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Abstract

Nature has shaped the make up of proteins since their appearance, *3.8 billion years ago. However, the fundamental
drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we
explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein
domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of
domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results
show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late
in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to
fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last *1.5 billion years that
began during the ‘‘big bang’’ of domain combinations. As a consequence, these domain structures are on average slow
folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This
finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces
protein aggregation propensities that hamper cellular functions.
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Introduction

The catalog of naturally occurring protein structures [1] exhibits

a large disparity of folding times (from microseconds [2], to hours

[3]). This disparity is the result of roughly *3.8 billion years of

evolution during which new protein structures were created and

optimized. The evolutionary processes driving the discovery and

optimization of protein topologies is complex and remains to be

fully understood. Nature probably uncovers new topologies in

order to fulfill new functions, and optimizes existing topologies to

increase their performance. Various physical and chemical

requirements, from foldability to structural stability, are likely to

be additional players shaping protein structure evolution. One

indicator for foldability, i.e. the ease of taking up the native protein

fold, is a short folding time.

Here we propose that foldability is a constraint that crucially

contributes to evolutionary history. Optimization of foldability

during evolution could explain the existence of a folding funnel

[4,5], into which a defined set of folding pathways lead to the

native state, as postulated early on by Levinthal [6]. While the

biological relevance of efficient folding still needs to be explored,

an obvious advantage is the increase of protein availability to the

cell. For instance, folding could decrease the time between an

external stimulus and the organismal response. However, this

increase of accessibility is probably limited by other factors such as

protein synthesis, proline isomerization and disulfide formation. A

probably more important point to support folding speed as an

evolutionary constraint is that fast folding avoids proteins

aggregation in the cell [7]. Aggregation avoidance could lead to

a selection of topologically simple structures that fold rapidly or

exclusion of a large number of geometrically feasible structures

that compromise accessiblity. This could have reduced the catalog

of naturally occurring folds [8–10].

The balance between the need for new structural designs and

functions in evolution and the physical requirements imposing

pressure on folding has remained elusive. The increasing number of

organisms with completely sequenced genomes and experimentally

acquired models of protein structures, combined with new

techniques to study the folding behavior of proteins now open

new avenues of inquiry. A common approach for such studies has

been the use of molecular simulations such as lattice or coarse-

grained techniques, which are efficient enough to scan sequence

space. Simulations generally involve an algorithm that mimics the

evolutionary accumulation of mutations. This allows to monitor

how proteins are selected and evolve towards specific features that

are optimized, including those linked to folding, structure and

function [11–13]. In contrast, we have uncovered phylogenetic

signal in the genomic abundance of protein sequences that match

known protein structures. Specifically, phylogenomic trees that

describe the history of the protein world are built from a genomic

census of known protein domains defined by the Structural

Classification of Proteins (SCOP) [14] and used to build timelines

of domain appearance [15,16] that obey a molecular clock [17].

This information revealed for example the early history of proteins

[18], planet oxygenation [17], and the dynamics of domain

organization in proteins [19]. All-atom simulations of denatured

proteins folding into their native state [20,21] are computationally

too demanding to systematically evaluate the folding times of the
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available structural models of protein domains, currently *100,000

in total. A decade ago, Baker and co-workers [22] introduced the

concept of contact order, a measure of the non-locality of

intermolecular contacts in proteins. Contact order was found to

be in good correlation with folding times of two state folders but not

multistate proteins. Subsequent studies with extended comparison

to experiments led to the definition of the Size-Modified Contact

Order (SMCO),

SMCO~(
1

L

XN

DLij):L
0:7, ð1Þ

where N is the number of contacts, L is the total number of

aminoacids, and DLij is the number of aminoacids along the chain

between residues i and j forming a native contact. By correcting for

protein size L, the SMCO showed an improved correlation with

experimental folding times, with a correlation coefficient of 0.74

[23].

Here, we reveal evolutionary patterns of foldability by mapping

the SMCO and thus the folding time onto timelines derived from

phylogenomic trees of domain structures (Figure 1). Remarkably,

we find there is selection pressure to improve overall foldability, i.e

reduce folding times, during protein history. Interestingly, different

topologies such as all-b and all-a folds show distinct patterns,

suggesting folding impacts the evolution of some classes of protein

structures more than others.

