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Abstract: COVID-19 pandemic is spreading around the world becoming thus a serious concern 
for health, economic and social systems worldwide. In such situation, predicting as accurately as 
possible the future dynamics of the virus is a challenging problem for scientists and 
decision-makers. In this paper, four phenomenological epidemic models as well as 
Suspected-Infected-Recovered (SIR) model are investigated for predicting the cumulative 
number of infected cases in Saudi Arabia in addition to the probable end-date of the outbreak. 
The prediction problem is formulated as an optimization framework and solved using a Particle 
Swarm Optimization (PSO) algorithm. The Generalized Richards  Model (GRM) has been 
found to be the best one in achieving two objectives: first, fitting the collected data (covering 223 
days between March 2nd and October 10, 2020) with the lowest mean absolute percentage error 
(MAPE = 3.2889%), the highest coefficient of determination (R2 = 0.9953) and the lowest root 
mean squared error (RMSE = 8827); and second, predicting a probable end date found to be 
around the end of December 2020 with a projected number of 378,299 at the end of the outbreak. 
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The obtained results may help the decision-makers to take suitable decisions related to the 
pandemic mitigation and containment and provide clear understanding of the virus dynamics in 
Saudi Arabia.  

Keywords: COVID-19 dynamics; prediction; Generalized Richards Model (GRM); projected end 
date; Particle Swarm Optimization (PSO) 
 

1. Introduction  

In early 2019, the COVID-19 disease has started spreading from Wuhan city, Hubei province in 
China. Few days later, it quickly spread across the world infecting 39,170,503 persons and causing 
the death of 1,102,926 as of October 16, 2020. Although 29,378,739 individuals have 
recovered/discharged, 8,688,838 are reported as still active cases [1]. Several actions have been 
implemented by different countries ranging from total lockdown to social distancing measures in 
order to contain the virus and limit its spread [2]. Moreover, economic activities and health systems 
around the globe have been extremely affected which made the world in front of an unprecedented 
difficult situation.  

Large attention is being paid by scientists from different backgrounds since they are hardly working 
on COVID-19 various aspects including the virus dynamics modeling. Several researches have been 
published aiming to predict the number of infected cases, the number of deaths and more particularly a 
probable end date in different countries and sometimes in different cities (provinces) inside the same 
country. As examples, we can cite references [3] for Saudi Arabia, [4] for Kuwait and [5] for India. The 
reported results have shown varying degrees of accuracy and reliability due to several causes including 
the quality and quantity of available information about the virus [6]. Suspected-Infected-Recovered (SIR) 
model as well as its variants have been used to predict the virus dynamics [2,4,7]. Although these models 
are continuous-time and the data of reported cases are available in discrete-time frequency (daily), several 
studies have considered SIR based on discrete-time frameworks [8–10]. The effect of containment and 
control measures has been also considered by using appropriate values of the model parameters. 
Moreover, time-series models such as autoregressive moving average (ARIMA) [11–12] and its variants 
in addition to different artificial intelligence (AI) based models are facing luck of sufficient information 
both quantitatively and qualitatively [5–6,10,12].  

The logistic growth model and many of its variants have been utilized for predicting COVID-19 
future in different countries. For example, the study in [3] have developed simultaneously SIR and logistic 
growth models for the case study of Saudi Arabia using data between March 2nd and May 15th, 2020. 
Unfortunately, by checking back their forecasted cumulative infected numbers and projected end date, it 
has been found that their projections were inaccurate since they expected a number ranging between 
69,000 and 79,000 at the end of June 2020 as probable end date (the real number was 190,823 in June 30, 
2020) [13]. The case study of Kuwait using logistic regression models has been examined in [4]. The 
predicted and real total infected numbers are checked and found to be different at the projected end date 
(predicted: 4,100, real: 17,700) [14]. Five-parameter logistic growth model has been used for 
reconstructing COVID-19 data in USA [15]. Results showed a good fit and a relatively accurate estimation 
of new infected cases as for April 4th, 2020 but unfortunately the developed model has failed in predicting 
the end date since the virus continues its increase till today (October 16, 2020). The case study of India has 



830 

AIMS Public Health  Volume 7, Issue 4, 828–843. 

been also investigated using logistic growth model in [16]. The developed model has been found to 
over-estimate the total number of cumulative infected cases by May 22, 2020 (predicted: 1 million, 
reported: 124,000). The drawback of the logistic growth model is that it is suitable only for modeling early 
stages of epidemics [17]. Combined models have been also considered for predicting COVID-19 [18–20]. 
A combination of logistic model with machine learning [18], ANFIS with virus optimization algorithm [19] 
and Gaussian mixture model are examples of such frameworks reported to be efficient. As a conclusion, it 
is clearly observed that most of the developed models succeeded in fitting the historical data but faced 
difficulties in predicting the number of infected cases in the coming future. 

