 ± 0.22 0.47 ± 0.22 566.11 ± 79.79 20.00 ± 14.19

(Minimum = 6)

Short RT 0.54 ± 0.20 0.33 ± 0.11 0.31 ± 0.10 374.69 ± 27.67 92.41 ± 15.09

(Minimum = 64)

Smoothing

window

20 ms (t(15) = 3.52,

d = 0.61)

80 ms (t(15) = 3.45,

d = 0.90)

140 ms (t(15) = 3.36,

d = 0.88)

― ―

Fixed at 400

ms

Long RT 0.64 ± 0.24 0.45 ± 0.18 0.40 ± 0.17 495.19 ± 50.86 39.76 ± 24.49

(Minimum = 8)

ShortRT 0.52 ± 0.18 0.32 ± 0.09 0.28 ± 0.08 347.89 ± 18.92 72.65 ± 24.91

(Minimum = 29)

Smoothing

window

20 ms (t(16) = 4.19,

d = 0.54)

70 ms (t(16) = 3.83,

d = 0.88)

200 ms (t(16) = 3.38,

d = 0.82)

― ―

Adjusted at

90th

Long RT 0.70 ± 0.28 0.51 ± 0.23 0.40 ± 0.19 627.30 ± 205.54 11.41 ± 0.84

Short RT 0.54 ± 0.20 0.33 ± 0.11 0.27 ± 0.09 372.47 ± 38.05 101.00 ± 3.56

Smoothing

window

20 ms (t(16) = 3.83,

d = 0.66)

90 ms (t(16) = 3.90,

d = 0.94)

400 ms (t(16) = 3.33,

d = 0.83)

― ―

Adjusted at

60th

Long RT 0.60 ± 0.23 0.41 ± 0.16 0.37 ± 0.14 475.77 ± 74.49 44.29 ± 1.67

Short RT 0.53 ± 0.20 0.31 ± 0.11 0.29 ± 0.10 346.42 ± 33.21 68.12 ± 2.68

Smoothing

window

20 ms (t(16) = 3.88,

d = 0.35)

90 ms (t(16) = 3.33,

d = 0.66)

180 ms (t(16) = 3.33,

d = 0.66)

― ―

Adjusted at

30th

Long RT 0.58 ± 0.21 0.36 ± 0.13 0.23 ± 0.07 429.52 ± 54.30 77.47 ± 3.27

Short RT 0.51 ± 0.19 0.28 ± 0.09 0.19 ± 0.06 325.97 ± 30.63 34.94 ± 2.94

Smoothing

window

20 ms (t(16) = 4.67,

d = 0.32)

120 ms (t(16) = 4.67,

d = 0.71)

1,000 ms (t(16) = 3.53,

d = 0.60)

― ―

https://doi.org/10.1371/journal.pone.0256953.t001
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when the interval was less than 2000 ms (from -2,000 ms to -1,000 ms, and from -1,000 ms to 0

ms) was the number of participants that reached significance greater than half of the total

number of participants.

Discussion

Validity of M-PUI for estimating real-time vigilance: Practical guidelines

The analysis results from a practical perspective suggest that M-PUI can be used to estimate

and predict a fluctuating level of vigilance. Evidence supporting this conclusion can be seen in

comparing M-PUIs between short/long RTs using a fixed threshold, the effectiveness of

M-PUIs calculated from the down-sampled data, and the adequate time intervals of M-PUI

(see Fig 4). The comparison of M-PUIs between short/long RTs based on a fixed threshold

Fig 6. Scatterplot and distributions of each participants’ and correlation coefficients across all participants between

normalized RT and normalized M-PUI for the 50 ms Hanning window. The top left panel represents the scatterplot

between normalized RT and M-PUI for the 50 ms Hanning window for each participant and all participants. The top

right panel represents the distributions of correlation coefficients between normalized RT and normalized M-PUI for the

50 ms Hanning window for each participant and all participants. The bottom panel represents all scatterplots for each

participant. The different colors represent scatterplots of different individuals that are common to Fig 5. The solid red

line in these panels shows the mean magnitude of the correlation coefficient for all participants, and the dotted black lines

show the magnitudes of the correlation coefficient for each participant.

