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Abstract: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) poses a mortal threat to human health. The elucidation of the rela-
tionship between peripheral immune cells and the development of inflammation is essential for
revealing the pathogenic mechanism of COVID-19 and developing related antiviral drugs. The
immune cell metabolism-targeting therapies exhibit a desirable anti-inflammatory effect in some
treatment cases. In this study, based on differentially expressed gene (DEG) analysis, a genome-scale
metabolic model (GSMM) was reconstructed by integrating transcriptome data to characterize the
adaptive metabolic changes in peripheral blood mononuclear cells (PBMCs) in severe COVID-19
patients. Differential flux analysis revealed that metabolic changes such as enhanced aerobic gly-
colysis, impaired oxidative phosphorylation, fluctuating biogenesis of lipids, vitamins (folate and
retinol), and nucleotides played important roles in the inflammation adaptation of PBMCs. Moreover,
the main metabolic enzymes such as the solute carrier (SLC) family 2 member 3 (SLC2A3) and fatty
acid synthase (FASN), responsible for the reactions with large differential fluxes, were identified as
potential therapeutic targets. Our results revealed the inflammation regulation potentials of partial
metabolic reactions with differential fluxes and their metabolites. This study provides a reference for
developing potential PBMC metabolism-targeting therapy strategies against COVID-19.

Keywords: COVID-19; PBMCs; metabolism; metabolic model; inflammatory; metabolism-directed
therapy

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses one of the most
momentous threats to human health and safety. As of April 2022, the epidemic of coron-
avirus disease 2019 (COVID-19) has caused 496 million cases and 6 million deaths world-
wide (https://www.who.int/publications/m/item/weekly-epidemiological-update-on-
covid-19---12-april-2022 accessed on 12 April 2022). Severe respiratory failure (SRF) fre-
quently occurs in severe cases due to alveolar structure damage in lungs by SARS-CoV-
2 [1]. In addition, COVID-19 triggers immune macrophage-activation syndrome [2] and
sepsis-induced immunoparalysis, and the latter is characterized by acute lymphopenia,
interleukin (IL) -6 (IL-6) accumulation, and the human leukocyte antigen D-related (HLA-
DR) exhaustion in CD14 monocytes [1,3]. In addition to the lung injury, SARS-CoV-2 has
been reported to mediate the dysfunction of multiple organs by recognizing the surface
receptor angiotensin-converting enzyme 2 (ACE2) in central nervous system and pancreatic
β cells [4,5].

The accumulation of pro-inflammatory factors is one of the characteristics of COVID-
19 [1,6–8]. Mechanistically, the replication and release of SARS-CoV-2 destroy lung ep-
ithelial cells and exhibit damage-associated molecular patterns, which are recognized by
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neighboring epithelial cells, endothelial cells, and alveolar macrophages, thereby inducing
the production of pro-inflammatory cytokines and chemokines. Subsequently, peripheral
monocytes and T cells are recruited by chemokines to the damaged domains to partici-
pate in pro-inflammatory processes [9]. Furthermore, the destruction of alveolar structure
significantly reduces the arterial partial pressure of blood oxygen (PaO2), thus triggering
macrophages’ inflammatory response [10]. Excessive pro-inflammatory cytokine accumula-
tion may lead to so-called ‘cytokine storms’, although this phenomenon is not common in
severe cases [7]. Undoubtedly, attenuating inflammation is one of dominant strategies to
reduce the mortality caused by SARS-CoV-2 infection [11].

Importantly, most subpopulations of peripheral blood mononuclear cells (PBMCs)
including monocytes, T cells, and B cells, tend to adaptively respond to cytokine levels
in the peripheral circulation or local lesions, and these immune metabolic responses are
closely related to cell functions [12–14]. Classically, monocytes or macrophages activated
by lipopolysaccharide (LPS) or interferon (IFN) -γ (IFN-γ) are polarized from the M 0
immature phenotype to M 1 pro-inflammatory phenotype, which is characterized by
aerobic glycolysis [12]. The metabolism of activated T cells mainly consists of aerobic
glycolysis and a transition from catabolism to anabolism [13]. The metabolism of T-cell-
activated B cells tends to increase the flux of tricarboxylic acid cycle (TCA) and oxidative
phosphorylation (OXPHOS) [14]. Adaptive metabolism reconstruction can increase the
nutrient uptake and energy production of immune cells, including PBMCs, thus supporting
them to exert multiple immune functions, including pro-inflammatory activities. Moreover,
reaction substrates or products in the metabolic pathway may be involved in the regulation
of immune responses.

Considering this, COVID-19 treatment schemes are expected to be designed from the
perspective of immunometabolism. Based on the metabolic profiles of immune cells in
response to inflammatory signals, the correlation between the metabolism of inflamma-
tory cells and pro-inflammatory processes has been widely investigated. A number of
in vitro studies have indicated that the specific inhibition of metabolic gene expression can
change or reverse the phenotype of inflammatory cells and improve anti-inflammatory
prognosis by regulating the flux of local metabolic responses. Through the activation of pro-
inflammatory cells or the maintenance of pro-inflammatory phenotype, some key proteins
indirectly involved in the metabolism can inhibit the development of inflammation by regu-
lating the distribution of metabolic flux. For example, autophagy-related gene 5 (ATG5) has
been reported to be a negative regulator of glycolysis and inflammatory cytokine produc-
tion in dendritic cells infected with respiratory syncytial virus [15]. The crosstalk between
NAD-dependent protein sirtuins 1 and energy-sensing enzyme AMP-activated protein ki-
nase (AMPK) supports mitochondrial biogenesis and oxidative metabolism of immune cells,
thus promoting anti-inflammatory responses [16]. In order to cope with the rapid mutation
of pathogens and avoid the abuse of antibiotics, some immune cell-directed anti-infection
strategies have developed [17]. For example, 2-deoxy-D-glucose limits the transcription
of human retrovirus HTLV-1 in PBMCs by inhibiting glycolysis [18]. Bedaquiline acti-
vates the autophagy and anti-bacterial ability of macrophages via reducing glycolytic
flux and enhancing phosphatidylinositol synthesis [19]. The inhibition of the mechanis-
tic target of rapamycin complex 1 (mTORC1) or 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG-CoA) reductase reduces cholesterol synthesis in macrophages to accelerate the
clearance of engulfed M. tuberculosis [20]. Generally speaking, host-directed therapies are
less likely to place selective pressure on pathogens, and thus these host-directed thera-
pies, in combination with pathogen-directed drugs, are expected to enhance efficacy. It is
necessary to comprehensively investigate the metabolic adaptability (namely, metabolic
reprogramming) of PBMCs during inflammation caused by COVID-19 to develop PBMC
metabolism-directed therapies.