Until now, based on the above discussed references and to the best of the authors’ knowledge, few 
researches have used phenomenological models for COVID-19 forecasting. Moreover, few studies that 
considered using Richards model combined with a global optimization swarm intelligence technique (the 
Particle Swarm Optimization (PSO)) for predicting COVID-19 dynamics are available. For this aim, this 
study will focus on implementing phenomenological models, namely, generalized growth model (GGM), 
generalized logistic model (GLM), classical logistic growing model (CLGM) and generalized Richards 
model (GRM) to predict the dynamics of COVID-19 dynamics in Saudi Arabia. SIR model will be also 
implemented on the same dataset for comparison purpose. The main motivations behind this choice are 
summarized as follows: (i) this class of models is known to be robust, (ii) they include few parameters to 
be calibrated optimally and (iii) COVID-19 (like any other epidemic) should pass through an exponential 
growing phase at the beginning, should reach a peak and should exhibit a flat and stable curve which is 
well-captured by both CLGM and GRM. In this study, the identification of the models’ parameters is 
defined as a minimization problem. The quadratic error between the cumulative infected cases and the 
reported infected cases is minimized by respect to the model parameters. The identification problem is 
then solved using the global PSO technique. The uniqueness and the stability of the developed models 
will also be investigated.  

The remaining of this paper is organized as follows. Section 2 presents the models investigated in 
this study as well as details about the computational methodology used to identify the models’ 
parameters. In Section 3, the results of the conducted experiments using Saudi Arabia case study are 
provided. The obtained results will be discussed in Section 4. Finally, conclusion and recommendations 
are provided in Section 5. 

2. Materials and methods 

In this section, the four phenomenological models as well as the SIR compartmental model 
used to forecast the dynamics of COVID-19 in short-term horizon are presented and discussed in 
detail [21–23,33,34].  

2.1. Generalized growth model (GGM)  

The generalized growth model is described in Eq 1 below:  

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶(𝑡)𝑝   (1) 

This model is usually used in early stages of an epidemic spread. It relies on two parameters; 
namely the intrinsic growth rate, 𝑟 and the scaling growth rate, 𝑝. According to the value of 𝑝, three 
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growth profiles can occur: a straight linear behavior (𝑝 = 0), an exponential growth (𝑝 = 1) and a 
sub-exponential growth (𝑝 < 1).  In a model identification framework, the parameter 𝑝 search 
space is set to be the interval [0–1]. 𝐶(𝑡) denotes the cumulative number of infected cases and 𝑑𝐶(𝑡)

𝑑𝑡
 

is its derivative with respect to the time, t.  

2.2. Classical logistic growth model (CLGM)  

The classical logistic growth model is described in Eq 2. 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶(𝑡) (1 −

𝐶(𝑡)

𝐾
)

 

 (2) 

The model parameters are the same as in the GGM. This model is expected to capture both the 
early stage exponential curve and a steady state (flat curve) reached at the end of the epidemic. 
During the late stages of the virus, the number of new cases becomes small and the number of 
cumulative cases becomes constant equal to the final capacity, K.   

2.3. Generalized logistic model (GLM)  

The generalized logistic model is described in Eq 3 below:  

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶(𝑡)𝑝 (1 −

𝐶(𝑡)

𝐾
)      (3) 

This model is similar to the CLGM except of the inclusion of a scaling growth rate, 𝑝. 

2.4. Generalized Richards model (GRM)  

The generalized Richards model is described in Eq 4 below:  

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶(𝑡)𝑝(1 − (

𝐶(𝑡)

𝐾
)𝛼)  (4) 

This model includes all the features covered by the previous three models and it includes an 
exponent factor 𝛼 used to capture the deviation of the symmetric S-shaped dynamics of the simple 
logistic model. It is known to be pertinent since it can capture the epidemic curve in all its phases. 