Results

Change in foldability during evolution
To trace protein folding in evolution, we determined the SMCO

of protein domain structures at the Family (F) level of structural

organization. Figure 2a shows the folding rate of each F, as

measured by its average SMCO, as a function of evolutionary time.

Using polynomial regression, we observed a significant decrease (p-

value = 9.5e-15) in SMCO in proteins appearing between *3.8 and

*1.5 billion years ago (Gya). Trends were maintained when

excluding domains from the analysis solved in multi-domain

proteins (Figure S11), and also when studying domain evolution

at more or less conserved levels of structural abstraction of the

SCOP hierarchy. Namely, we find a significant decrease of SMCO

at the level of Superfamily (SF), p-value = 2.6e-15), and at the level

of domains with less than 95% sequence identity (p-value, = 2.0e-

16, Figure S1a,b). Similarly, consistent results were obtained at the F

level using linear regression (p-value = 1.0e-06, Figure S1c).

Remarkably, even within a smaller data set of only 87 proteins for

which folding times have been measured [24], we find that the

experimental folding times exhibit a tendency to decrease early in

protein evolution (Figure S2). As an additional way of validation, we

repeated the analysis for *3 million single domain sequences with

predicted SMCO [25], and obtained a decrease again of SMCO up

to *1.5 Gya (p-value, = 2.0e-16, Figures S3, S4). Thus, in this

initial evolutionary period, proteins tended to fold faster on average.

As suggested by the decrease in SMCO, during evolution,

domains diminish long-range and favor short-range interac-

tions, thereby becoming more strongly connected locally. This

picture was further corroborated by an analogous analysis of

evolutionary trend in tightness, measured by shortest paths in

the network of protein contacts [26]. Tightness, and thus the

lengths of paths in the interaction network, decreased in

evolution until *1.5 Gya, followed by an increase, just like the

SMCO (Figure S5). Our results support the hypothesis that

folding speed acts as an evolutionary constraint in protein

structural evolution.

In contrast, we observed an increase in SMCO between

*1.5 Gya and the present (Figure 2a). Thus, the appearance of

many new stuctures by domain rearrangement *1.5 Gya, also

refered to as the ‘‘big bang’’ [19] of the protein world, affected the

evolutionary optimization of protein folding. While a linear

regression supports the SMCO increase (p-value = 2e-16), it was

not as observed at the SF level or at the level of domains (Figure

S1a,b), and for the analysis of experimentally determined rates

(Figure S2).

Given the observed overall evolutionary speed-up of protein

folding, we would expect a late evolutionary appearance of so-

called downhill proteins, which feature ultra-short folding

times on the microsecond scale. We annotated 11 downhill

folders [27] by their Fs, namely a.35.1.2, a.4.1.1, a.8.1.2,

b.72.1.1, and d.100.1.1, and show their average SMCO per

family as black triangles in the timeline of Figure 2a. All of

Figure 1. Protein topologies that favor short range inter-
aminoacid contacts might be the result of an evolutionary
optimization of foldability and thus would have likely
appeared late in evolution.
doi:10.1371/journal.pcbi.1002861.g001

Author Summary

Nature has come up with an enormous variety of protein
three-dimensional structures, each of which is thought to
be optimized for its specific function. A fundamental
biological endeavor is to uncover the driving evolutionary
forces for discovering and optimizing new folds. A long-
standing hypothesis is that fold evolution obeys con-
straints to properly fold into native structure. We here test
this hypothesis by analyzing trends of proteins to fold fast
during evolution. Using phylogenomic and structural
analyses, we observe an overall decrease in folding times
between *3.8 and *1.5 billion years ago, which can be
interpreted as an evolutionary optimization for rapid
folding. This trend towards fast folding probably resulted
in manifold advantages, including high protein accessibil-
ity for the cell and a reduction of protein aggregation
during misfolding.

Evolutionary Optimization of Protein Folding
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them, unsurprisingly, have an SMCO v2, and thus fold

significantly faster on average than other structures. We find

7% of families to have a lower SMCO (SMCO v1.5) than the

experimentally identified downhill folders. We predict these Fs

will fold even faster than the known downhill folders, rendering

them interesting candidates for folding assays. The five Fs

containing the fast folders have all appeared no earlier than

*2.5 Gya, suggesting that they are a result of lengthy

evolutionary optimization. According to our predictions, the

first fast-folding proteins appeared already *3.4 Gya. Howev-

er, their frequency and optimization of folding speed continue

to increase until *1.5 Gya.

