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Abstract

The human ZNF268 gene encodes a typical KRAB-C2H2 zinc finger protein that may participate in hematopoiesis and
leukemogenesis. A recent microarray study revealed that ZNF268 expression continuously decreases during erythropoiesis.
However, the molecular mechanisms underlying regulation of ZNF268 during hematopoiesis are not well understood. Here
we found that GATA-1, a master regulator of erythropoiesis, repressed the promoter activity and transcription of ZNF268.
Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that GATA-1 directly bound to a
GATA binding site in the ZNF268 promoter in vitro and in vivo. Knockdown of ZNF268 in K562 erythroleukemia cells with
specific siRNA accelerated cellular proliferation, suppressed apoptosis, and reduced expression of erythroid-specific
developmental markers. It also promoted growth of subcutaneous K562-derived tumors in nude mice. These results suggest
that ZNF268 is a crucial downstream target and effector of GATA-1. They also suggest the downregulation of ZNF268 by
GATA-1 is important in promoting the growth and suppressing the differentiation of K562 erythroleukemia cells.
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Introduction

The human ZNF268 gene was cloned and characterized from

an early human embryonic cDNA library [1]. Since that time,

several alternative splice transcripts of ZNF268 have been isolated

[2,3]. ZNF268 encodes a typical KRAB-containing zinc finger

protein [1]. A developmental expression study suggests that

ZNF268 plays a role in the development of human fetal liver as

well as the differentiation of blood cells [4]. Multiple lines of

evidence support a role for ZNF268 in hematopoiesis and

leukemogenesis. Krackhardt et al. identified KW-4, an alternative

transcript of ZNF268, as one of the tumor-associated antigens in

chronic lymphocytic leukemia [5]. A case survey by our group

suggests that aberrant alternative splicing of ZNF268 generates

factors with prognostic value and contributes to human hemato-

logical malignancies [6]. Our previous studies have also shown

that the human ZNF268 promoter is atypical and that this

promoter requires an intragenic element located within the first

exon to mediate responses to cyclic-AMP response element

binding protein (CREB) [7,8], which can act as a proto-oncogene

to regulate hematopoiesis and contribute to the leukemia

phenotype [9]. We found that CREB-2 binds to the CREB-

binding site within the minimal promoter region in the absence of

Tax, the oncoprotein of human T-cell leukemia virus type 1

(HTLV-1), to enhance ZNF268 promoter activity, while CREB-1

binds in presence of Tax to repress it [7,8]. Use of microarrays to

generate a transcriptional profile of human hematopoiesis during

in vitro lineage-specific differentiation revealed that ZNF268

expression continuously decreases during erythropoiesis [10]. We

have recently found that the ZNF268 levels decline during specific

differentiation of CD34+ cells to erythrocytes (data not shown).

Taken together, these findings suggest that ZNF268 participates in

development and differentiation associated with hematopoiesis,

particularly erythropoiesis. However, how ZNF268 contributes to

this process is unclear.

GATA-1, a member of the GATA family of zinc finger factors

(GATA-1–GATA-6), plays an important role in gene regulation

during hematopoiesis, including erythropoiesis [11,12,13,14,15].

Several advanced experimental approaches have revealed that

GATA-1 is essential for the survival of erythroid progenitors as well

as the terminal differentiation of erythroid cells, whereas GATA-2 is

crucial for the maintenance and proliferation of immature

hematopoietic progenitors [16,17,18]. GATA-1 was originally

isolated as a factor that bound to the b-globin promoter and has

subsequently been found to bind most, if not all, known erythroid

genes [19]. GATA-1 plays critical roles in cell proliferation and

terminal maturation associated with erythroid differentiation, which

are uncoupled processes [20]. Many oncogene and tumor

suppressor genes, such as those encoding c-myc, p53 and cyclin,

reportedly participate in GATA-1-related erythropoiesis [19,20,21,

22,23,24,25]. Although understanding how hematopoietic stem

cells (HSCs) undergo lineage commitment and develop into various
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mature blood cells has been intensely investigated for many years,

the network of regulation is still incompletely understood.

Here, we investigated the mechanism underlying decreased

expression of ZNF268 as well as the consequences of ZNF268

downregulation in K562 cells, a human erythroleukemia cell line

derived from a patient with chronic myelogenous leukemia

[26,27,28]. We provide evidence that GATA-1 represses tran-

scription of ZNF268 and that ZNF268 downregulation modulates

growth and differentiation of K562 cells.