With the advancement of omics technology, omics analysis has been widely used
to characterize the physiology and pathology of specific tissues. However, omics-based
analysis alone can no longer meet the requirements of revealing the subtle change in
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materials and energy under specific conditions. Metabolic networks can comprehensively
reflect information on global metabolite circulation and transformation. At present, some
algorithms integrate multi-type omics data into genome-scale metabolic models (GSMMs),
which makes the reconstruction of context-specific metabolic network more reasonable and
convenient. Combined with flux balance analysis (FBA) [21], the reconstructed metabolic
network can simulate the global distribution of metabolites and energy flow of cells under
specific conditions. This combination is helpful to reveal the mechanism underlying cell
metabolic disturbance caused by classical genetic or epigenetic factors. By comparing the
flux distribution of the cellular metabolic network between healthy state and disease state,
the obtained flux difference nodes may have the potential to become therapeutic targets.
Metabolic networks have been widely used to reveal metabolic mechanisms and identify
the targets of chronic liver diseases (nonalcoholic fatty liver disease) [22], cancers such as
hepatocellular carcinoma [23], and type 2 diabetes mellitus [24].

Metabolic networks can act as platforms to facilitate the studies of viral disease patho-
genesis and the screening of related-drug targets, especially for COVID-19. The bulk
RNA-Seq/single cell RNA-Seq data from cells infected with SARS-CoV-2 were integrated
into human GSMM through the metabolic transformation algorithm rMTA to predict anti-
SARS-CoV-2 targets in airway epithelial cells [25]. In addition, the stoichiometric biomass
function of SARS-CoV-2 production was integrated into lung cell GSMM to predict the
response disturbance that may inhibit virus replication [26]. An algorithm software findCP-
cli was developed for target prediction based on the GSMM of human airway epithelial
cells infected with SARS-CoV-2 [27]. The metabolic characterization of PBMC in COVID-19
can be used to predict the severity of infection. A set of PBMC metabolic networks were
generated through the iMAT algorithm to predict the metabolic changes in different popu-
lations of immune cells against the background of severe SARS-CoV-2 infection [28]. The
above studies of context-based metabolic networks contribute to the exploration of the
unknown anti-infective capacity of traditional drugs to address the low efficiency problem
of drug development. The regulation of metabolic pattern of immune cells may be a direct
way to save the severe patients from excessive inflammation since this regulation can
reverse the inflammatory phenotype. However, PBMC-based immunotherapy has not been
systematically studied in the treatment of COVID-19. Therefore, it is essential to explore
the potential therapeutic strategies targeting immunometabolism for acute infection.

In this study, to characterize the metabolism of PBMCs in severe COVID-19 patients,
we reconstructed GSMMs by integrating the published single-cell RNA-Seq (scRNA-Seq)
data of PBMCs from healthy populations and severe patients using the pyTARG algorithm,
and verified the rationality of transcriptome data through traditional gene expression analy-
sis. Our reconstructed GSMM pair was pruned to approach authentic metabolic states. Our
results of network flux sampling indicated that the genes responsible for some metabolic
reactions with significant flux differences might be potential immunotherapy targets.

2. Results and Discussion
2.1. Characterization of PBMC Gene Expression Profile in COVID-19

In order to characterize the global transcriptome of PBMC during SARS-CoV-2 infec-
tion, the published PBMC scRNA-Seq data were applied to differentially expressed gene
(DEG) analysis. The data were obtained from peripheral blood samples from 7 severe
patients with similar symptoms and 6 healthy humans. Compared with those from healthy
humans, 95% DEGs from severe patients were significantly up-regulated (Figure S1, the
number of up- and down-regulated genes were 244 and 13), of which the up-regulated
DEGs with the greatest expression difference included multiple immunoglobulin-related
genes involved in immune response such as IGLV5-45, IGKV2-30, JCHAIN, and SIGLEC1
(Table S1). These immunoglobulin-related genes, accounting for the largest proportion
(12.8%) of the total up-regulated genes, were essential for humoral immunity. Interferon
α-inducible proteins, including IFI27, IFI6, and IFITM3, accounted for the second largest
proportion (3.7%). The overexpression of IFITM3 has been reported to significantly inhibit
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SARS-CoV-2 spike-pseudotyped virus and genuine SARS-CoV-2 infection [29]. S100A8 and
S100A9 from the S100 calcium binding protein family, involved in the regulation of various
cellular processes, have been identified as biomarkers of SARS-CoV-2 infection, and their
increased expression is associated with infection mortality [30,31]. Additionally, some key
up-regulated genes are related to SARS-CoV-2 infection (Table S1). For example, ribonu-
clease A family member 2 (RNASE2) exhibits anti-viral capacity [32]; the up-regulation of
thioredoxin domain containing 5 (TXNDC5) is induced by hypoxia [33]; marginal zone B
and B1 cell-specific protein (MZB1) is involved in humoral immunity up-regulation in lung
regional lymph nodes of severe COVID-19 patients [34]; lactotransferrin (LTF) displays
anti-inflammatory capacity, and competes for binding receptors with SARS-CoV-2 [35].
Such intense activation of immune-related genes is the major response of severe patients
to SARS-CoV-2 infection. However, the DEG analysis does not reveal the disturbance of
active functional modules, especially metabolic pathways.

Considering this, active functional modules during severe infection were identified via
gene set enrichment analysis (GSEA), and GSEA was performed in pre-set gene background
with GSEA software. The gene ontology (GO) enrichment analysis indicated that the up-
regulated genes were significantly enriched in the GO terms related to immune response
(Figure 1A, Table S2) including “immunoglobulin complex” (GO: 0019814), „sense response
to bacterium” (GO: 0042742), “B cell receiver signaling pathway” (GO: 005083). The
enrichment trend revealed that PBMCs related to immunity were significantly activated
during infection. The increased respiratory activity and energy demand for supporting
the extremely active immune activity are the metabolic characteristics of PBMCs during
the development of inflammation [36], which was consistent with our results that the
enrichment level of genes related to metabolism, especially genes related to respiration or
ATP, NADH, and NADPH metabolism, was second only to that of genes related to immune
response (Figure 1B, Table S2). However, the metabolism of PBMCs could not be well
characterized due to deficient enrichment metabolic terms and low enrichment scores.

Figure 1. Gene ontology (GO) enrichment analysis of differentially expressed gene (DEGs). Enrich-
ment of up-regulated DEGs related to immune response (A) or metabolism (B). The three layers of
the circle indicate GO terms (outer circles), the number of enriched DEGs (middle circles), and the
normalized enrichment scores (NES) indicating the enrichment degree of DEGs at both edges of the
target gene sets (inner circles).
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Taken together, the PBMC transcriptome datasets characterized by severe inflamma-
tion in COVID-19 patients cannot precisely shape the metabolic profile of PBMCs. Thus,
the reconstruction of metabolic networks was implemented.