Protein length and evolution of foldability
The length of the amino acid chain has been reported to

influence the folding kinetics of a protein, with longer chains

folding more slowly [23,27–29]. We therefore ask if the decrease in

SMCO we observed from *3.8 to *1.5 Gya can be explained by

a decrease in the chain length of proteins. Figure 2b shows how

domain size has varied in evolution. Folding time measured by

SMCO and domain size follow a very similar bimodal trend, with

a clear decrease occuring prior to *1.5 Gya and a slight increase

after the ‘‘big bang’’. As expected, we find domain size, which

equals L in Equation 1, and SMCO to be correlated with folding

rate in agreement with other studies [8,23] (Figure S6). In line with

this correlation, the downhill folders discussed above and shown in

Figure 2a as triangles, have a small domain size of less than 100

residues in common.

We next eliminated the effect of domain size on the

evolutionary trends observed in folding rate to analyze factors

other than domain size. To this end, we dissected our dataset

according to the amino acid chain length. This analysis was done

with all *92,000 domains to ensure enough data points for each

length. The distributions of chain length are shown in Figure 3a, b

for the two time periods before and after the ‘‘big bang’’

(*1.5 Gya). The length distribution for proteins appearing before

the ‘‘big bang’’ exhibited a peak at around *150 amino acids, and

shifted later (*1.5 Gya to the present) to shorter chains with a

peak at around 100 aminoacids, underlining the tendency for a

decrease of domain size. We note that the resulting average chain

length of three-dimensional structures in SCOP, which have been

obtained from X-ray or NMR measurements, is smaller than the

average length of sequences in genomes [30], apparently due to

the increasing experimental difficulties when working with large

proteins. We then analyzed evolutionary tendencies for every

domain length subset by measuring the variation in the end points

of a polynomial regression. The color mapping in Figure 3a

indicates an increase (blue), a decrease (yellow-red), or a non-

significant change (green) of SMCO. Overall, 85% of the data

returned a significant result according to the F-test. During early

protein evolution (3.8–1.5 Gya), we found that 54%+0.3% of all

domains in each size subset optimized their foldability during

evolution by decreasing their SMCO. Conversely, 37%+0.4% of

domains showed a slow-down in folding, i.e. a significant increase

in SMCO. These results confirm the tendencies observed for the

full data set (Figure 1a), and hold for different tresholds of identity,

namely 95% and 40% (Figures S7, S8). As expected, due to the

smaller data set, partitioning domains defined at F and SF levels

according to size yielded results that were statistically not

significant. In summary, even after dissecting the effect of chain

length on changes in SMCO, the tendency of proteins to fold

faster during evolution is confirmed.

After the ‘‘big bang’’, the SMCO and thus foldability showed a

overall increase in evolution (Figure 3b), in agreement with results

from the total set (Figure 2a). Apparently, fast folding did not

represent a major evolutionary constraint during this period.

Instead, other constraints must have been optimized at the

expense of foldability. We next discuss secondary structure as one

factor influencing the impact of foldability on protein structure

evolution.

Secondary structure and evolution of foldability
Secondary structure composition is another factor reported to

have an influence on folding kinetics [23,27,28]. We repeated the

analysis of domains partitioned by size that was described above

for domains in each secondary structure class of SCOP (all-a, all-b,

a/b, and a+b domains) and thereby revealed differences in the

Figure 2. Change in length and foldability during evolution: a)
Size Modified Contact Order (SMCO) versus approximative F
domain age in billion of years (Gya). Each data point represents an
SMCO average of domain belonging to the same F. Triangles show
SMCO averages for domains belonging to the same F and experimen-
tally known to be ultra-fast folders [27]. b) Average amino-acid chain
length for domains belonging to the same F versus F domain age in
Gya. The solid line shows a LOESS polynomial regression, and the grey
shade the 95% confidence interval.
doi:10.1371/journal.pcbi.1002861.g002
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Figure 3. Change in foldability during evolution for subsets of chain size: Distribution of domain length for domains appearing a)
3.8-*1.5 Gya and b) *1.5-0 Gya. Abundancies were colored according to the average DSMCO, the difference between the end points of the

Evolutionary Optimization of Protein Folding
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evolution of foldability. As shown in Figure 4a, the tendency of a

decreasing SMCO before the ‘‘big bang’’ is reproduced for all

classes. This result was confirmed at the level 95% identity and

40% identity (Figures S9, S10), though with a significant decrease

only for the a+b and a classes at the 40% identity level, i.e. for a

much smaller data set. Again, our analysis strongly supports an

evolutionary constraint for fast folding of proteins appearing early

in evolution, 3.8–1.5 Gya.