2.5. Suspected-Infected-Recovered (SIR) model  

In this paper, the SIR model is adopted since it has been reported to be simpler than other complicated 
models such as SIER [8,35–37]. It will be used for comparison with the developed four logistic models. 
SIR model includes a set of differential equations (in continuous-time) describing the relationships between 
subsets of a population including Suspected (S), Infected (I) and Recovered (R) [9–10]. In SIR model, the 
dynamics of the COVID-19 are described as follows Eq 5–Eq 7: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝐾𝑆(𝑡)𝐼(𝑡) (5) 
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𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑆(𝑡)𝐼(𝑡) −

1

𝛽
 I(t) (6) 

𝑑𝑅(𝑡)

𝑑𝑡
= 1

𝛽
 I(t) (7) 

where 𝐾 is the contact rate expressing the probability of being infected and 𝛽 is the characteristic 
duration of the disease.   

Since the COVID-19 pandemic data are available in a discrete-time level (daily), finding SIR model 
solutions should be based on efficient algorithms operating on discrete-time [9]. For this purpose, the 
first-order Euler method is used for transforming the SIR continuous-time model (Eq 5–Eq 7) into a 
discrete-time form as follows (Eq 8–Eq 10) (for this purpose, dS(t) = S(t+dt) − S(t) and dt = 1 day): 

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝐾𝑆(𝑡)𝐼(𝑡) (8) 

𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝐾𝑆(𝑡)𝐼(𝑡) −
1

𝛽
 I(t) (9) 

𝑅(𝑡 + 1) = R(t) + 1

𝛽
 I(t) (10) 

where the subscript 𝑡 indicates the day number.  

2.6. Computational methodology 

PSO has been used in the literature for modeling the COVID-19 dynamics. For example, in [24], 
PSO has been used among other metaheuristic algorithms to tune optimally the parameters of an adaptive 
neuro-fuzzy inference system (ANFIS) used for predicting the number of infected cases in upcoming 
days in China. PSO has provided good results in terms of coefficient of determination (R2 = 0.9492) and 
mean absolute percentage error (MAPE = 5.12%). The PSO technique has been also used successfully in 
calibrating SEIR model for the case study of Hubei, China [25]. In addition to a good data fitting, the 
PSO algorithm helped in detecting several nonlinear aspects including chaos. The identified model 
parameters have been used later to establish efficient control strategies. Robust machine learning 
approach based on PSO has been investigated by [26] to predict the number of infected individuals in 
Italy. Seven-parameters SEIR model has been found to provide accuracies in the number of susceptible 
cases ranging from 10% of the population to 40% respectively in Lombardy and Valle d’Aosta.  

In this study, the identification of the five proposed models’ parameters is performed using a swarm 
intelligence population-based algorithm, the particle swarm optimization (PSO) [27]. PSO is an emerging 
optimization technique inspired from animals’ social behavior such as bird flocking or fish schooling. It is 
known to be easy to implement and simple in its intuitive principle [28]. In the PSO principle, the swarm 
is composed of S particles coding each one a candidate solution for the epidemic model parameters’ 
identification problem. During the optimization procedure, these particles fly across the D-dimensional 
search-space looking for the optimal position leading to the minimum value of an objective function. The 
objective function in this study is the nonlinear least-square error between the reported cumulative 
infected cases and the number of cases calculated using the D parameters of the model associated to each 
particle. After being initialized randomly at the beginning of the optimization process, the particle move 
is based on three components: following its current direction, returning back to its best personal position 
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so far visited and moving toward the position reached by the best particle in the swarm. Let i be the index 
of the ith particle and j be the jth dimension of the model parameters vector. The particle position is 
defined as:  

𝑋𝑖= (𝑋1
𝑖  , 𝑋2

𝑖 … … 𝑋𝑗
𝑖 … … 𝑋𝐷

𝑖 )  I = 1, 2, …, S (11) 

To the ith particle are associated three vectors having the same size and the same parameters 
orders as in Xi. 𝑃𝑖, 𝐺𝑖 and 𝑉𝑖 denote respectively the best position so far visited, the position of 
the best particle among the swarm and the current velocity vector. During the optimization process 
(with k denotes the iteration index), each particle inside the swarm evaluates its current objective 
function and updates its position following the set of Eq 12–Eq 14: 