2.2. Metabolic Profile of Reconstructed PBMC Networks

Metabolic network reflects the metabolic disturbance of cells by predicting the reac-
tion rate (or flux) of metabolites. Due to the ambiguous expression differences in most
metabolism-related genes, traditional DEG analysis can not reveal the actual metabolic
changes of PBMCs. To investigate the metabolic peculiarity of PBMCs during severe in-
fection with COVID-19, a human GSMM covering 5588 metabolites and 8079 reactions
for drug development [37,38] was integrated with normalized transcriptome data by con-
straining the upper or lower boundaries of flux using a pyTARG algorithm [39] (Figure 2).
Considering the effects of the tissue specificity of PBMCs and the hypoxia in peripheral
circulation during severe infection on metabolic remodeling, some key metabolic reactions
were pruned by setting the flux upper/lower boundaries (ub/lb) as zero to simulate the
actual metabolic disturbance as much as possible. The modified human metabolic reac-
tions (HMR) included: (1) HMR_8586: ub/lb = 0; since maltose was highly hydrolyzed to
glucose by α-glucosidase in the small intestine, it was not directly ingested by PBMCs in
blood [40,41]; (2) HMR_3809: ub/lb = 0, since urea cycle of macrophages was incomplete
in the absence of ornithine transcarbamylase [42]; (3) HMR_4381, HMR_4375, HMR_4373,
HMR_4365, HMR_4103, HMR_4521, HMR_4377: ub = 0; HMR_4368, HMR_4363: lb = 0,
because gluconeogenesis mainly occurred in liver and kidney [43,44]; (4) HMR_8743,
HMR_4652: lb = 0, because the reversal catalysis of succinate dehydrogenase (SDH) in-
duced by hypoxia resulted in the conversion of fumarate into succinate [45].

After the above HMRs were modified, the context-based GSMM pair representing se-
vere patients and healthy humans was generated. The flux value of each metabolic reaction
was predicted by flux sampling, and the flux difference between severe patients and healthy
humans was applied to define the regulation state of each reaction. The results showed that
extensive elevation of glycolytic fluxes (in HMR_4379, HMR_4373, HMR_4365, HMR_4375,
HMR_4363, and HMR_4368) and the serious interception of tricarboxylic acid cycle (in
HMR_4139, HMR_8743, and HMR_4652) and electron transport chain (in HMR_6916 and
HMR_6918) were basically consistent with aerobic glycolysis of active macrophages and
T cells during inflammation [12,13]. Notably, the vigorous purine metabolism mainly
containing HMR_4421 was confirmed by one previous metabolomic study of PBMCs in
COVID-19 severe patients [46]. The top 25 up-regulated and down-regulated reactions are
shown in Tables 1 and 2.

To determine metabolic modules that were significantly affected during severe COVID-
19 infection, reactions with differential fluxes were investigated via hypergeometric test.
The enrichment results showed that the transport reaction module, similar to the hubs of
material exchange, exhibited the greatest differential fluxes, indicating that this module
was most pronouncedly affected. The major reactions with up-regulated fluxes were
distributed in “nucleotide metabolism”, “glycolysis”, and “pyrimidine metabolism”, and
“purine metabolism” modules (Figure 3A). The reactions with down-regulated fluxes were
mainly distributed in “arginine and proline metabolism”, “TCA and glyoxylate/dicarboxylate
metabolism”, and “phenylalanine, tyrosine and tryptophanbiosynthesis” modules (Figure 3B).
Flux changes in the metabolisms of nucleotides, carbohydrates, and amino acids indicated
the metabolic response of PBMCs to COVID-19 infection.
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Figure 2. Workflow of the reconstruction of context-based genome-scale metabolic models (GSMMs).
The original metabolic network was pruned and integrated with normalized transcriptome data
to generate context-based metabolic network pair. Metabolic targets reflecting the differentially
metabolic distribution of peripheral blood mononuclear cells (PBMCs) between severe patients and
healthy humans were obtained by flux sampling.
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Table 1. Top 25 metabolic reactions with up-regulated fluxes between severe coronavirus disease
2019 (COVID-19) patients and healthy humans.

Reaction Subsystem Reaction Formula Name Differential Flux Reaction Direction

HMR_4421 Purine metabolism PEP[c] + dADP[c] –> dATP[c] + pyruvate[c] 9.99 Forward

HMR_6614 Pyrimidine
metabolism dTTP[c] + dADP[c] <==> dTDP[c] + dATP[c] 8.81 Reverse

HMR_5473 Transport glutamine[s] + alanine[c] <==> glutamine[c] +
alanine[s] 7.89 Reverse

HMR_7643 Transport D-alanine[c] + glutamine[s] <==>
D-alanine[s] + glutamine[c] 7.81 Reverse

HMR_4006 Pyrimidine
metabolism UTP[c] + ADP[c] <==> UDP[c] + ATP[c] 7.68 Forward

HMR_7644 Transport D-alanine[c] + glycine[s] <==> D-alanine[s] +
glycine[c] 7.42 Forward

HMR_8734 Transport D-serine[c] + glycine[s] <==> D-serine[s] +
glycine[c] 6.68 Reverse

HMR_5458 Transport alanine[c] + glycine[s] <==> alanine[s] +
glycine[c] 5.62 Forward

HMR_8733 Transport D-serine[c] + glutamine[s] <==> D-serine[s] +
glutamine[c] 5.62 Forward

HMR_5497 Transport threonine[s] + glutamine[c] <==> threonine[c]
+ glutamine[s] 5.61 Reverse

HMR_6040 Transport retinoate[s] + formate[c] <==> retinoate[c] +
formate[s] 5.39 Forward

HMR_4379 Glycolysis/
Gluconeogenesis

fructose-6-phosphate[c] + ATP[c] –>
fructose-1,6-bisphosphate[c] + ADP[c] 5.31 Forward

HMR_1917 Transport cholesterol[c] <==> cholesterol[l] 5.25 Forward

HMR_7885 Nucleotide
metabolism CTP[n] + ADP[n] <==> CDP[n] + ATP[n] 5.15 Forward

HMR_6627 Pyrimidine
metabolism PEP[c] + dTDP[c] <==> dTTP[c] + pyruvate[c] 5.09 Reverse

HMR_5492 Transport cysteine[c] + glutamine[s] <==> cysteine[s] +
glutamine[c] 4.91 Forward

HMR_4373 Glycolysis/
Gluconeogenesis

1,3-bisphospho-D-glycerate[c] + NADH[c] +
H+[c] <==> GAP[c] + NAD+[c] + Pi[c] 4.66 Reverse

HMR_4365 Glycolysis/
Gluconeogenesis

2-phospho-D-glycerate[c] <==>
3-phospho-D-glycerate[c] 4.65 Reverse

HMR_5460 Transport serine[s] + glycine[c] <==> serine[c] +
glycine[s] 4.61 Forward

