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Abnormal regulation of DNA methylation and its readers has been associated with a wide
range of cellular dysfunction. Disruption of the normal function of DNAmethylation readers
contributes to cancer progression, neurodevelopmental disorders, autoimmune disease
and other pathologies. One reader of DNAmethylation known to be especially important is
MeCP2. It acts a bridge and connects DNA methylation with histone modifications and
regulates many gene targets contributing to various diseases; however, much remains
unknown about how it contributes to cancer malignancy. We and others previously
described novel MeCP2 post-translational regulation. We set out to test the hypothesis
that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is
subject to additional post-translational regulation not previously identified. Herein we
report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-
seq analyses in two breast cancer cell lines representing different breast cancer subtypes.
Through genomics analyses, we localize MeCP2 to novel gene targets and further define
the full range of gene targets within breast cancer cell lines. We also further examine the
scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2
post-translationally. Through proteomics analyses, we identify many additional novel
acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides
important new insight into downstream targets of MeCP2 and provide the first
comprehensive map of novel sites of acetylation associated with both pre-clinical and
FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA
methylation and has important implications for understanding MeCP2 regulation in cancer
models and identifying novel molecular targets associated with epigenetic therapies.
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INTRODUCTION

Epigenetic dysregulation involving mutations or abnormal
expression of DNA methylation readers has been associated with
a broad spectrum of disorders that range from Rett Syndrome to
human cancers (1–7), and alterations in both the writing and
reading of epigenetic marks have been linked with tumor
progression at every stage (8–12). Aberrant DNA methylation
not only promotes disease progression but is targeted via
therapeutics applied in the clinic (13–15). Because of the
prevalence of abnormal epigenetic changes in tumor progression
(16–22), exploitation of this property led to FDA approved
“epigenetic” therapies (23, 24). Interestingly, DNA methylation
readers, such as methyl-CpG-binding protein 2 (MeCP2), bridge
DNA methylation and histone modifications by binding to
methylated DNA and recruiting co-repressor proteins (25–28).
While both normal and abnormal DNA methylation is read by
MeCP2, much remains unknown about its role and regulation in
cancer-associated pathologies. MeCP2 was shown early on to have
an affinity for 5-methylcytosine in the context of methylated CG
dinucleotides (mCG) (29, 30) and methylated CH (mCH), where
H = A/C/T. MeCP2 binds methylated cytosine (31–33) and shows
selectivity for mCG sequences with adjacent A/T sequences (34).
However, it also binds to hydoxymethylated cytosine (31, 32, 35–
37). While more investigation is needed, MeCP2 binding to mCH
has been primarily noted on mCA (31–33, 35, 36, 38). Studies have
also shown that MeCP2 binding in mouse brain is proportional to
mCAC +mCG density wherein transcription is sensitive toMeCP2
occupancy (38). Additionally, MeCP2 regulates tumor suppressor
genes (TSG) silencing, and serves as a critical bridge for histone
methyltransferases (HMTs) (25), histone deacetylases (HDACs)
(26, 28, 39), and other proteins that bind modified histones or that
mediate nucleosome remodeling (27, 40, 41). Moreover, MeCP2
has been reported to be amplified in diverse cancer including
human triple-negative breast cancers (TNBC), and it activates
growth factor pathways targeted by activated Ras, MAPK and
PI3K pathways (42). Novel interacting protein partners and gene
targets in brain tissue have also been identified (43). These are the
types of enigmatic and versatile properties of MeCP2 that have
contributed to long-standing knowledge gaps. We previously
reported that inhibition of SIRT1 triggers acetylation of
endogenous MeCP2 at lysine (K171), a site that regulates MeCP2
interaction with HDAC1 and ATRX (44). These findings
demonstrated that MeCP2 post-translational modifications
(PTMs) can critically impact its function, yet few PTMs have
been mapped despite the potential that they might affect substrate
specificity (35, 45). This knowledge gap is especially important
given reports demonstrating unique characteristics of MeCP2
Abbreviations: ChIP, Chromatin immunoprecipitation; ChIP-Seq, Chromatin
Immunoprecipitation Sequencing; ENCODE, Encyclopedia of DNA Elements;
FDA, U.S. Food and Drug Administration; HDAC, histone deacetylase; HMT,
histone methyltransferase; KDI and KDACi, lysine deacetylase inhibitors;
lncRNA, long non-coding RNA; MBD, methyl-CpG binding domain; MeCP2,
methyl-CpG-binding protein 2; NTC, non-targeting control; PDX, Patient-
Derived Xenograft; PTM, post-translational modifications; RNA-Seq, RNA-
Sequencing; sh RNA, short hairpin RNA; SIRT1, Sirtuin 1; TNBC, triple
negative breast cancer; TRD, transcriptional repression domain.
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domains in determining binding specificity (46, 47) and the
impact of MeCP2 on chromatin-dependent regulation of
epigenetic writers (48). In the present study, we have identified
additional novel PTMs across the length of MeCP2 and target
genes in cancer models. Our findings provide new insight on the
versatile role of MeCP2 which is known to be critical in regulating
gene imprinting (49), transcriptional activation and repression (50)
in disparate conditions that range from autism to cancer (4, 51, 52).
MATERIALS AND METHODS