𝑉𝑘+1
𝑖 = 𝑤𝑘𝑉𝑘

𝑖 + 𝑐1𝑟1(𝑃𝑖 − 𝑋𝑖) + 𝑐2𝑟2 (𝐺𝑖 − 𝑋𝑖) (12) 

 𝑋𝑘+1
𝑖 = 𝑋𝑘

𝑖 + 𝑉𝑘+1
𝑖  (13) 

𝑤𝑘 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
× 𝑘 (14) 

The inertia weight coefficient is included to create a balance between global search ability at the 
beginning (high value of the inertia weight) and local search ability at the end of the of optimization 
procedure. The inertia weight decreases linearly across the iteration index. The computations are 
stopped when a maximum value of the iteration index will be reached. The adopted solution of the 
identification problem is reported as the position vector of the global best particle at the final 
iteration. The optimization problem is then defined as follows: 

𝑋̂ = arg min ∑ (𝐶(𝑡, 𝑋) − 𝐶(𝑡))
2𝑡=𝑁

𝑡=1
 (15) 

𝑋𝑗𝑙 ≤  𝑋𝑗 ≤  𝑋𝑗𝑢 (16) 

Xjl and Xju denote respectively the lower and upper limits of the jth dimension in X. 
For the SIR model, the criterion to be minimized is given below (Eq 17):  

𝐽(𝑋) = ∑(𝑆(𝑡) − 𝑆̂(𝑡))2

𝑡𝑓

𝑡0

+ (𝐼(𝑡) − 𝐼(𝑡))2 + (𝑅(𝑡) − 𝑅̂(𝑡))2 (17) 

𝑡0 and 𝑡𝑓 are the first day and the last day of the COVID-19 collected data, respectively. 
𝑆̂(𝑡), 𝐼(𝑡) 𝑎𝑛𝑑 𝑅̂(𝑡) are the estimates of S, I and R at the tth day.  

3. Results 

In this section, the results of using the particle swarm optimization (PSO) algorithm described in 
the previous section for calibrating four phenomenological epidemic models and SIR compartmental 
model using data of COVID-19 cumulative cases in Saudi Arabia covering the period from March 
2nd to October 10th, 2020 are provided. The PSO setting parameters are presented in Table 1.  
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Table 1. Parameter settings of the PSO algorithm. 

Parameter Meaning Value 
S Number of particles 50 
𝒌𝒎𝒂𝒙 Maximum iteration number used as stopping criterion 200 
𝒘𝒎𝒂𝒙 Maximum and initial value of the inertia weight 0.9 
𝒘𝐦𝐢𝐧   Minimum and final value of the inertia weight 0.4 
𝒄𝟏 𝒂𝒏𝒅 𝒄𝟐 Cognitive and social factors 0.75 
𝒓𝟏 𝒂𝒏𝒅 𝒓𝟐 Random numbers Within [0–1] 

The dataset used to calibrate the five previously described models is collected from the Saudi 
Ministry of Health website covering the period between March 2nd and October 10th, 2020. This dataset 
includes 223 daily observations which have been divided into two subsets: 190 observations used for 
training the models and the remaining 33 observations used for the models’ validation. Testing dataset is 
composed of the five days immediately following October 10, 2020. This dataset is not included in the 
training and validation phases. When examining the Saudi Arabia’s COVID-19 curves, it is easy to detect 
that an exponential growth for the cumulative infected cases occurs at the beginning of the pandemic and 
that around September 20, 2020, the curve starts becoming flat. The new daily reported cases’ curve 
exhibits a clear fluctuating and variable behavior presenting four peaks (May 17, June 17, June 30 and 
July 6). This fluctuation is correlated with numerous measures implemented by the Saudi authorities to 
mitigate the virus spread while considering economic and social issues. 

To compare the four models’ prediction results, three statistical performance indicators, namely, 
the coefficient of determination (R2), the mean absolute percentage error (MAPE), the root mean 
squared error (RMSE) [27] and the Kolmogorov-Smirnov (K-S) test [29] are used. K-S is a 
two-sample test used to compare the cumulative distribution probabilities of the reported number of 
infected individuals and the same number forecasted by one of the investigated models. In Table 2 
below, H = 0 indicates that “Do not reject the null hypothesis at the 5% significance level” and H = 1 
indicates that “Reject the null hypothesis at the 5% significance level”. 