https://doi.org/10.1371/journal.pone.0256953.g006

PLOS ONE Pupillary fluctuation amplitude reflects short-term vigilance

PLOS ONE | https://doi.org/10.1371/journal.pone.0256953 September 17, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0256953.g006
https://doi.org/10.1371/journal.pone.0256953


showed that the Hanning windows of 20 to 140 ms gave the most valid results. We can imagine

a practical situation of a widely-used system that does not adapt to individuals, such that the

performance decrement threshold at which errors occur is the same for everyone; in this sys-

tem, human error is mitigated through the detection of a decrease in a short-term vigilance

Fig 7. Mean correlation coefficients between normalized M-PUI and normalized RT for each Hanning window size and numbers

of participants whose correlation coefficient reached significance. Red dots indicate the points where detailed scatterplots are shown

in Fig 6. Error bars represent standard errors.

https://doi.org/10.1371/journal.pone.0256953.g007

Fig 8. Mean correlation coefficients between normalized M-PUI and normalized RT for all down-sampled time-series of pupilar

diameters and numbers of participants whose correlation coefficients reached significance. The blue line represents the mean

correlation coefficients between normalized RT and normalized M-PUI calculated from the pupilar diameters down-sampled to 100

Hz. The blue bars represent the numbers of participants that reached significance in the case of 100 Hz. The green line represents the

mean correlation coefficients between normalized RT and normalized M-PUI calculated from the pupilar diameters down-sampled to

50 Hz, and the green bars represent the numbers of participants that reached significance in the case of 50 Hz. The red line represents

the mean correlation coefficients between normalized RT and normalized M-PUI calculated from the pupilar diameters down-

sampled to 25 Hz, and the red bars represent the numbers of participants that reached significance in the case of 25 Hz.

https://doi.org/10.1371/journal.pone.0256953.g008
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level beyond this threshold. The effect size of M-PUI was large enough to be statistically signif-

icant even in such a practical, real-world situation in which individual differences cannot be

considered or controlled. It is essential to point out that many previous studies have used the

number of trials that exceed a fixed threshold (500 ms, especially) as an indicator of decreased

long-term vigilance [12]. The M-PUI, which is thought to reflect the state of the psychophysio-

logical mechanism that supports short-term vigilance, differed when the fixed threshold was

used suggests that the fixed threshold also has practical validity in PVT analysis on a trial-by-

trial basis.

Further, M-PUI calculated from the time-series of pupilar diameters measured with a low-

time resolution eye tracker also reflected short-term vigilance levels when window sizes

smoothed pupilar diameter’s characteristics up to approximately 200 ms. Note that the effec-

tiveness of the M-PUI calculated from the small window (50 ms) was slightly reduced. This

suggests that when the time resolution of the eye tracker is low and the number of samples

(i.e., the number of pupilar diameter time-series) considered in smoothing is too small, the

M-PUI calculation accuracy can be lower. Thus, when calculating M-PUI from pupilar diame-

ters acquired at a low temporal resolution, smoothing at a medium resolution, such as 100 ms,

is more appropriate than smoothing at a fine resolution, such as 50 ms.

Furthermore, only normalized M-PUIs calculated within 1,000 ms (or, at most, 2000 ms)

before the target presentation was helpful in vigilance estimation. These findings identified

valid time intervals for estimating real-time vigilance during real-world activities.

Characteristics of M-PUI that reflect vigilance: Theoretical implications

The results of the analyses from a theoretical perspective suggest that there is a generalizable

relationship between M-PUI and fluctuating levels of vigilance. Supporting evidence emerged

from several sources: the comparison of M-PUIs between short/long RTs using individually

adjusted thresholds, the correlations between the intra-individually normalized M-PUI and

intra-individually normalized RT, calculations of M-PUI from the down-sampled data, and

examination of the adequate time intervals of M-PUI (see Fig 4). When the short-term vigi-

lance levels were divided using individually adjusted thresholds, M-PUIs differed for Hanning

Fig 9. Mean correlation coefficients between normalized M-PUI and normalized RTs for different time points and numbers of

participants whose correlation coefficients reached significance.

https://doi.org/10.1371/journal.pone.0256953.g009
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windows from 20 to 180 ms. When we normalized M-PUI and RT within each participant,

intra-individually normalized M-PUIs for Hanning windows of 50 to 100ms were most posi-

tively correlated with intra-individually normalized RTs. These effective time resolutions did

not change for the down-sampled data. Regarding the mechanism of the relationship between

M-PUI and RT, it is essential to note that the effect size of M-PUI was most prominent when

the size of the smoothing window was at a fine resolution smaller than those used in the origi-

nal PUI calculation. Interestingly, the M-PUI no longer reflected the level of short-term vigi-

lance when the time of calculation of the M-PUI was three seconds away from the short-term

vigilance measurement (target presentation). The effectiveness of M-PUI on short timescales

suggests that the M-PUI does not reflect states that change on long timescales, from tens of sec-

onds to minutes.