HMR_4375 Glycolysis/
Gluconeogenesis

GAP[c] + DHAP[c] <==>
fructose-1,6-bisphosphate[c] 4.60 Reverse

HMR_4363 Glycolysis/
Gluconeogenesis

2-phospho-D-glycerate[c] <==> PEP[c] +
H2O[c] 4.56 Forward

HMR_8450 Nucleotide
metabolism

dGDP[c] + dCDP[c] <==> dGTP[c] +
dCMP[c] 4.08 Reverse

HMR_4368 Glycolysis/
Gluconeogenesis

1,3-bisphospho-D-glycerate[c] + ADP [c]
<==> 3-phospho-D-glycerate[c] + ATP [c] 4.00 Forward

HMR_6041 Transport (R)-3-hydroxybutanoate[c] + formate[s] <==>
(R)-3-hydroxybutanoate[s] + formate[c] 3.99 Forward

HMR_5516 Transport leucine[c] + methionine[s] <==> leucine[s] +
methionine[c] 3.98 Forward

The reactions in “Glycolysis/Gluconeogenesis”, “Transport”, “Purine metabolism”, and “Pyrimidine metabolism”
subsystems with major up-regulated fluxes.
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Table 2. Top 25 metabolic reactions with down-regulated fluxes between severe coronavirus disease
2019 (COVID-19) patients and healthy people.

Reaction Subsystem Reaction Formula Name Differential
Flux

Reaction
Direction

HMR_7804 Transport dCDP[c] + dADP[m] <==> dCDP[m] + dADP[c] −1.08 Reverse

HMR_6006 Transport 2-hydroxybutyrate[c] + acetoacetate[s] <==>
2-hydroxybutyrate[s] + acetoacetate[c] −1.10 Forward

HMR_4863 Transport succinate[c] + sulfate[m] <==> succinate[m] + sulfate[c] −1.13 Reverse
HMR_7808 Transport dTDP[c] + dUDP[m] <==> dUDP[c] + dTDP[m] −1.13 Reverse

HMR_4687 Tyrosine
metabolism

phenylacetate[m] + NADPH[m] + H+[m] <==>
phenylacetaldehyde[m] + NADP+[m] + H2O[m] −1.51 Forward

HMR_4143 Central carbon
metabolism

pyruvate[m] + HCO3-[m] + ATP[m] + H+[m] –>
OAA[m] + Pi[m] + ADP[m] −1.51 Forward

HMR_5470 Transport threonine[s] + glycine[c] <==> threonine[c] + glycine[s] −1.52 Reverse

HMR_7892 Nucleotide
metabolism dATP[n] + ADP[n] <==> dADP[n] + ATP[n] −1.63 Reverse

HMR_6004 Transport acetoacetate[s] + L-lactate[c] <==> acetoacetate[c] +
L-lactate[s] −1.66 Forward

HMR_4776 Arginine and
proline metabolism

AKG[c] + proline[c] + O2[c] –>
trans-4-hydroxy-L-proline[c] + succinate[c] + CO2[c] −1.70 -

HMR_4652 Tricarboxylic acid
cycle

fumarate[m] + ubiquinol (UQH2) [m] <==> ubiquinone
(UQ)[m] + succinate[m] −1.73 -

HMR_6025 Transport acetoacetate[s] + AKG[c] <==> acetoacetate[c] + AKG[s] −1.74 Reverse

HMR_8464 Nucleotide
metabolism CDP[n] + GDP[n] <==> GTP[n] + CMP[n] −1.76 Forward

HMR_4787 Arginine and
proline metabolism

4-hydroxy-2-oxoglutarate[m] –> glyoxalate[m] +
pyruvate[m] −1.89 -

HMR_6918 Electron transport
chain

2 ferricytochrome C[m] + ubiquinol[m] + 2 H+[m] –> 2
ferrocytochrome C[m] + ubiquinone[m] + 4 H+[c] −1.91 Forward

HMR_8743 Tricarboxylic acid
cycle fumarate[m] + FADH2[m] <==> succinate[m] + FAD[m] −2.08 -

HMR_5092 Transport isoleucine[c] <==> isoleucine[s] −2.12 Reverse

HMR_4785 Arginine and
proline metabolism

L-1-pyrroline-3-hydroxy-5-carboxylate[m] + NADP+[m]
+ 2 H2O[m] –> L-erythro-4-hydroxyglutamate[m] +

NADPH[m] + H+[m]
−2.23 Forward

HMR_4242 Aromatic amino
acid metabolism

glutaryl-CoA[m] + ubiquinone[m] –> crotonyl-CoA[m] +
ubiquinol[m] + CO2[m] −2.29 Reverse

HMR_3804
Alanine aspartate

and glutamate
metabolism

AKG[m] + NH3[m] + NADPH[m] + H+[m] <==>
glutamate[m] + NADP+[m] + H2O[m] −2.38 Reverse

HMR_6053 Transport (R)-3-hydroxybutanoate[c] + retinoate[s] <==>
(R)-3-hydroxybutanoate[s] + retinoate[c] −2.39 Forward

HMR_6916 Electron transport
chain

Pi[m] + ADP[m] + 4 H+[c] –> ATP[m] + 4 H+[m] +
H2O[m] −2.41 Forward

HMR_4243

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

glutaryl-CoA[m] + FAD[m] –> crotonyl-CoA[m] +
FADH2[m] + CO2[m] −2.59 Reverse

HMR_4139 Tricarboxylic acid
cycle OAA[c] + NADH[c] + H+[c] <==> malate[c] + NAD+[c] −2.68 Forward

HMR_5580 Transport histidine[c] + lysine[s] <==> histidine[s] + lysine[c] −2.78 Forward

The reactions in “Tricarboxylic acid cycle”, “Transport”, and some amino acids metabolism subsystems with major
down-regulated fluxes.
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Figure 3. Enrichment of reactions with differential flux. The enrichment of up-regulated (A) and
down-regulated (B) metabolic reactions based on subsystem by hypergeometric test. The bigger the
bubble size, the larger the number of reactions enriched in subsystems. The darker the color, the
higher the reaction enrichment level in subsystems. p < 0.05 was considered as statistically significant.
Arg, arginine; Pro, proline; Gly, glycine; Ser, serine; Thr, threonine; Cys, cysteine; Met, methionine;
Ala, alanine; Asp, aspartate; Glu, glutamate; Lys, lysine; Tyr, tyrosine; Trp, tryptophan; Phe, pheny-
lalanine; His, histidine; β-Ala, β-alanine; TCA, tricarboxylic acid cycle and glyoxylate/dicarboxylate
metabolism; PPP, pentose phosphate pathway.

In order to visualize flux differences, metabolic networks were divided into multiple
blocks (Figure 4). The glycolysis-TCA-OXPHOS axis was located in the center of metabolic
network, and some metabolic modules, such as retinoate metabolism, folate metabolism,
pentose phosphate pathway, nucleotide metabolism, and amino acid transports, were
clustered or scattered. It should be noted that some key enzymes or metabolites from these
modules with flux differences were reported to be related to inflammatory therapies, even
COVID-19 treatment. For example, itaconate derivative 4-octyl-itaconate inhibited multiple
glycolysis-related enzymes to restrict SARS-CoV-2 replication [47], 25-hydroxycholesterol
suppressed the release of multiple viruses by limiting the fusion of virus membrane [48,49],
and the folate and retinoate had immunomodulation function [50,51]. Therefore, it could
be concluded that the flux distribution of the above multiple modules contributed to the
metabolic adaptability of PBMCs in response to inflammation.