Interestingly, we here observe a specialization of protein classes,

with all-a proteins tending to fold faster and all-b proteins tending

to fold more slowly, all of which was supported at the 95% domain

level (Figure 4b). Why should the all-a class be under a stronger

fast folding constraint than the all-b class? Figure S12 shows the

average SMCO for each secondary structure class. The all-b and

all-a class show the highest and lowest SMCO, respectively,

suggesting that all-b proteins in general fold slower than all-a
proteins. This is in line with previous findings that containing all-b

proteins fold more slowly than all-a proteins due to long range

interactions between all-b strands that increase contact order

[23,27,28].

Discussion

Protein aggregation damages cellular components and can lead

to a variety of neuronal diseases [31–33]. A way of reducing

aggregation is to enhance the kinetic and thermodynamic

accessibility of the native fold of a protein. Incremental increases

in kinetic or thermodynamic stability of a protein might therefore

represent an evolutionary trace reflecting optimization of protein

foldability [34].

Here, we confirm the hypothesis that foldability exerts a

constraint in the evolution of protein domain structures, as we find

a tendency of proteins to on average fold faster than their

structural ancestors. As expected, shortening of protein chain

Figure 4. Percentage of all domains with a positive (blue), negative (yellow), and insignificant (green) DSMCO. a) for 3.8-*1.5 Gya,
and b) *1.5-0 Gya. Each barplot considers one of the four fold classes according to their secondary structure: all-a, all-b, a/b, and a+b, as indicated.
The barplots were obtained from domain length distributions analogous to those shown in Figure S3.
doi:10.1371/journal.pcbi.1002861.g004

polynomial regression of SMCO in this dataset, for the specified initial (a) and later (b) time period. Yellow to red indicates a decrease, and blue an
increase in SMCO. The barplots (inset) show the percentage of domains with positive (blue), negative (yellow), and insignificant (green) DSMCO.
doi:10.1371/journal.pcbi.1002861.g003

Evolutionary Optimization of Protein Folding
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length during evolution is an important factor leading to faster

folding. However, the exclusion of this protein-size effect preserved

the trend of decreasing folding times. Thus, faster folding is not a

side effect of chain shortening, but likely acts as an evolutionary

constraint in itself. An alternative reason for the decrease of folding

times in evolution is the need of proteins for flexibility in order to

optimize their function such as enzymatic catalysis or allosteric

regulation [35]. Folding speed and flexibility are known to

correlate, as the formation of the compact state with no or only

minor native contacts is much quicker than the arrangement of the

native – often long-range – contacts [36]. Fewer native contacts in

turn result in lower stability and may increase conformational

flexibility as required for some biological functions [37]. Our

analysis of protein folding speed on an evolutionary time line can

be similarly carried out for measures of flexibility to test this

scenario.

Evolutionary constraints on folding are apparently not uniformly

imposed onto the full repertoire of protein structures and during the

entire protein history. Instead, our analysis revealed a bimodal

evolutionary pattern, with folding speed increasing and decreasing

before and after *1.5 Gya, respectively. The speed-up of folding

was most pronounced for all-a folds. The evolutionary inflexion

point coincides with the previously identified protein ‘‘big bang’’,

which features a sudden increase in the number of domain

architectures and rearrangements in multi-domain proteins triggered

by increased rates of domain fusion and fission. We speculate that the

slow down of folding that ensues could be due to cooperative

interactions during folding of domains in the emerging multi-domain

proteins [38]. Alternatively, the observed slow-down after the ‘‘big

bang’’ could be related to the appearance of protein architectures

that are known to help proteins to fold, such as chaperones [39,40]

Moreover, protein architectures specific to eukaryotes appeared at

*1.5 Gya [16]. The Eukaryotic domain of life has the most

elaborate protein synthesis and housekeeping machinery, including

enzymes for post-translational modification. This machinery might

have mitigated the constraints for fast folding, thereby increasing

evolutionary rates of change [34], while preventing misfolding and

aggregation prior to attaining the native fold [41].