Materials and Methods

Generation of ZNF268-deficient cell lines
K562 cells (CCTCC, Wuhan, China) were seeded at a density

of 16105 cells/ml in RPMI 1640 medium containing 10% fetal

bovine serum (GIBCO), penicillin (100 U/ml), and streptomycin

(100 mg/ml). Cells were maintained at 37uC in a 5% CO2

incubator. RNAi was constructed using pLLU2G plasmid, which

was tagged with green fluorescent protein (GFP). Lentiviral

particles containing short hairpin RNA (shRNA) targeted to

ZNF268 mRNA and its control vector were purchased from

Cyagen Biosciences (Guangzhou, China). K562 cells were

transfected with ZNF268 shRNA lentiviral particles (lenti-shh-

268) or particles containing vain plasmid (lenti-shh-control), which

served as a negative control. The shRNA (shh-268) sequence used

was 59-TGC ACG CAT GGA AAG AGT TTG ATT CAA GAG

ATC AAA CTC TTT CCA TGC GTG CTT TTT TC-39. K562

cells were cultured in media containing recombinant lentiviral

particles and 1 mg/ml polybrene for at least 48 h before being

subjected to fluorescence-activated cell sorting (FACS).

FACS and analysis
Approximately 16105 cells were collected and washed with PBS

containing 1% BSA and 0.1% sodium azide. They were then

incubated in the presence or absence of fluorochrome-conjugated

antibodies against CD71 (BD Biosciences), glycophorin A, or

mouse IgG (Biolegend). Cells transfected with lentivirus containing

a GFP-encoding plasmid were analyzed and sorted at day 3,

without undergoing any antibody treatment, to generate stably

transfected cell lines. The cell cycle profile was analyzed by

treating cells with 70% ethanol overnight at 4uC and staining them

with propidium iodide (PI). Apoptosis was measured by staining

cells with PI, as described above for cell cycle determination, or

PE-conjugated Annexin V. FACS analysis was performed using a

Beckman Coulter flow cytometer and EXPO32 software (Beck-

man).

Xenograft model in nude mice
Animal experiments were performed under standard guidelines.

The protocol was approved by the Committee on the Ethics of

Animal Experiments of Wuhan University. The permit numbers

of animal experiments for this study is SCXK 2009-0004.

Approximately 16107 ZNF268-silenced or control K562 cells

suspended in 200 ml serum-free RPMI 1640 medium were

subcutaneously injected into the right flank of male BALB/c-nu

athymic mice. Tumor-bearing mice were sacrificed 30 days later.

Tumor masses were then excised, measured, and imaged.

Expression of ZNF268 in the tumor tissues was analyzed by

real-time polymerase chain reaction (PCR) and western blot.

Electrophoretic mobility shift assays (EMSAs) and
supershift assays

EMSAs were performed using the LightShiftH Chemilumines-

cent EMSA Kit (Pierce) according to the manufacturer’s

instructions. Oligonucleotide probes used for EMSA are shown

in Table 1. The sense and antisense strands were labeled with the

Biotin 39 End DNA Labeling Kit (Pierce) and annealed by step

cooling from 90uC to room temperature. K562 nuclear extracts

were obtained using the Cytoplasmic and Nuclear Protein

Extraction Kit (Boster, Wuhan, China). Anti-GATA-1 antibody

was purchased from Santa Cruz Biotechnology. For competition

experiments, a 200-fold molar excess of unlabeled probe was

added to the binding reaction just before the addition of the Bio-

labeled probe. Reaction mixtures were fractionated on 6%

nondenaturing polyacrylamide gels and transferred to positively

charged nylon membranes (GE Healthcare) fixed by ultraviolet

crosslinking. Mobility shift was detected using the Chemilumines-

cent Nucleic Acid Detection Module (Pierce).

Chromatin immunoprecipitation (ChIP)
ChIP assays were performed as described previously [7,8].

Briefly, K562 cells were crosslinked with 1% formaldehyde at

room temperature for 15 min. The cells were washed twice in

phosphate buffered saline (PBS) and lysed in sodium dodecyl

sulfate lysis buffer (Biyotime, Haimen, China). Chromatin

fragments were prepared by sonicating lysates on ice. Lysates

Table 1. Oligonucleotides used in this study.