Based on metabolic remodeling, we investigated four metabolic module sets with
the main flux differences, revealed the relationship between these metabolic changes and
immune activation, explored the application prospect of metabolites or targets in these
modules against COVID-19. The detailed information on inhibitors, metabolic enzymes,
and flux changes in metabolic pathways was summarized in Table S3.
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Figure 4. Visualization of flux differences in peripheral blood mononuclear cell (PBMC) metabolic
reactions between severe coronavirus disease 2019 (COVID-19) patients and healthy humans. The
main differential metabolic pathways were shown in different block colors. The arrow color and
thickness indicated the degree of flux difference. PPP, pentose phosphate pathway; Nucleotide,
nucleotide/purine/pyrimidine metabolism; MAS, malate-aspartate shuttle; TCA, tricarboxylic acid
cycle; OXPHOS, oxidative phosphorylation; FA, folate metabolism; Retinol, retinol metabolism and
transport; LacCer, lactosylceramide metabolism and transport; Gln, glutamine transport.

2.3. Aerobic Glycolysis and Lactic Acid Production Are Enhanced in Severe Infection

The metabolic reconstruction results showed that glucose metabolism-related path-
ways were widely disturbed. Twelve reactions with obviously up-regulated flux were
related to glucose transmembrane transport (in HMR_5029 with differential flux of 2.56),
glycolysis (in HMR_4379 and 9 other HMRs with differential fluxes of 1.46–5.31), or lactate
production (HMR_4388 with differential flux of 2.08). However, the sharp reduction in
OXPHOS flux (in HMR_6918 and HMR_6916 with differential fluxes of −1.91 and −2.41)
implied that the net production of downstream ATP might have been exhausted. Aerobic
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glycolysis („Warburg effect”) is a metabolic adaptive transformation with a large consump-
tion of glucose but rapid energy generation, which can occur under aerobic conditions [52].
The above 12 reactions are characterized by glucose metabolism of activated monocytes and
CD4+ T cells (Th1, Th2 and Th17) during inflammation. The phenotypic polarization M0-
to-M1 induced by inflammation leads to the metabolism of macrophages from OXPHOS to
aerobic glycolysis, and the latter transforms about 90% of glucose into lactic acid rather than
pyruvate [53,54]. The characteristics of aerobic glycolysis included the slow TCA cycle and
its flux compensation by the conversion of glutamate into α-ketoglutarate (AKG). Gluta-
mate can compensate for partial carbon cycle loss through glutaminolysis. The exhaustion
of glutamine in plasma as a metabolomic feature during COVID-19 infection indicates
that adaptive immune cells in peripheral blood may increase the uptake of glutamine [28].
Unexpectedly, our results showed no systematic decrease in TCA cycle flux (in HMR_4456,
HMR_4147, HMR_4145, and HMR_4141 with differential fluxes of 1.01–2.54), and aspartate
from aspartate-malate shuttle did not compensate fumarate into TCA cycle through the
argininiosuccinate cycle (data no shown). The slightly increased flux of the conversion of
glutamate into AKG indicated an inappreciable glutamate compensation for TCA cycle
(in HMR_3802 and HMR_3807 with a net different flux of 0.06). These unexpected results
might be due to immature B cell activation into plasma cells [14]. At the same time, the
activated effector CD8+ T cells utilized TCA cycle to produce energy [54]. These findings
further confirmed that the predicted flux changes were in accordance with the metabolic
characteristics related to inflammation in PBMCs.

The enhancement of glycolytic pathway in activated PBMCs was the characteristics
of inflammatory response, and enzymes in glycolytic pathway had the potential to be
developed into immunometabolic therapy targets [55–58]. The flux analysis showed that
HMR_4373 exhibited the most obvious flux change in the glycolysis pathway (with differen-
tial flux of 4.66). Itaconate has been reported to partially reduce the inflammatory response
of M1 cells by covalently modifying some cysteines of glycoraldehyde-3-phosphate dehy-
drogenase (GAPDH, HMR_4373), fructose bisphosphonate aldolase A (ALDOA, HMR_4375
and HMR_4355), and lactate dehydrogenase A (LDHA, HMR_4388), thus downregulat-
ing glycolytic flux [59]. The flux analysis also showed that other 3 metabolic reactions
(HMR_4375, HMR_4355, and HMR_4388) were also up-regulated to various degrees (Table
S3). In addition, itaconate has also been reported to exert anti-inflammatory function by
inhibiting the activity of succinate dehydrogenase (SDH, in HMR_6911 with differential flux
of 2.14) and the level of succinic acid [60]. Importantly, dimethyl fumarate and itaconate
derivative 4-octyl-itaconate significantly inhibited SARS-CoV-2 replication by activating
nuclear factor E2-related factor 2 (Nrf2) [47]. Based on the above findings, it could be
concluded that itaconate and its derivatives could be used as candidate drugs for treating
COVID-19. Our flux analysis indicated that some metabolic enzymes in the glycolytic
pathway of PBMCs were responsible for inflammatory activation, although there was lack
of reports on their inhibitors. Multiple activated glycolysis-related metabolic enzymes, such
as phosphofructokinase (PFK, in HMR_4379 with differential flux of 5.31), phosphoglycer-
ate mutase (PGAM, in HMR_4365 with differential flux of 4.65), and solute carrier (SLC)
family 2 member 3 (SLC2A3) (in HMR_5029 with differential flux of 2.56), are necessary for
maintaining macrophage activation [61–63]. Therefore, these metabolic enzymes had the
potential to act as targets for reducing inflammation and treating COVID-19.

Lactic acidosis, a kind of metabolic acidosis, is a common complication in severe
COVID-19 patients, especially gravida, the elderly, or patients suffering from primary
diseases. Lactic acidosis mainly results from PaO2 decrease, acidic metabolite accumula-
tion, and the viral diarrhea-induced massive loss of bicarbonate [64]. Our flux prediction
showed increased lactate accumulation (in HMR_4388 with different flux of 2.08) and
release (in HMR_6049 and another seven HMRs with a net differential flux of 5.18) in
PBMC during activation. Some inhibitors suppressing lactate accumulation can alleviate
or even treat COVID-19. For example, the complement ©-targeting polyclonal antibodies
including AMY-101 (C3 inhibitor) [65], eculizumab [66,67] and ravulizumab (both as C5
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inhibitors) [68] can restrict the concentration of LDH (HMR_4388) in plasma by reducing
complement-mediated tissue injury. Notably, all of the above three drugs targeting C
have been studied for the treatment of COVID-19. In addition to inhibiting T cell prolif-
eration, AR-C155858, as an immunosuppressant, can also suppress the monocarboxylate
transporter SLC16A1 (HMR_6049 and other 7 HMRs) responsible for lactate transport [69].
Furthermore, stiripentol, an approved LDH inhibitory antiepileptic drug, can inhibit lactate
production through combination with LDH in non-competitive manner [70]. The two
above-mentioned drugs (AR-C155858 and stiripentol) are promising for treating severe
COVID-19 by modulating lactate abundance.