In this paper, the results of the best run of each model are reported since PSO is a stochastic 
optimization technique which need to be run many times. Table 2 shows the optimal parameters for 
each model as well as the values of the performance indicators including the K-S test result. 

Table 2. Results of the best run of each prediction model. 

Model 𝒓 𝒑 𝑲 𝜶 Performance indicators  
Search 
limits 

[0–3] [0–1] [370,000–500,000] [0–2] MAPE 
(%) 

R2 RMSE 
(case) 

K-S 
test 

Rank 

GGM 1.7628 0.6247 - - 14.0749 0.8140 72,086 H = 1 5 
GLM 1.2986 0.6797 453,459 - 8.8694 0.9615 26,126 H = 0 3 
CLGM 0.1262 - 375,082 - 20.6152 0.8694 63,882 H = 1 4 
GRM 1.3595 0.6911 378,299 0.9211 3.2889 0.9953 8,827 H = 0 1 
SIR  𝐾 = 

2.0593×10-9(day-1)  
𝛽 = 13.5663 day  4.9898 0.9926 10,700 H = 0 2 
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Figure 1. New daily and cumulative infected cases for Saudi Arabia between March 2 
and October 10, 2020.  

The plots of the reported and predicted cumulative infected cases are provided in Figures 2–5.  

 

Figure 2. Cumulative infected cases plot for GGM. 
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Figure 3. Cumulative infected cases plot for GLM. 

 

Figure 4. Cumulative infected cases plot for CLGM. 
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Figure 5. Cumulative infected cases plot for GRM. 

4. Discussion 

4.1. Comparison between the five developed models 

From Table 2, it can be seen that the generalized Richards model (GRM) outperforms all the 
other four models in terms of all performance indicators. Moreover, this model allows predicting a 
probable end date (found to be around the end of 2020). The SIR model is ranked in the second place 
after the GRM in terms of performance metrics. Both GRM and SIR models were valid according to 
the Kolmogorov-Smirnov K-S test indicating that they provide forecasted and real (reported) 
infections derived from similar empirical distribution functions [29]. Both models provide also 
almost similar values of the coefficient of determination R2 (0.9953 for GRM and 0.9926 for SIR). 
This result can be attributed to the fact that logistic models are rigorously derived from the simple 
epidemiological SIR model as reported in [9,30]. The third-ranked model is found to be the GLM. In 
fact, it provided a probable end date near from the one provided by the best model (the GRM) but the 
number of infected cases at the end of the pandemic is higher than the one provided by the GRM. 
The GLM model is found to be valid according to the K-S test. The fourth model is CLGM. In fact, it 
yielded a final capacity of the virus almost near of the one issued from the best model (GRM) but an 
end date around the end of August, 2020 which is not true according to the current COVID-19 
statistics in Saudi Arabia. Moreover, the K-S test was non valid for the CLGM model. It should be 
noted that, according to the curve in Figure 4, the CLGM has a chance to meet the end of the virus 
capacity since the real curve is still under the curve provided by the CLGM. The last model is the 
GGM. This model is found to be good in fitting data for the early stage of the epidemic but it 
becomes inaccurate in the coming stages [31]. Conceptually, the GGM model cannot capture the 
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probable end of the outbreak since its curve will continue growing with time. In Table 3, the actual 
and forecasted (by the GRM) cumulative number of infected cases are provided for the validation 
phase. The differences are relatively small which confirms the good fit performance of the GRM 
when applied to a dataset not used during the training phase.  

Table 3. Reported and predicted cumulative infected cases for the validation phase 
(day#1 is September 8,2020): results of the GRM. 

Day# Reported Predicted Day# 
number 

Reported Predicted Day# 
number 

Reported Predicted 
1 322,237 325,176 12 329,271 336,570 23 334,605 345,683 
2 323,012 326,317 13 329,754 337,487 24 335,097 346,412 
3 323,720 327,436 14 330,246 338,385 25 335,578 347,125 
4 324,407 328,533 15 330,798 339,265 26 335,997 347,824 
5 325,050 329,609 16 331,359 340,127 27 336,387 348,508 
6 325,651 330,664 17 331,857 340,971 28 336,766 349,177 
7 326,258 331,699 18 332,329 341,798 29 337,243 349,832 
8 326,930 332,713 19 332,790 342,608 30 337,711 350,474 
9 327,551 333,706 20 333,193 343,401 31 338,132 351,101 
10 328,144 334,680 21 333,648 344,177 32 338,539 351,715 
11 328,720 335,635 22 334,187 344,938 33 338,944 352,316 

Table 4. Reported and predicted cumulative infected cases for the testing phase for a 
period of five days: results of the GRM. 