Oligonucleotide Sequence (59 to 39)a Locationb

G1 AAAGAGATATTATCTTACATCAGTC 21412 to 21388

G2 ATTACCATTTGATAAAGCAATCCTG 2611 to 2587

G3 TGTTACTGAGTATCTACCCAAAGGA 2588 to 2564

G4 CTCATATGTTTATCACAGCACTATT 2532 to 2508

G5 TAGTGGCCACTATCTTCAGTGAAAC 2370 to 2346

G6 AGTGTGGGATGATAGACAATGAAGA 2271 to 2247

G7 AGAAAACTTGTATCTGCCTCTGTGA 254 to 230

G8 AATCATGCGTGATAAAAGAATCCAT +105 to +129

G9 CTAACAAAACTATCCCTTGTTCGAC +206 to +230

G10 TGTTCGACTTGTATCTTTATATACT +224 to +248

G11 TTGTTCCTCAGATAGCGTTCATCGC +794 to +818

G1-m AAAGAGATAggcgagTACATCAGTC

G1-s ATATTATCTTACATCAGTCAC 21406 to 21386

G1-a AGCCAGGATGGTCTTAATCTC 21266 to 21286

C-s AATGGCGTGAACCCG 21166 to 21152

C-a GCAAACTCCCGACCTTA 2962 to 2978

PES1c GCATATAACGTACTATAGGGCG 2190 to 2169

PE12c CGTAACATCATGTATTGGCCAGTTGG +104 to +79

PECS11c ACCTGGCCAGGAAGGCCTGAG +594 to +614

PECAc TGAAGGGGCAGCAGAATAGA +925 to +906

Uzf TCATAAATGTGGCACGCATGC

Lzf GTTGCGATTTCTTATTGACGG

GAPDH-sd TGATGACATCAAGAAGGTGGTGAAG

GAPDH-ad TCCTTGGAGGCCATGTGGGCCAT

aUnderlined nucleotides represent GATA binding sites, and lowercase letters
indicate mutated residues.

bShown are the oligonucleotide positions, where +1 is the transcription start
site of the ZNF268 gene.

cData are from Ref. [8].
dData are from Ref. [8].
doi:10.1371/journal.pone.0029518.t001
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were then incubated with antibodies against GATA-1, FOG,

CREB-2, TFIID, RNA polymerase II, or IgG (Santa Cruz

Biotechnology, Inc., Santa Cruz, CA). Immunoprecipitated

complexes were collected using protein A/G-agarose beads (Santa

Cruz). The pellets were washed with dialysis buffer (2 mM EDTA

and 50 mM Tris-HCl, pH 8.0) and incubated at 65uC for 4 h to

reverse the formaldehyde cross-link. They were then digested with

20 mg/ml proteinase K (Biyotime) for 1 h. DNA was purified

using the Cycle Pure Kit (Omega) and subjected to PCR

amplification using primers (Table 1) for the promoter region

containing the transcription factor binding site.

Transient transfection and dual luciferase assay
Transient transfection and dual luciferase assays were per-

formed as described previously [7,8]. In brief, HEK293 and HeLa

cells (CCTCC, Wuhan, China) were seeded in 48-well plates and

transiently transfected using Lipofectamine 2000 (Invitrogen).

Cells were co-transfected with promoter constructs based on

pGL3-Basic (which expresses firefly luciferase from the putative

ZNF268 promoter) and the control construct pRL-TK (which

expresses Renilla luciferase). Cells were harvested 48 h after

transfection for dual luciferase assays (Promega).

Western blotting
Cells were lysed with RIPA buffer (50 mM Tris-HCl, pH 7.5;

150 mM NaCl; 1% NP-40; 0.25% sodium deoxycholate). Equal

amounts of extract were then electrophoresed on a 10% sodium

dodecyl sulfate polyacrylamide gel electrophoresis gel and

transferred to nitrocellulose filter membranes (Millipore). Mem-

branes were immersed in blocking buffer (5% degreased milk

powder) and incubated with antibodies against ZNF268, b-actin,

c-myc (Santa Cruz Biotechnology), p53, cyclin-D1 (Cell Signaling

Technology), or Flag (Sigma). They were then incubated with

horseradish peroxidase-conjugated secondary antibodies (Pierce),

and immunoreactivity was visualized using the SuperSignal

chemiluminescent detection module (Pierce).