2.4. Demand for Lipid Metabolism Increases in Response to Infection

Our reconstructed networks presented the fluctuation in lipid metabolism. The reac-
tion HMR_1917 with extremely high differential flux (5.25) possibly indicated the increased
utilization of extracellular cholesterol by PBMCs, although the de novo synthesis of choles-
terol was not remarkable. Since cholesterol is involved in the formation of lipid rafts
on cell plasma membrane and the synthesis of a variety of biomolecules, the flux surge
may contribute to the activation and immune response function of immune cells (T and
B cells) [71,72]. Therefore, the inhibition of HMR_1917-related two metabolic enzymes,
including Niemann-Pick C intracellular cholesterol transporter 1 (NPC1) and high-density
lipoprotein-binding protein (HDLBP), can reduce the inflammatory response induced
by COVID-19, although their inhibitors have not been reported. Therefore, NPC1 and
HDLBP might be a potential target for the treatment of COVID-19. Interestingly, 25-
hydroxycholesterol (25HC), a secondary metabolite of cholesterol (data not shown), can
alleviate viral infection by limiting the membrane fusion of viruses (including vesicular
stomatitis virus, human immunodeficiency virus (HIV), herpes simplex virus, murine
gamma herpesvirus 68) with host cells [48,49].

In addition, the fluctuation in the network was attributed to some fatty acid and
sphingolipid metabolism-related reactions. For example, the metabolic pathways of fatty
acid synthase (FASN, in HMR_4854, HMR_4855, and HMR_4849 with a differential flux
of 1.21–1.57) were up-regulated. FASN can ensure LPS-induced macrophage activation,
although fatty acid synthesis-related metabolic pathway flux exhibited no significant
differences in this study. Orlistat, a weight-loss drug restraining triglyceride hydrolysis
to inhibit FASN, can be used as a potential drug due to its immunomodulatory effect
on COVID-19 patients. Lactosylceramide (LacCer), a kind of glycosphingolipids widely
distributed in a variety of cells, mainly activates the inflammatory response by stimulating
cytoplasmic phospholipase A2 (cPLA2) [73]. Our flux analysis showed that the fluxes
of HMR_0786 and another two HMRs related to LacCer biosynthesis were up-regulated
to various degrees (with differential fluxes of 1.04–1.32). The increased expression of
platelet/endothelial cell adhesion molecule-1 (PECAM-1) promotes the adhesion and
recruitment of monocytes to endothelial cells, which might be related to the development
of atherosclerosis [74]. Notably, since LacCer mainly activates the inflammatory response
by stimulating cPLA2 [73], blocking LacCer cyclic utilization involved in by galactosidase
β 1 (GLB1) and glycolipid transfer protein (GLTP) may achieve desirable anti-inflammatory
effects against COVID-19.

2.5. Pentose Phosphate Pathway Maintains Redox Homeostasis and Nucleotide Metabolism

The activation of the pentose phosphate pathway (PPP) and the intracellular ac-
cumulation of reactive oxygen species (ROS) belong to the consequence of PBMC ac-
tivation [14,36,75,76]. PPP is generally divided into an oxidative phase (oxPPP) and
non-oxidative phase PPP (noxPPP). The oxPPP provides a reduction equivalent (such
as NADPH) to activated immune cells, which supports the transformation of glutathione
from oxidized form (GSSG) to reduced form (GSH). The GSH and thioredoxin are involved
in maintaining intracellular redox homeostasis in activated T and B cells [36]. Although
the metabolic network cannot directly reflect the change in ROS level in the cytoplasm
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and mitochondria of PBMCs, there is a frequent conversion between GSSG and GSH of
glutathione through HMR_3868, HMR_3869, and HMR_3870 during the activation period,
which may indirectly explain the cell response to intracellular ROS accumulation. Reg-
ulation of ROS levels is dependent on the PPP, whose upregulation is common during
PBMC activation. The regulation of PPP-related active metabolic pathways might partially
alleviate the inflammation caused by COVID-19, which remains to be further confirmed in
the future studies.

The pentose phosphate of the metabolisms of nucleotide, purine, and pyrimidine are
derived from noxPPP. Our results showed that only part of noxPPPs were up-regulated
(in HMR_4565 and HMR_4568 with differential flux of 2.50 and 2.03, respectively), and
the 36 metabolic reactions (nucleotide, purine, and pyrimidine) with significantly up-
regulated fluxes, accounting for ~19% of the total up-regulated reactions, which might be
due to noxPPP metabolic adaptation. Although the active purine metabolism has been
reported in the metabolomic study of PBMCs in COVID-19 severe patients [46], future
studies are suggested to further clarify the relationship between nucleotide, purine, or
pyrimidine metabolism and inflammation during COVID-19 infection and to explore the
contribution of metabolic disturbance of noxPPP to immune response in PBMCs during
severe COVID-19 infection.

2.6. Adaptive Biosynthesis Increases of Two Vitamins Folate and Retinoate

Our data showed that the transmembrane transport of folate (FA) (in HMR_7684
with differential flux of 1.54), the transformation of folate into dihydrofolate (DHF) (in
HMR_4654 and HMR_4655 with the same differential flux of 1.34), and the transmembrane
shuttle of 5-methyltetrahydrofolate (5-MTHF) (in HMR_3916 and HMR_7683 with the same
differential flux of 1.59) were significantly increased in PBMCs during severe COVID-19
infection. Folate has been reported to inhibit a wide range of downstream inflammatory
responses by limiting monocyte uptake of immunoreactive cyclic dinucleotide [50], and
folate transport-related receptor (FR, HMR_7684) is considered as a shortcut for anti-
inflammatory drugs to be absorbed by target cells. For instance, methotrexate (MTX), a
metabolite with anti-inflammatory and anti-folate capacities, is clinically applied to the
treatment of rheumatoid arthritis. The anti-inflammatory effect of its conjugated form (G5-
FA-MTX) in combination with FA and synthetic polymer G5 is comparable to G5-MTX [76].
Thus, folate derivatives or FR-related drug design might have the potential to fight against
inflammation in COVID-19.