LC activity underlying pupillary fluctuations

The pupilar diameter is known to be strongly correlated with LC activity [13]. The LC affects

attention through the noradrenaline pathway in two different activities [13, 14]. In the tonic

activity, the LC is activated at approximately 0.1–5.0 Hz and adjusts the arousal, which affects

the pupilar diameter. In the phasic activity, the LC is activated at approximately 10–20 Hz and

promotes responsiveness to novel or task-relevant stimuli through the noradrenaline pathway,

which is also reflected in phasic pupilar dilation.

The present results indicated that the amplitude of pupillary fluctuations assessed by time-

series data smoothed by a fine resolution window of approximately 50–100 ms was best corre-

lated with the degree of short-term vigilance. In other words, the frequency of pupillary fluctu-

ations with an amplitude that best correlated with the degree of short-term vigilance had a

temporal resolution of approximately 10–20 Hz (1000/100 ms to 1000/50 ms). 10–20 Hz is dif-

ferent from the frequency range of spontaneous pupillary fluctuations typically associated with

sleepiness because sleepiness waves occur below 0.5–0.8Hz [11, 24].

Typically, sleepiness-related long-term pupillary fluctuations are interpreted as reflecting

the ANS state. Fluctuations between sympathetic and parasympathetic control might occur

during periods of reduced long-term vigilance reflected in large pupilar diameter fluctuations

[9, 11]. One study suggests that the ANS state is mediated by the Edinger-Westphal nucleus in

the midbrain [9] controlled by the LC [10]. Therefore, sleepiness-related slow pupillary fluctu-

ations below 0.5–0.8 Hz identified in previous studies might reflect the LC’s tonic activity

(0.1–5.0 Hz). Indeed, the adaptive changes that reduce the LC’s tonic arousal level are consid-

ered to occur when there is inadequate stimulation from the environment, which correlates

with very slow pupillary fluctuations [5]. Participants being forced to wait in the dark for an

extended time for PUI measurement is just such a situation when LC’s tonic activity decreases.

However, the LC’s tonic activity might sometimes increase as participants try to resist sleeping

and remain awake because of the requirement to keep their eyes open during PUI measure-

ment. These conflicts appear more strongly at lower levels of arousal, such as in sleep-deprived

people. Therefore, it is likely that larger pupillary fluctuation amplitudes occur at a very slow

timescale.

On the other hand, short-term pupillary fluctuations measured with a temporal resolution

of approximately 10–20 Hz, with an amplitude that correlated with the short-term vigilance

level in each trial of this study, might be related to the LC’s phasic activity that occurs at 10–20

Hz. As mentioned earlier, the LC’s phasic activity plays an essential role in NE release, which

enhances the novel or task-relevant stimuli critical for the current task [13, 14]. The LC’s pha-

sic activity is reciprocally innervated by the anterior cingulate cortex (ACC) [13], which is a

component of the salience network that is involved in orientation to salient stimuli [25]. Also,
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task-relevant stimuli’s enhancement by LC’s phasic activity has been observed when the target

appears in space or at a time indicated by a spatial (e.g., orienting effect [26–28]) or a timing

cue [20]. Then, the phasic dilation in pupilar diameter, which might be due to the release of

NE, was more robust, and the response to the target was faster than when the target appeared

without the cue. It has been suggested that the LC’s phasic activity enhances target detection

with task relevance weighted by something such as a cue. Considering the frequency band

match, the phasic enhancement of target detection might be one mechanism of the correlation

between short-term fluctuations of pupillary amplitudes and short-term vigilance levels.