Real-time quantitative PCR
Total RNA was reverse transcribed into cDNA using

SuperScript II (Invitrogen, Carlsbad, CA, USA). Real-time

quantitative PCR was performed using an ABI 7500 real-time

PCR system (Applied Biosystems, Foster City, CA, USA) and the

SYBR Green Real time PCR Mater Mix (TOYOBO, Osaka,

Japan). Primers used for real-time quantitative PCR are shown in

Table 1. Each PCR reaction was performed in triplex tubes, with

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being used

as an endogenous control to standardize the amount of sample

RNA.

Cell counting and EdU labeling
The effect of ZNF268 silencing on K562 cell proliferation was

tested by cell counting. Approximately 16105 cells were cultured in

triplicate in 24-well plates. Cells were counted in a hemocytometer

every other day. After day 3, half of the media were renewed daily.

Figure 1. GATA-1 represses ZNF268 promoter activity and transcription. (A) Western blot analysis of exogenous GATA-1 and GFP expression
in transfected HEK293 and HeLa cells using anti-Flag antibody. (B) Luciferase assays in HEK293 and HeLa cells co-transfected with GATA-1 expression
plasmid (0.2 mg in 48-well plates) and a luciferase reporter under the control of the ZNF268 promoter. GFP expression plasmid served as a control. (C)
Quantitative real-time PCR analysis of ZNF268 mRNA in HEK293 and HeLa cells transfected with plasmid expressing GATA-1 or GFP. GAPDH mRNA
was used to normalize ZNF268 expression. Data (mean 6 SD) are derived from an average of three independent experiments. *p,0.05 and **p,0.01
(standard t test).
doi:10.1371/journal.pone.0029518.g001

ZNF268 Regulates the Development of K562 Cells
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Proliferation was also estimated using the EdU incorporation assay.

Briefly, cells (16105) were cultured in 24-well plates and exposed to

50 mM EdU (Ribobio, Guangzhou, China) for 4 h at 37uC. The

cells were then fixed in 4% formaldehyde for 30 min at room

temperature and permeabilized in 0.5% Triton X-100 for 10 min.

Cells were washed with PBS, and each well was incubated with

400 ml 1XApolloH reaction cocktail for 30 min. DNA was then

stained with 5 mg/ml Hoechst 33342 (200 ml per well) for 30 min

and imaged under a fluorescent microscope.

Statistical analysis
The data are expressed as the mean 6 standard deviation from

at least three separate experiments. The differences between

groups were analyzed using the double-sided Student’s t test, and a

p value less than 0.05 was considered significant.

Results

GATA-1 represses ZNF268 promoter activity and
transcription

Recent studies suggest that ZNF268 participates in human

hematopoiesis, as seen by a decline in ZNF268 expression during

erythroid differentiation. To study how the ZNF268 gene is

regulated in hematopoietic cells, we searched for potential

regulatory elements in the ZNF268 promoter sequence. Using an

online tool that predicts transcription factor binding sites (http://

www.cbil.upenn.edu/cgi-bin/tess/tess), we identified 11 putative

GATA binding sites within this region. GATA-1 has been long

regarded as critical transcription factor for hematopoietic differen-

tiation and is especially highly expressed during erythroipoiesis. To

determine if GATA-1 regulates ZNF268 promoter activity, we co-

transfected HEK293 and HeLa cells with pCMV-3Tag-GATA-1

expression plasmid and a reporter plasmid carrying the luciferase

gene under the control of the ZNF268 promoter. Overexpression of

GATA1 or GFP (negative control) in these cells was confirmed by

western blot analysis using anti-Flag antibody (Fig. 1A). Analysis of

Figure 3. GATA-1 binds to the ZNF268 promoter in vivo. ChIP
assays were performed with K562 cells using the indicated antibodies,
with IgG serving as a negative control. The precipitated DNA was
amplified by PCR, electrophoresed, and stained with ethidium bromide.
For all antibodies, primers C-s/C-a (21166 to 2962) served as a
negative control. Input lanes show products after PCR amplification and
before immunoprecipitation. (A) PCR amplification of DNA precipitated
with anti-GATA-1 or anti-FOG antibodies using the primers G1-s/G1-a,
which flank the GATA-binding sites contained within 21406 to 21266.
(B) PCR amplification of DNA precipitated with anti-RNA polymerase II
(pol II) or anti-TFIID antibodies using primers flanking the transcription
start site (PES1/PE12). (C) As a positive control, ChIP assays were
conducted using anti-CREB-2 antibody and primers flanking the CRE
binding site in the ZNF268 promoter (+594 to +925).
doi:10.1371/journal.pone.0029518.g003