Finally, we revealed striking evolutionary diversity in protein

folding when comparing all-a and all-b fold classes from

*1.5 Gya. Their average folding times diverged after the ‘‘big

bang’’, with the all-a class further decreasing and the all-b class

instead increasing their folding times. This result can support the

idea of an optimization of folding that increased the difference in

folding time between all-b and all-a through evolution. As

previously shown [22], all-b folds have on average higher SMCO

and fold slower than their all-a-counterparts. This simply results

from their different topology and is also the result of our analysis

(Figure S12). We here show that earlier in evolution, however,

folding times have been more similar and only diverged from each

other as late as after 1.8 Gya. But why would all-b folds have been

relieved from the evolutionary constraint of fast folding? Since the

‘‘big bang’’ is responsible for the discovery and optimization of

many new functions, including an elaborate protein synthesis and

folding machinery, we speculate that the divergence of averge

folding times of all-a and all-b folds probably reflects an

optimization of function. This optimization happens to be on

the expense of foldability for only the all-b class, the reasons of

which remain unknown. One possible scenario would be that all-a
have the tendency to carry out functions that require high

flexibility, a property that correlates with few long-range contacts,

i.e. high foldability.

An important experimental study by Baker and colleagues [42]

tested the idea that rapid folding of biological sequences to their

native states does not require extensive evolutionary optimization.

Using a phage display selection strategy, the barrel fold of the SH3

domain protein was reproduced with a reduced alphabet of only

five amino-acids without any loss in folding rate. Despite extensive

changes to protein sequence, experimental manipulation pre-

served contact order. While these results should not be generalized

to the thousands of other fold topologies that exist in nature, they

are revealing. They suggest that stabilizing interactions and

sequence complexity can be sufficiently small and still enable

evolutionary folding optimization. In other words, optimal folding

structures can find their way through the free energy landscape

without extensive explorations of sequence space. This property of

robustness could be a recent evolutionary development, since the

SH3 domain F appears very late in our timeline of protein history.

Alternatively, it could represent a general structural property. The

fact that we now see clear and consistent foldability patterns along

the entire timeline supports the existence of limits to evolutionary

optimization of folding that are being actively overcome in protein

evolution. We conjecture that these limits were initially imposed

by the topologies of the early folds, and that structural

rearrangements (resulting from insertions, tandem duplication,

circular permutations, etc [43–46]) offered later on opportunities

for fast and robust folding as evolving structures negotiated trade-

offs between function and stability.

We end by noting that we cannot exclude overlooking effects on

folding times from cooperative folding. These could influence

trends of folding times. The SMCO is known to show high

correlations with folding times only for single-domain proteins

[22]. Developing schemes for estimating folding times from

structures comprising more than one domain is a challenge [38]

but would enable a more general view onto protein foldability as a

constraint throughout evolution. Moreover, our analysis is based

on the sequence and structural data that is available. Results might

therefore be biased by the choice of proteins and their accessibility.

However, the structure of most protein folds and families have

been acquired and will not exceed those that are expected [47].

Moreover, our approach allow us to steadily test if the predicted

evolutionary trends of foldability are maintained upon inclusion of

new sequences and protein folds into the analysis. Interestingly,

multiple studies have found folding rates to correlate with stability

rather than contact order [48]. Analyzing phylogenomic trends of

stability might in this light be an important study to further

elucidate evolutionary contraints on protein structure.

Materials and Methods

Phylogenomic tree
A most parsimonious phylogenomic tree of F domain structures

was reconstructed from a structural genomic census of 3,513 Fs

(defined according to SCOP 1.73) in the proteomes of 989

organisms (76 Archaea, 656 Bacteria and 257 Eukarya) with

genomes that have been completely sequenced [49]. Similarly, a

most parsimonious phylogenomic tree of SF structures (860,497

steps; CI = 0.0255, HI = 0.9745, RI = 0.780, RC = 0.020;

g1 = 20.109) was derived from a structural genomic census of

1,915 SFs (defined according to SCOP 1.73) in the proteomes of

1,096 organisms (78 Archaea, 719 Bacteria and 299 Eukarya). The

structural census scanned genomic sequences against a library of

hidden Markov Models (HMMs) in SUPERFAMILY [50] with

probability cutoffs E of 10-4, as described in detail in previous

studies [15,16]. Data matrices of domain abundances were

normalized to genome size, coded as multistage phylogenetic

characters with characters states ranging from 0 to 29, and used to

build rooted trees using maximum parsimony (MP) as optimality

Evolutionary Optimization of Protein Folding
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criterion in PAUP* [51]. A combined parsimony ratchet and