A discussion of the relationship between M-PUI and short-term vigilance levels is incom-

plete without describing the concept of neuron coupling in the LC. Usher, Cohen, Servan-

Schreiber, Rajkowski, and Aston-Jones [15] suggested that neurons in the LC are coupled (syn-

chronized) when they are highly responsive to task-relevant stimuli, and the task performance

is optimal. In contrast, they are decoupled (desynchronized) when the responsiveness to task-

relevant stimuli is low and the task performance is suboptimal. These current results can be

explained based on this model. The correlation between short-term pupillary fluctuation

amplitude and short-term vigilance level did not decrease considerably as the smoothing win-

dow size increased to approximately 200 ms. That is, short-term pupillary fluctuations with

amplitudes correlating with short-term vigilance levels, as observed in the present study, might

not be involved in synchronized neural activity at a specific frequency, such as alpha waves in

the case of attention [29]. Instead, the reduced vigilance was possibly associated with the state

of momentarily higher or lower overall LC activity over a wide frequency range. A possible

mechanism underlying this phenomenon is elevated randomness, or desynchronization,

which causes the LC’s neurons to transiently change their firing rate over a wide range of fre-

quencies, thereby accidentally increasing or decreasing the overall LC activity in different fre-

quency bands. Such randomness is also associated with the LC’s phasic activity. A model of the

LC’s phasic activity proposes that the LC’s neurons become uncorrelated and randomized rela-

tive to each other when the motivation to stop the task increases, thereby reducing the respon-

siveness to task-relevant stimuli [13, 30]. This suggests that when the motivation for the

current task is high and the LC’s randomness is low, the LC’s phasic activity differs signifi-

cantly between intervals with and without task-relevant stimuli, resulting in phasic enhance-

ment of only task-relevant stimuli. On the other hand, when randomness reflecting a tendency

to move away from a task is observed in the LC, there is no difference in LC’s phasic activity

between intervals with and without task-relevant stimuli, which results in exploring novel

environments rather than enhancing task-relevant stimuli. Therefore, it is possible that the

characteristics of short-term pupillary fluctuations, including the M-PUI, might facilitate esti-

mating engaging with a current task through the enhancement of task-relevant stimuli. Fur-

ther research using tasks measuring the orienting component of attention involved in phasic

enhancement of task-relevant stimuli, including the Attention Network Test [26, 27, 28] (i.e.,

spatial enhancement) or the Rapid Serial Visual Presentation Task [31–33] (i.e., temporal

enhancement) would be needed further to elucidate the relationship between M-PUI and task

performance.

Limitations and future directions

Experimental conditions possibly affected the RT under short-term vigilance levels (RTs per

trial) on a trial-by-trial basis. A crucial experimental condition in PVT is the target presenta-

tion’s variable schedule (i.e., different waiting times between the start of a trial and the target

presentation). For example, it is known that RT increases as the timing of the target presenta-

tion is moved closer to the start of a trial in tasks with different waiting time lengths (i.e.,
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"foreperiod effect") because participants develop adaptations to the experimental situation

such that the probability of a target appearance is estimated low immediately after starting a

trial [34]. Its probability is estimated to increase as the time without a target presentation dur-

ing a trial increases. Besides, this trend in RT is enhanced by the previous trial’s waiting time

difference (i.e., "sequential effect"). These effects have been recently reported to affect short-

term vigilance levels (i.e., RTs per trial) in PVT [35] and to be affected by long-term vigilance

levels [36]. Therefore, we speculated that these effects might be included in our definition of

short-term vigilance in PVT. The concept of LC’s phasic activity (e.g., the temporal enhance-

ment of the task-relevant stimuli) might be related to participants’ adaptation, increasing the

responsiveness to targets at specific timings when the probability of target appearance is high.

Therefore, the relationship between M-PUIs and RTs could be partially mediated by increased

responsiveness as the time without a target presentation increases. There is one important

point to consider in this regard. We verified that correlations between M-PUI and RT were, at

least, not sorely dependent on the current trial’s waiting time. Specifically, we observed posi-

tive correlations between M-PUI and RT, normalized within each waiting time rather than

within each participant. In other words, it was confirmed that the relationship between M-PUI

and RT remains even after controlling the tendency to increase responsiveness to a target dur-

ing the waiting time of each PVT trial (i.e., the foreperiod effect) in our study. Rather, the trial-

by-trial fluctuations in the increase in responsiveness during the waiting time (i.e., the trial-by-

trial differences in the foreperiod effect) might be a source of fluctuations in the short-term

vigilance levels. Such trial-by-trial fluctuations might include the sequential effect (see the

arousal-related higher-order sequential effect [37]). Future studies might show that some

M-PUI fluctuations’ effects in short-term PVT vigilance levels can be explained by factors

related to experimental conditions such as the previous trial’s waiting time and could also help

elucidate the underlying mechanism of short-term vigilance level.