Figure 2. GATA-1 selectively binds to the GATA binding site in the ZNF268 promoter in vitro. (A) Schematic diagram of the 11 GATA sites
(G1–G11) in the ZNF268 promoter. (B) EMSAs using K562 nuclear extract and biotin-labeled probes corresponding to the GATA binding sites in the
human ZNF268 promoter. Nuclear extract was omitted from the binding reaction as a negative control. (C) Competitive EMSAs and supershift assays
showing the binding of a GATA-1 complex to the G1 site (21412 to 21388). Labeled wild type G1 probe or labeled mutant probe was added to the
reaction (lanes 2 and 3). Unlabeled competitors were added prior to G1 probe addition (lanes 4 and 5). For supershift experiments, anti-GATA-1
antibody was incubated with nuclear extracts before addition to the reaction mixture (lane 6).
doi:10.1371/journal.pone.0029518.g002
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luciferase activity in HEK293 and HeLa lysates revealed that

GATA-1 overexpression significantly repressed the activity of the

ZNF268 promoter compared to GFP overexpression (Fig. 1B).

We also measured ZNF268 promoter activity in the presence of

GATA-2, another founding member of the GATA family and a

regulator of early stages of hematopoiesis [18]. We did not detect

any changes in ZNF268 promoter activity in the presence of

GATA-2 overexpression (data not shown). Finally, we investigat-

ed whether transient overexpression of GATA-1 also affects the

expression of ZNF268 mRNA. Plasmids encoding GATA-1 or

GFP were transfected into HEK293 and HeLa cells. Two days

later, total RNA was isolated for quantitative real time PCR. As

shown in Fig. 1C, GATA-1 overexpression reduced ZNF268

mRNA by about one half.

GATA-1 binds to a GATA binding site in the ZNF268
promoter both in vitro and in vivo

To understand if GATA-1 interacts with putative GATA-1

elements in the ZNF268 promoter (Fig. 2A), we first conducted

EMSAs. EMSAs were performed using nuclear extracts from

K562 cells and biotin-labeled double-stranded oligonucleotide

probes containing sequences for the putative GATA-1 binding

sites (Table 1). As shown in Fig. 2B, among the 11 probes (G1 to

G11), only the biotin-labeled G1 probe formed a shifted band.

Competitive EMSA assays were then conducted to further analyze

specific binding to the G1 probe. We could detect no DNA/

protein complex when the assay was repeated using a biotin-

labeled mutant G1 probe (Fig. 2C, lane 3). Moreover, the

complex formed from the biotin-labeled wild type G1 probe could

Figure 4. Stable silencing of ZNF268 accelerates the proliferation of K562 cells. K562 cells were transfected with recombinant lentiviral
particles containing ZNF268 short hairpin RNA (shRNA; shh-268) or control lentiviral vector (shh-control). Transfected cells were then sorted according
to GFP expression to generate stably transfected cell lines. (A) Quantitative real-time PCR analysis of ZNF268 mRNA in ZNF268-silenced and control
cells. (B) Cellular proliferation, as determined by cell counting. Values are derived from an average of three independent experiments. (C, D) Cell cycle
profiles, as assessed by DNA content in PI-stained cells. (E, F) EdU labeling showing proliferation of ZNF268-silenced and control cells. The percentage
of positive cells was derived from triplicate samples. (G) Western blot analysis of c-myc, p53, and cyclin D1. ZNF268 and b-actin levels were also
analyzed. *p,0.05 and **p,0.01 (standard t test).
doi:10.1371/journal.pone.0029518.g004
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effectively be competed away by the addition of 200-fold excess

unlabeled wild type G1 probe (Fig. 2C, lane 4), but not by the

same amount of unlabeled inactive mutant GATA-1 probe

(Fig. 2C, lane 5). When anti-GATA-1 antibody was added to

the reaction, a supershifted band appeared (Fig. 2C, lane 6).

These results indicate that GATA-1 binds directly to the G1

binding site (21412 to 21388 of the ZNF268 promoter).