Date Reported Predicted by GRM Relative error 
October 11, 2020 339,267 352,904 3.9984% 
October 12, 2020 339,615 353,480 4.0652% 
October 13, 2020 340,089 354,043 4.0913% 
October 14, 2020 340,590 354,593 4.1057% 
October 15, 2020 341,062 355,132 4.1253% 

In Table 4, the number of cumulative infected cases provided by the GRM as well as real 
reported numbers are compared. A relative error around 4% is found to characterize the model. Note 
here that the considered five days were not included in the model training and validation phases.   

4.2. Analysis of the generalized Richards model (GRM) forecasts 

The generalized Richards model (GRM) is found to outperform all the other four models 
developed in this paper. Therefore, its main features including the advantages, the limitations and the 
robustness will be discussed in detail. In forecasting exercises, the data available at the hand of the 
designer is usually divided into 80% for training the model and 20% for validating it. However, when 
investigating our models including the GRM, we have tried other choices for the two subsets and we 
found that this didn’t affect a lot the overall forecasting performances more particularly for the case 
of the GRM. One of the main drawbacks of the GRM is that it can’t predict the fatality curve like in 
other researches such as [38].   

Possible sources of errors in final estimates of the cumulative number of infections have been 
included in the models’ parameters through the particle swarm optimization (PSO) algorithm. In 
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fact, during the parameters’ identification process, the vector of parameters is perturbed using the r1 
and r2 random numbers (see Table 1: parameter settings of the PSO and Eq 12: particle move). A 
stretched logistic equation for COVID-19 spreading in Italy has been proposed in [30]. This model 
is expected to take into account the time-dependency of the growth rate. By comparing the curve 
provided in Figure 6 of [30] and the curve provided by our GRM model (Figure 5 of this paper), 
we can conclude that our model is behaving similarly to a stretched logistic model with the 
difference that in Saudi Arabia, COVID-19 pandemic didn’t reach the flat curve, indicating the end 
of the virus current wave, yet.  

In order to highlight the effect of the changing situation of transmissibility, several scenarios 
related to intermediate date ranges have been investigated for the GRM as representative of the studied 
four logistic models. The GRM has been calibrated respectively using the first 100, 150, 200 and 223 
days used for the model training. The results of different scenarios are summarized in Table 5.  

Table 5. Results of the GRM in different time scenarios.  

Parameters’ 
search limits 

𝐫 𝐩 𝐊 𝛂 Performance indicators  

Time range 
scenarios 

[0–3] [0–1] [370,000–500,000] [0–2] MAPE 
(%) 

R2 RMSE 
(case) 

K-S 
test 

Rank 

100 1.7003 0.6921 454,842 0.3088 2.9012 0.9324 7,078 H = 0 4 
150 1.2365 0.6825 441,454 1.5705 5.0476 0.9604 16,308 H = 0 3 
200 0.7413 0.7821 373,468 0.5965 5.9539 0.9842 16,383 H = 0 2 
223 1.3595 0.6911 378,299 0.9211 3.2889 0.9953 8,827 H = 0 1 

As depicted in Table 5, the four runs’ parameters are extremely different which reflects 
relatively high variability of the growth dynamics of the epidemic. The situation of transmissibility is 
found to be changing. This fact is also clear in Figure 1 where it is shown that the curve of new 
infections presented four local peaks. Obviously, the coefficient of determination R2 increases when 
the length of the sample used for training the GRM increases. This confirms also that using more 
data for training may allow detecting different dynamics of the COVID-19 pandemic and therefore 
being able to explain the effect of the virus containment measures [39] and the efficiency of the 
social behavior including isolation like in the case of Brazil [40]. 