We did not investigate long-term vigilance levels because of the scope of this study. How-

ever, since long-term vigilance level (i.e., overall RT in one PVT session) is calculated based on

the sum of short-term vigilance level (i.e., RT per trial), clarifying the relationship between

them is crucial for elucidating the nature of vigilance tasks that are traditionally considered as

long-term. One possible approach in this direction is to examine the modulation of short-term

vigilance by long-term vigilance, which could be determined by examining whether variations

in long-term vigilance characteristics are reflected in psychophysiological indicators of varia-

tions in short-term vigilance such as M-PUI. For example, distributional analysis of RTs

within each PVT session might be used for M-PUI [38, 39]. The distributional analysis can

reveal whether the increase in overall RT (e.g., mean RT) in one PVT session, along with the

long-term vigilance decrement, might be due to a generic slow-down of all responses or a

selective slow-down of specific responses within RT distributions’ long percentiles [39]. It has

been reported that the increase in overall RT (i.e., mean RT) when long-term vigilance levels

are reduced by extended continuous wakefulness (i.e., sleep deprivation) is due to a selective

slow-down of responses within long percentiles [39]. Therefore, we can draw the distributions

of M-PUI correlating with RTs per trial by manipulating long-term vigilance through sleep

deprivation and observe whether M-PUI within long percentiles and RT selectively increases.

A selective increase in the distribution of the M-PUI might suggest that the M-PUI reflects

short-term vigilance level, which is modulated by the long-term vigilance levels. The LC’s pha-

sic activity [13], which might be related to the M-PUI degree associated with RT per trial is

modulated by the tonic LC activity [5, 13] related to the degree of PUI associated with overall

RT within each session [12]. Therefore, this relationship could be suggestive of short-term vigi-

lance modulation by long-term vigilance. Interestingly, comparing M-PUIs between trials

divided by thresholds at the 90th percentile point in our data resulted in a relatively higher
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M-PUI effect and a higher mean RT than the 60th and 30th percentile thresholds. Since rela-

tive sleep deprivation is reported to be expected even in healthy populations [5], this selective

increase in M-PUI and RT within long percentiles might reflect sleepiness among the study’s

participants. However, separating the experimental participants into groups according to the

time of day (11:00–17:00) revealed neither a significant sleepiness-related trend in RT nor

M-PUI nor a relationship between RT and M-PUI. Therefore, further studies with strict exper-

imental controls for sleep-related factors are warranted. The M-PUI does not entirely reflect

long-term vigilance levels because the temporal resolution of the M-PUI effect is different

from long-term effects. Previous studies that examined pupil sizes’ correlations with short-

term vigilance have entirely relied on separate comparisons between the shortest and the lon-

gest RTs within short and long percentile points [20]. Therefore, their distributional character-

istics remain to be clarified by future research.

Several remaining issues warrant further investigation. Because this study was generally

conducted in a dark environment, it remains unclear whether the same results can be obtained

in different brightness environments. Some studies have found that the pupilar diameter may

differ in dark and light environments [24]. Thus it is necessary to investigate the effectiveness

of M-PUI in different brightness conditions. Further, although the M-PUI reflected the fluctu-

ating level of vigilance in most individuals, the extent of its effectiveness varied among individ-

uals. For example, no significant correlations were obtained for three experimental

participants. Such results may be clarified by analyzing the relationship between M-PUI effect

size and individual differences including cognitive failure liability [38] or subjective states such

as task engagement, distress, and worry [40]. These future studies should have important

implications from both practical and theoretical perspectives.

Conclusion

M-PUI can be used to estimate and predict short-term vigilance levels in a PVT, even without

controlling individual differences in practice. Theoretically, this estimation is optimal for

time-series of pupilar diameters within one or two seconds before target onset after smoothing

by Hanning windows of 50 to 100 ms. This method is expected to effectively assess even low

temporal resolutions (e.g., 50 Hz). It is expected that future investigations of short-term pupil-

lary fluctuations would further contribute to elucidating the psychophysiological mechanisms

of short-term vigilance.
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