To understand whether the putative GATA-1 binding sequenc-

es in the ZNF268 promoter can recruit GATA-1 to the promoter in

vivo, we conducted ChIP assays. Chromatin fragments were prepared

from K562 cells and immunoprecipitated with specific monoclonal

antibodies to GATA-1 or FOG, which is an interacting partner of

GATA-1 that has no sequence binding activity [29]. The isolated

DNA was amplified by PCR with primers G1-s/G1-a (21406 to

21266) (Table 1), which are specific for the promoter region

containing the G1 site. When anti-GATA-1 or anti-FOG antibodies

were used for the ChIP assay, a fragment of the expected size of

141 bp was detected (Fig. 3A). However, no signal was detected

when anti-IgG antibody was used. A signal also failed to be detected

when PCR amplification of the precipitated DNA was performed

using primers specific for a region lacking a GATA-1 site (primers C-

s/C-a, 21166 to 2962; Table 1 and Fig. 3A). Importantly, our

system was validated by conducting ChIP assays using antibodies

against TFII D or RNA polymerase II and primers flanking the

transcription start site (Fig. 3B). Furthermore, as a positive control,

assays were repeated using antibody to CREB-2, a known activator of

the ZNF268 promoter, and primers flanking the CRE binding site in

the ZNF268 promoter (Fig. 3C) [8]. Together, these ChIP assay

results show that the transcription factor GATA-1 directly binds to

the G1 binding site to form a complex in the ZNF268 promoter in vivo.

ZNF268 silencing accelerates proliferation of K562 cells
To explore the consequences of GATA-1-mediated downreg-

ulation of ZNF268 in K562 cells, we stably silenced ZNF268 in

K562 cells using recombinant lentiviral particles containing

ZNF268 shRNAs. These cells exhibited significantly reduced

expression of ZNF268 at both the mRNA and protein levels

compared to control lentiviral vector-infected cells (Fig. 4A, G).

As shown in Fig. 4B, stable silencing of ZNF268 dramatically

accelerated K562 cell proliferation, with the number of cells being

44% higher in the ZNF268-silenced group than the control group

at day 6. Accordingly, FACS analysis of PI-stained cells revealed

that the portion of cells in S phase was increased by approximately

5% and the proportion of cells in G1 phase decreased by a

comparable degree (Fig. 4C, D). The effect of ZNF268 silencing

on proliferation was also measured using the EdU incorporation

assay, which is more sensitive than cell counting. As anticipated,

the number of EdU+ cells was approximately 10% higher in

ZNF268-silenced cells than in control cells (Fig. 4E, F). These

independent lines of data indicate that ZNF268 silencing

accelerates K562 proliferation in vitro.

To investigate the potential mechanisms underlying the ability of

ZNF268 to influence K562 proliferation, we measured the relative

levels of c-myc, p53, and cyclin D1 by western blot, with b-actin

serving as an internal control. We found that ZNF268 silencing

upregulated c-myc and cyclin D1, while it downregulated p53

(Fig. 4G). This suggests that these molecules and their related

networks may take part in ZNF268 regulation of K562 proliferation.

ZNF268 silencing suppresses apoptosis and promotes
tumor growth in vivo

We investigated the effect of stable ZN268 silencing on not only

K562 proliferation, but also apoptosis. Apoptosis was measured

through FACS analysis of PI- or Annexin V-stained cells. As

shown in Fig. 5A, ZNF268 silencing induced a 34% to 51%

decrease in basal apoptosis.

Next, we investigated the effect of ZNF268 silencing in vivo by

examining the tumorigenicity of K562 cells in nude mice. Mice

received a subcutaneous injection of ZNF268-silenced clones

(n = 5) or vector control clones (n = 5) in the right flank, so that

tumor comparisons would be controlled for each individual

mouse. Growth of tumors was monitored every 3 days, and

tumors were excised and weighed 30 days after injection. We

found that ZNF268 silencing promoted subcutaneous tumor

growth in nude mice (Fig. 5B, C). Quantitative real time PCR

and western blot analysis of the tumors showed that ZN268 was

suppressed in tumors formed from ZNF268-silenced K562 cells

(data not shown).