iterative search approach avoided traps in suboptimal regions of

tree space. Finally, the age of each domain (nd) was derived

directly from its relative position as taxa in reconstructed trees. A

PERL script counted the number of nodes from the most ancient

domain at the base of the tree to each leaf, providing it in a relative

0-to-1 scale. These relative ages (in nd units) were transformed to

geological ages (in Gya) by using molecular clocks of SFs and Fs

derived previously [17] and used to construct an evolutionary

timeline of domain appearance. A general finding is a sudden

explosion of diversity in protein architectures at *1.5 Gya [19].

Survey of Size Modified Contact Order
As a measure for the folding time of each protein architecture,

we evaluated the size modified contact order (SMCO) of domains

indexed in the SCOP database. We used the ASTRAL

repositories to download the 92,470 three-dimensional structures

classified in SCOP 1.73. The phylogenomic tree was built at the F

level on the basis of the same protein structures, i.e. the 1.73

SCOP version. We note that the SMCO calculations are based on

single protein domains from SCOP, while many proteins consist of

multiple domains. Some studies showed that interactions between

domains might affect folding [52]. To test if the evolutionary

trends also hold for the subset of domains excluding those which

have been structurally solved in multi-domain proteins, we carried

out the following steps. We first downloaded the CathDomainList

from the website of CATH (http://www.cathdb.info/download),

and removed the PDB chains with two or more CATH domains

or NMR structures or obsolete PDB entries. We then eliminated

redundancy using the PISCES webserver (http://dunbrack.fccc.

edu/PISCES.php) [53] using the following cut-offs: Sequence

percentage identity: , = 25%, resolution: 0.0 3.0, R-factor: 0.3,

sequence length: 40 10,000, Non X-ray entries: excluded, Ca-only

entries: excluded, cull PDB by chain. We detected SCOP families

using HMMs on the PDB chains and removed chains with long

non-domain segments, i.e. the length of a segments without any

domain assignment should be less than 30. Finally, we removed

the chains with two or more SCOP families and the chains with

two or more CATH entries. Using this dataset, we revealed the

same tendencies in SMCO (Figure S11) as those of the whole

dataset (compare Figure 2).

We calculated the average SMCO for each F and SF, and

mapped these averages, 3,513 of them for F, and 1,915 for SF,

onto timelines derived from corresponding phylogenomic trees.

Average SMCO of each F or SF as a function of node distance

showed non-linear dependencies that were therefore analyzed

using LOESS (locally weighted polynomial regression) [54,55] to

reveal global trends of foldability during evolution. A second-

degree polynomial was fitted to the data at each point of the

timeline, with a span of 0.7. LOESS resulted in regression function

values for each of the 3,513 F or 1,915 SF data points. The results

from LOESS revealed a drastic change in SMCO at *1.5 Gya, a

time point of evolution that coincides with the ‘‘big bang’’ of

protein domain rearrangements and the rise of Eukarya [19]. We

therefore also analyzed our data by two independent linear

regressions describing SMCO data points before and after the ‘‘big

bang’’. To validate our results, we repeated the phylogenomic

analysis of SMCO using two subsets of protein structures, namely

only SCOP domains with 40% of sequence identity (10,570

domains), and those with 95% identity (16,713 domains). In

addition, we used one subset of single domain sequences

(*3,500,000 domains) from the TrEMBL [56] database with

predicted SMCO [57] the results of which are shown in Figures

S3, S4. Only results valid for all four different data sets and thus

robust with respect to the selection of protein structures are

presented here, if not otherwise noted. For the chain length

analysis, we used all *92,000 domains to ensure enough data

points for each length. The distributions of chain length are shown

in Figure 3a, b. The analysis was repeated 100 times with varying

data sample and every dataset (e.g: 95% and 40%). We obtained

standard errors of the mean, which are included in Figure 3, 4 and

Figures S7, S8, S9, S10.

Supporting Information

Figure S1 Size Modified Contact Order (SMCO) versus

approximate domain age (Gya) a) of domains belonging to the

same SF, and b) of domains with less than 95% identity, and c) of

domains belonging to the same F. In a) and b), a polynomial

regression is shown as black solid line. In c) a linear regression for

3.8 to 1.5 Gya and 1.5 Gya to today was used. The gray area

indicates the 95% confidence interval.