Our metabolic network indicated an increase in the biosynthesis of retinal (in HMR_6630
and HMR_6631 with differential fluxes of 1.52 and 1.23, respectively) and the intracellu-
lar accumulation of retinoate (in HMR_6040 and other 4 HMRs with a net differential
flux of 0.3). Retinol, retinal, and retinoate (retinoic acid) are all active forms of vitamin
A (VA). Retinoate plays an important role in regulating differentiation and functions of
macrophages in trans or 9-cis forms [51]. The function impairment of macrophages and
lymphocytes is related to the lack of VA in blood [77]. The retinoid has been reported
to directly inhibit some viruses’ infections as an immune enhancer, but its relationship
with immune metabolism of PBMC remains to be further studied. Retinol is reported to
stimulate retinoid-induced gene I (RIG-I) and IFN-α, thus inhibiting infections of measles
virus (MeV) and enterovirus 71, respectively [78,79]. AM580, a retinoid derivative and
alpha retinoic acid receptor (RAR-α) agonist, can block sterol regulatory element-binding
proteins (SREBP)-related lipid synthesis pathway in a RAR-α-independent manner, thus
restraining Middle East respiratory syndrome coronavirus (MERS-CoV) replication [80].
Therefore, retinoate and its derivatives are expected to be candidate agents for attenuating
COVID-19 infection.

In addition to the above-mentioned four metabolic module sets, more metabolic
reactions with remarkable flux changes should be further examined. Two amino acid
transport-related proteins SLC7A5 (such as HMR_5473 with differential flux of 7.89) and
SLC3A2 (such as HMR_7643 with differential flux of 7.81) have been reported to inhibit
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inflammation triggered by COVID-19 by activating mTORC1 pathway [81]. The transfor-
mation of CO2 into HCO3- and the increased efflux of HCO3- (in HMR_3955 and HMR_5448
with differential fluxes of 1.03 and 2.25, respectively) may contribute to alleviate excessive
acid accumulation. Carbonic anhydrase 2 (CA2), one of the five cytoplasmic carbonic
anhydrases, is abundant in M0, M1, and M2 BMDMs [82]. CA2 inhibitors acetazolamide
(ACTZ) and ethoxzolamide (EZA) reduce the secretion of TNF-α and IL-6 in bone marrow-
derived M1 cells and inhibit M1-to-M2 polarization, thus achieving anti-inflammatory
effect in COVID-19 infection [82]. Our data also showed that the melatonin metabolism
pathway (HMR_4548 and HMR_8566 with the same differential flux of 1.53) was signif-
icantly up-regulated during severe COVID-19 infection. The broad-spectrum immune
regulatory effect of melatonin is controversial in different studies. Melatonin increases IL-2
and TNF-γ to activate human Th1 cells [83], thus contributing to the survival of mouse
bone marrow B cells [84]. In terms of mechanism, melatonin enhances glutaminase activity,
thus restraining AKG, and eventually inhibiting M0-to-M1 polarization. However, the
application of melatonin in anti-inflammation during COVID-19 infection needs to be
further investigated.

Furthermore, investigating the expression trend of metabolic enzymes responsible
for differential flux can contribute to determining whether these active members possess
the potential to become biomarkers of PBMCs for anti-inflammatory treatment. There
were 10 up-regulated enzymes responsible for the increased flux of related metabolic
reactions, including pyruvate kinase M1/2 (PKM), cytidine/uridine monophosphate kinase
2 (CMPK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SLC38A5, SLC16A1,
SLC2A3, glutathione-disulfide reductase (GSR), myeloperoxidase (MPO), cytochrome P450
family 1 subfamily B member 1 (CYP1B1), and galactosidase beta 1 (GLB1). As a known
metabolic marker in serum, GSR shows a significant negative correlation with increased
IL-10 in COVID-19 patients [85]. In addition, MPO involved in steroid metabolism is
considered as a neutrophil-derived infection marker to activate the production of cytokines
and ROS in severe SARS-CoV-2 infection [86]. It is necessary to further investigate the
abundance of metabolic enzyme in peripheral circulation or PBMCs, which can be applied
for correlation analysis with cytokine levels to support supervising the infection process
and assessing anti-inflammatory effect.

3. Materials and Methods
3.1. Analysis of Differentially Expressed Genes (DEGs)

The data used in this study were from the public National Center for Biological Infor-
mation, GSE150728 (NCBI) database. The peripheral blood mononuclear cell (PBMC) blood
samples were collected from 7 severe COVID-19 patients and 6 healthy humans for single-
cell RNA-Seq (scRNA-Seq) (accessed on 18 May 2020, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE150728) [87]. The donors donating blood samples for the experi-
mental group (admission level of 6/7 patients: ICU) and the control group were distributed
in wide age spans (20–80 and 30–50, respectively). Three patients received azithromycin
for immunomodulation before being sampled. Five patients were treated with remdesivir
after admission. Four patients were treated with remdesivir before being sampled [88].
The RNA-Seq data quality control, read mapping, and gene expression quantification were
performed using package “fastp”, “STAR”, and “RSEM”, respectively [88–90]. The analysis
of DEGs was conducted using “DESeq2” in R package [91], and the analysis results for
DEGs are shown in Figure S1 and Table S1.

3.2. Gene Ontology Enrichment Analysis of Differentially Expressed Genes

In order to evaluate the expression differences of immune- and metabolic-related DEGs
between severe COVID-19 patients and healthy humans, the normalized transcriptome
data (transcript per million (TPM)) from the RNA-Seq data were compiled and submitted
to the software GSEA_4.1.0 to perform GO enrichment analysis [92]. Gene Ontology
gene set database (c5.all.v7.5.1.symbols.gmt) was selected as the enrichment background.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150728
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The significantly enriched GO terms (|NES| > 1, NOM p < 0.05, FDR q < 0.25) and the
corresponding normalized enrichment scores (NES) were shown in Figure 1A,B (through R
package “circlize”) [93]. All enrichment results are presented in Table S2.

3.3. Genome-Scale Metabolic Model Reconstruction and Flux-Based Reaction Filtration

An updated version of the metabolic model HMR used in this study (MODEL1707250000)
was obtained in SBML format from BioModels database [37,38]. Before integrating tran-
scriptomic data, the upper boundaries (ub) or lower boundaries (lb) in the model were
set as zero through Python package “cobrapy” to change the direction and availabil-
ity of specific reactions. The reactions were modified as follows: (1) blocking maltose
uptake (HMR_8586: ub/lb = 0) [40,41]; (2) removing ornithine transcarbamylase from
macrophages (HMR_3809: ub/lb = 0) [42]; (3) blocking gluconeogenesis (HMR_4381,
HMR_4375, HMR_4373, HMR_4365, HMR_4103, HMR_4521, HMR_4377: ub = 0; HMR_4368,
HMR_4363: lb = 0) [43,44]; and (4) hypoxia inducing reversal of SDH catalytic direction and
converting fumarate into succinate (HMR_8743, HMR_4652: lb = 0) [45]. The integration
algorithm pyTARG was employed to restrict the upper and lower boundaries of metabolic
reactions based on gene expression and Gene-Protein-Reaction rules (GPR) so as to maxi-
mize the consistency between metabolic network and transcriptome background [39]. The
average value of gene expression (TPM) of each group (infection group or control group)
was used as the input data of integration algorithm.