ZNF268 silencing represses erythroid marker expression
in K562 cells

Finally, we determined whether ZNF268 silencing affects the

differentiation of K562 cells. First, we examined erythroid

differentiation by analyzing expression of CD71 and glycophorin

A (CD235a), which are expressed during erythropoiesis. CD71 is

expressed at the BFU-E stage and disappears at the late

reticulocyte stage [30,31,32]. Glycophorin A first appears on the

surfaces of proerythroblasts and is increasingly expressed during

erythropoiesis [30,31]. We found that the surface expression of

Figure 5. Stable silencing of ZNF268 suppresses apoptosis and
promotes tumor formation in nude mice. (A) Apoptosis in of
ZNF268-silenced (shh-268) and control (shh-c) cells, as assessed by FACS
analysis of PI or Annexin V staining. **p,0.01 (standard t test). (B, C).
ZNF268-silenced or control K562 cells (,16107 cells) were subcutane-
ously implanted into male athymic nude mice. Tumor-bearing mice
were then sacrificed 30 days later. Representative mice and excised
tumors are shown (B), along with a comparison of tumor weight
between the groups (C).
doi:10.1371/journal.pone.0029518.g005
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these erythroid cell markers was lower in ZNF268-silenced cells

than in control cells (Fig. 6A, B). We also analyzed the expression

of c-hemoglobin, which is regarded as an endogenous erythroid

differentiation marker in K562 cells [33,34]. Real-time PCR

revealed that c-hemoglobin mRNA levels in ZNF268-silenced cells

were only one fifth of those in vector control cells (Fig. 6C). These

results indicate that silencing ZNF268 expression suppresses

erythroid differentiation of K562 cells.

Discussion

In this study, we have uncovered a possible mechanism by

which ZNF268 is repressed during erythroid differentiation. We

have also characterized some of the effects of ZNF268 silencing in

human K562 erythroleukemia cells. First, we have proven that

GATA-1 downregulates the transcription of ZNF268 by directly

binding to a GATA binding site in the ZNF268 promoter. The

finding that a positive signal was detected using either an anti-

GATA-1 antibody or anti-FOG antibody in ChIP assays suggests

that the repressive action of GATA-1 on the ZNF268 promoter is

likely associated with FOG in K562 cells.

We have previously identified and studied the function of the

ZN268 promoter using deletion analyses [8]. These analyses

suggested that the critical activated elements in the ZNF268

promoter are located between 237 and +938, primarily after the

transcription start site. Furthermore, CREB-2 was found to bind

to the region spanning +589 to +760 and to strongly activate the

ZNF268 promoter. However, the upstream promoter region was

found to have much lower activity, and this region was not studied

any further. Here we demonstrate that the ZNF268 promoter

region from 21412 to 21388 binds to GATA-1 and represses

ZNF268 promoter activity as seen by luciferase activity assays.

These findings suggest that the upstream region of the ZNF268

promoter probably harbors elements for transcription factors that

are repressive to ZNF268.

As already mentioned, we identified 11 putative GATA binding

sites scattered throughout the promoter region of ZNF268. EMSAs

revealed that GATA-1 bound to only the first site, which was the

most distant and was located about 1.4 kb upstream from the

ZNF268 transcription start site. This binding was verified using the

ChIP assay. A similar result has previously been reported in a

study of GATA-1-dependent transcriptional repression of the

GATA-2 gene. GATA-1 reportedly binds to a highly restricted

upstream region of the ,70-kb GATA-2 domain, despite the

presence of more than 80 GATA sites throughout the domain

[35].

GATA-1 is an important regulator of erythropoiesis. This

transcription factor binds to almost all known erythroid-related

genes and takes part in erythroid differentiation at the level of cell

proliferation and terminal maturation [19,20]. To mimic the

function of ZNF268 repression by GATA-1, we used shRNA

interference to stably silence ZNF268 in K562 cells. We have

provided the first evidence that ZNF268 silencing promotes the

proliferation of K562 cells and suppresses apoptosis and erythroid

differentiation of these cells. These findings suggest that ZNF268

may function as a repressor of tumor cell proliferation. ZNF268

may be similar to Egr1, which has been identified as a target of

GATA-1 by ChIP-seq analysis and is regarded as a tumor

repressor [36,37,38].

In addition, our data suggest that ZNF268 knockdown represses

the erythroid differentiation of K562 cells. However, it seems not

consistent with the observation that ZNF268 levels decrease

continuously during specific differentiation of CD34+ cells to

erthrocytes. Acturally, K562, as an erythroleukemia cell line, fail

to mimic every features of normal human CD34+ cell differen-

tiation into red cells. We believe that further investigation on the

regulation network of ZNF268 may contribute to understand

human erythroid differentiation.
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