(TIF)

Figure S2 Evolutionary changes for an experimental dataset

[24] a) Experimental folding rates versus approximate domain age

in billion of years ago (Gya). b) Domain size of the same set of 87

proteins versus approximate domain age. A polynomial regression

is shown as black line, and the 95% confidence interval as grey

shade.

(TIF)

Figure S3 Change in length and foldability during evolution on

the SF level using TrEMBL database a) Size Modified Contact

Order (SMCO) versus approximative SF domain age in billion of

years (Gya). Each data point represents a single domain from the

TrEMBL database. b) Average amino-acid chain length for single

domains versus SF domain age in Gya. The solid line shows a

linear regression, and the dashed line the 95% confidence interval.

(TIF)

Figure S4 Change in length and foldability during evolution on

the F level using TrEMBL database a) Size Modified Contact

Order (SMCO) versus approximative F domain age in billion of

years (Gya). Each data point represents a single domain from the

TrEMBL database. b) Average amino-acid chain length for single

domains versus F domain age in Gya. The solid line shows a linear

regression, and the dashed line the 95% confidence interval.

(TIF)

Figure S5 Tigthness versus approximate domain age (Gya). A

polynomial regression is shown as black solid line. The gray area

indicates the 95% confidence interval.

(TIF)

Figure S6 Size Modified Contact Order (SMCO) versus folding

rate for 87 proteins with experimentally known folding rates [24].

A linear regression is shown as blue dashed line. The solid lines

indicates the 95% confidence interval.

(TIF)

Figure S7 Distribution of domain length for domains at the 95%

similarity appearing a) 3.8-*1.5 Gya and b) *1.5-0 Gya.

Abundancies were colored according to the average DSMCO,

the difference between the end points of the polynomial regression

of SMCO in this dataset, for the specified initial (a) and later (b)

time period. Yellow to red indicates a decrease, and blue an

increase in SMCO. The barplot shows the percentages of all

domains with positive (blue), negative (yellow), and insignificant

(green) DSMCO.

(TIF)

Evolutionary Optimization of Protein Folding

PLOS Computational Biology | www.ploscompbiol.org 7 January 2013 | Volume 9 | Issue 1 | e1002861



Figure S8 Distribution of domain length for domains at the 40%

similarity appearing a) 3.8-*1.5 Gya and b) *1.5-0 Gya.

Abundancies were colored according to the average DSMCO,

the difference between the end points of the polynomial regression

of SMCO in this dataset, for the specified initial (a) and later (b)

time period. Yellow to red indicates a decrease, and blue an

increase in SMCO. The barplot shows the percentages of all

domains with positive (blue), negative (yellow), and insignificant

(green) DSMCO.

(TIF)

Figure S9 Percentages of all domains at the 95% similarity with

a positive (blue), negative (yellow), and insignificant (green)

DSMCO. a) for 3.8-*1.5 Gya, and b) *1.5-0 Gya. Each barplot

considers one of the four fold classes, all-a, all-b, a/b, and a+b, as

indicated. See Figure 3 of the main text for how these barplots

were obtained.

(TIF)

Figure S10 Percentages of all domains at the 40% similarity

with a positive (blue), negative (yellow), and insignificant (green)

DSMCO. a) for 3.8-*1.5 Gya, and b) *1.5-0 Gya. Each barplot

considers one of the four fold classes, a, b, a/b, and a+b, as

indicated. See Figure 3 of the main text for how these barplots

were obtained.

(TIF)

Figure S11 Change in length and foldability during evolution

for single domains a) Size Modified Contact Order (SMCO) versus

approximate domain age (Gya) for single domains. In a) and b), a

polynomial regression is shown as black solid line. The gray area

indicates the 95% confidence interval. In comparaison to the data

shown in Figure 2 of the main text, domains crystallized within a

multi-domain protein have been left out of the analysis.

(TIF)

Figure S12 Average SMCO for the four fold classes according

to their secondary structure: all-a, all-b, a/b and a+b. all-b
proteins fold significantly more slowly than all-a proteins. The

Wilcoxon rank-sum test return a p-value+2.2e-16 for every pair

of datasets. The higher average SMCO for all-b as compared to

all-a proteins confirms earlier findings [22].

(TIF)
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