As objective functions of the PBMC metabolic model cannot be determined, the flux
balance analysis (FBA) based on objective function cannot be performed. Thus flux sam-
pling (n = 10,000), rather than FBA, was performed to obtain the metabolic flux distributions
of infected and uninfected groups. Artificial centering hit-and-run (ACHR) was selected as
the sampler for space sampling in the metabolic model, and the academic version (22.1.0)
of IBM ILOG CPLEX was used as the linear programming solver in metabolic modeling.
The flux differences in reactions were determined by the following two methods: (1) If the
flux directions of a reaction were the same under two conditions (infected vs. uninfected),
or if a reaction exhibited no flux (flux=0) under a certain condition, the flux difference
was calculated as the difference (infected group—uninfected group); (2) If the two flux
directions were the opposite, the flux difference was calculated as the sum of the absolute
values of the two groups (|infected group| + |uninfected group|). All sampling results
were presented in Table S3. Based on subsystem classification, the reactions with significant
differential fluxes were enriched and analyzed by hypergeometric test, with the results
shown in Figure 3 and Table S4. The flux differences in metabolic modules were visualized
by python package “escher” in Figure 4.

4. Limitations

In this study, the combination of transcriptomic data and metabolic networks was
applied to explain the metabolic perturbations and obtain metabolic targets with differen-
tial fluxes in PBMCs of severe COVID-19 patients, so as to expand therapeutic strategies
targeting immunometabolism. However, there are some limitations in this study. Firstly,
the metabolic reactions with significant differential fluxes were only presented in some
subsystems, including purine/pyrimidine metabolism, glycolysis, TCA, transport, etc.,
and the snapshots of systematic flux difference in most subsystems were not well captured.
Secondly, the population composition was complex. The samples of the experimental
group were collected from a limited number of male patients with severe diseases who
were distributed in a wide agespan and had similar infection symptoms (admission level
of 6/7 patients: ICU) [88]. However, in order to comprehensively characterize the physio-
logical diversity of population, more donor samples with a wide agespan and equal sex
composition should be included in future research. Next, because of the tissue specificity
of PBMC subpopulations, this metabolic network integrating the average gene expression
only presented the metabolic average level of various subpopulations. Then, although
our pruning behavior shaped the metabolic network closer to tissue specificity, the avail-
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ability of a highly curated network that systematically reflects the central metabolism of
PBMCs should be necessary. Finally, the metabolites or targets with anti-inflammatory or
therapeutic potential found in this study need further experimental validation.

5. Conclusions

This study integrated the transcriptome data of PBMCs into metabolic network, which
contributed to revealing the metabolic characteristics of PBMCs in severe COVID-19 pa-
tients. After pruning the inappropriate reactions and integrating transcriptome data, the
metabolic model pair was generated to comprehensively reflect monocytes, T cells, and
B cells. The active disturbances of some metabolic subsystems responsible for glycolysis,
PPP, and biosynthesis of lipid and nucleotide were found to be related to the polarization
and activation of PBMCs. Some novel metabolic enzymes, such as SLC2A3, SLC16A1,
FASN, and biogenesis-related LacCer, were identified as potential anti-inflammatory tar-
gets, and some metabolites, such as folate, retinoate, and melatonin were found to have
anti-inflammatory prospects. In addition, some unexpected metabolic changes, including
HCO3

− production, were observed. However, the relationship between these metabolic
changes and inflammatory development during COVID-19 infection needs to be further
explored. Our findings provide a reference for the development of novel drug targets
against COVID-19.
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Abbreviations

Abbreviation Full Name
25HC 25-hydroxycholesterol
5-MTHF 5-methyltetrahydrofolate
ACE2 angiotensin-converting enzyme 2
ACHR artificial centering hit-and-run
ACTZ acetazolamide
AKG α-ketoglutarate
ALDOA fructose bisphosphonate aldolase A
AMPK AMP-activated protein kinase
ATG5 autophagy-related gene 5
C complement
CA2 carbonic anhydrases 2
CMPK2 cytidine/uridine monophosphate kinase 2
COVID-19 coronavirus disease 2019
cPLA2 cytoplasmic phospholipase A2
CYP1B1 cytochrome P450 family 1 subfamily B member 1
DEG differentially expressed gene
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DHF dihydrofolate
EZA ethoxzolamide
FA folate
FASN fatty acid synthase
FBA flux balance analysis
FR folate transport-related receptor
GAPDH glycoraldehyde-3-phosphate dehydrogenase
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GLB1 galactosidase β 1
GLB1 galactosidase beta 1
GLTP glycolipid transfer protein
GO gene ontology
GPR Gene-Protein-Reaction rules
GSEA gene set enrichment analysis
GSH reduced glutathione
GSMM genome-scale metabolic model
GSR glutathione-disulfide reductase
GSSG oxidized glutathione
HDLBP high-density lipoprotein-binding protein
HIV human immunodeficiency virus
HLA-DR human leukocyte antigen D-related
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A
HMR human metabolic reactions
IFN interferon
IFN-γ Interferon-γ
IL interleukin
IL-6 interleukin-6
LacCer lactosylceramide
lb lower boundaries
LDHA lactate dehydrogenase A
LPS lipopolysaccharide
LTF lactotransferrin
MAS malate-aspartate shuttle
MERS-CoV Middle East respiratory syndrome coronavirus
MeV measles virus
MPO myeloperoxidase
mTORC1 mechanistic target of rapamycin complex 1
MTX methotrexate
MZB1 marginal zone B and B1 cell specific protein
NES normalized enrichment scores
noxPPP non-oxidative phase PPP
NPC1 Niemann-Pick C intracellular cholesterol transporter 1
Nrf2 nuclear factor E2-related factor 2
OXPHOS oxidative phosphorylation
oxPPP oxidative phase PPP
PaO2 arterial partial pressure of blood oxygen
PBMCs peripheral blood mononuclear cells
PECAM-1 platelet/endothelial cell adhesion molecule-1
PFK phosphofructokinase
PGAM phosphoglycerate mutase
PKM pyruvate kinase M1/2
PPP pentose phosphate pathway
RAR-α alpha retinoic acid receptor
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RIG-I retinoid-induced gene I
RNASE2 ribonuclease A family member 2
ROS reactive oxygen species
SARS-CoV-2 severe acute respiratory syndrome coronavirus-2
scRNA-Seq single-cell RNA-Seq
SDH succinate dehydrogenase
SLC solute carrier
SLC2A3 solute carrier family 2 member 3
SREBP sterol regulatory element-binding proteins
SRF severe respiratory failure
TCA tricarboxylic acid cycle
TPM transcript per million
TXNDC5 thioredoxin domain containing 5
ub upper boundaries
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