• The GRM model has been trained using other parameter fitting techniques (genetic 
algorithm (ga) and Levenberg-Marquardt (LM)) in order to show the superiority of the particle 
swarm optimization technique. The PSO is found to be more efficient at least in three points: (1) The 
PSO has global search ability since the particles are initialized randomly over the whole search space 
at the beginning of the identification process; (2) The particles are then driven towards the 
“sub-optimal” solution. Following the inertia weight coefficient which favors the “exploration” at the 
beginning and favors the “exploitation” at the end of the identification process; and (3) The PSO has 
been found to operate in complex search-spaces that should be non-convex. However, both LM and 
“ga” have been trapped into local minima since they are sensitive to the initialization. 

• The PSO technique used in this paper to calibrate all the developed models is known to be 
stochastic since it initializes the particles randomly within the search-space limits and it includes two 
numbers (r1 and r2) which are generated randomly inside the interval [0–1] at each iteration. The two 
random numbers multiply respectively the local search component and the global search component (see 
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Eq 12). The particle move includes through the use of r1 and r2 some kind of perturbations reflecting thus 
the robustness of the derived solutions. Due to this random aspect, the algorithm has been run several 
times and the results of the best run are adopted. Thus, the PSO is found to yield “sub-optimal” solutions 
that are not unique. A trade-off between optimality and feasibility is ensured.  

• In order to compare our approaches to other approaches applied to the case study of Saudi 
Arabia, three references studying the prediction of the COVID-19 number of infected cases are 
selected. The results of comparison are included in Table 6 below.  

It can be concluded from this comparison that the results are extremely variable since the forecasting 
performance metrics depend on the length and quality of the available data, the virus stage and 
transmissibility variation, the measures taken by the local authorities and on the used method. Forecasting 
is then a case-sensitive exercise.  

Table 6. Comparison of the prediction of COVID-19 infected cases in Saudi Arabia.   

Ref. Used dataset Method/Technique Performance metrics Comments 
[11] Daily from 

March 2, 2020 
to April 20, 
2020   

Times-series ARIMA 
model and its variants 
for predicting the next 
four weeks infections  

 R2: ranges from 
0.46 to 0.99 
 MAPE: ranges 
from 2.6% to 32.80% 

Although the performance metrics are reported 
to be good, checking back the forecasted 
values showed the model to overestimate the 
number of cumulative infected case in the four 
weeks after the end of the dataset as well as an 
inaccurate end date of the outbreak 

[3] Daily from 
March 2, 2020 
to May 15, 
2020   

Logistic growth and 
SIR models for 
predicting more than 
one month of daily 
infected cases 

 Growth model 
end date around the 
end of June 2020 
with about 70,000 of 
total cases 
 SIR model end 
date was forecasted 
to be around the end 
of June and a 
cumulative number of 
80,000 

Both models are found to be inaccurate since 
the virus continues spreading as of October 18, 
2020 

[32] Daily from 
March 2, 2020 
to May 14, 
2020 

Using a modified SIR 
model including 
parameters related to 
temperature, humidity, 
population density and 
the intensity of control 
measures taken by 
local governments.   

Daily new cases 
found to range from 
1,800 to 2,500 
between May 15, 
2020 and May 26, 
2020 

Forecasts where relatively accurate when 
compared to the reported cases 

GRM 
(this 
work) 

Daily from 
March 2, 2020 
to October 10, 
2020 

Using the generalized 
Richards Model 
(GRM) for predicting 
cumulative infected 
cases  

 R2: 0.9953 
 MAPE: 3.2889% 
 Predicted end date: end of 2020 
 Predicted cumulative number at the end of the outbreak: 378,299 
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5. Conclusion 

In this paper, a modeling procedure based on phenomenological and compartmental models 
combined with the particle swarm optimization (PSO) technique is carried out using reported cases 
from Saudi Arabia for the period starting on March 2nd and ending on October 10, 2020. The 
cumulative infected cases and a probable end date of the COVID-19 pandemic are predicted using 
five models including the four-parameter generalized Richards model (GRM). This model has 
provided good fit of data and a probable projected end date around the end of 2020 with a total 
number of infected cases around 379 thousand. According to the study results, it has been shown that 
the COVID-19 outbreak is approaching its end. The Saudi experience can be considered as 
successful in containing the first wave until now and more efforts in enforcing social distancing 
should contribute to mitigate the virus.  
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