Cell Lines
MDA-MB-468 (HTB-132), MCF7 (HTB-22), MCF10A (CRL-
10317), MCF12F (CRL-10783), PC3 (CRL-1435), T47D (HTB-
133), BT549 (HTB-122), and MDA-MB 231 (HTB-26) cell lines
used in this manuscript were purchased from ATCC which
utilizes STR technology for cell authentication. Cells were used
at a low passage (<20) within 6 months or less after receipt or
resuscitation. MDA-MB-468, T47D, and BT549 cells were
cultured in RPMI 1640 (Gibco). MCF10A and MCF12F were
cultured in HuMEC medium supplemented with HuMEC
supplement kit (Gibco). PC3 cells were cultured in ATCC
formulated F-12K media (ATCC). MCF7 cells were propagated
in MEM while MDA-MB-231 cells were cultured in DMEM
(Gibco). T47D and MCF7 cells were cultured in media
supplemented with 0.1% insulin (Sigma). All cells were grown
in culture media supplemented with 1% pen-strep and 10% fetal
bovine serum from GIBCO at 37 ° in 5% CO2.

Plasmids
pCDNA3.1 (−) was used as the backbone and Hemagglutinin
(HA)-tagged-MeCP2-WT-pCDNA3.1 (−) (encoding MeCP2 e2
isoform), HA-tagged-K135Q-MeCP2-pCDNA3.1 (−) and HA-
tagged-K135R-MeCP2-pCDNA3.1 (−) were generated using
outward PCR method.

Bioluminescent MDA-MB-468 Cells
The pGL4.50[luc2/CMV/Hygro] plasmid (E1310) which encodes
the luciferase reporter gene luc2 (Photinus pyralis) was
purchased from Promega. MDA-MB-468 cells were plated in a
6-well plate (Genesee) at the seeding density of 2 × 105 cells in
order to reach 60% confluency at the time of transfection. Cells
were transfected with 1 µg of the pGL4.50[luc2/CMV/Hygro]
plasmid for 48 h. Stable transfectants were selected with 0.5 mg/
ml hygromycin (Sigma H3274-100MG)-containing media which
was replaced every 3–4 days until total selection was achieved.
Bioluminescence was confirmed by In Vivo Imaging System
(IVIS) in the presence of luciferin substrate (Promega
VivoGlo™ Luciferin, In Vivo Grade P1041).

MeCP2 Stable Knock-Down and Clonal
Selection
MDA-MB-468 cells stably expressing pGL4.50[luc2/CMV/
Hygro] plasmid (Promega E1310) were plated at the seeding
density 2 × 105 cells in order to reach 60% confluency at the time
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of transduction 48 h prior to infection and then infected with
pLKO.1-puro based shRNA MISSION lentiviral transduction
particles purchased from Sigma for MeCP2 (TRCN0000330971,
TRCN0000330972) and Non-Targeting shRN control
transduction particles (SHC002V). The transduction was
enhanced with 5 mg/ml polybrene (Sigma Millipore) and 2×
multiplicity of infection (MOI) viral particles was added to the
media. After 24 h, culture media was replaced with fresh media
for 2 days. Stable clones were selected with 6 mg/ml puromycin-
containing media which was replaced every 3-4 days until
selection was achieved and knockdown confirmed by Western
blots and qPCR.

MeCP2 Stable Overexpression
and Clonal Selection
MDA-MB-468 cells stably expressing pGL4.50[luc2/CMV/
Hygro] plasmid with >90% knocked down of endogenous
MeCP2 were plated at the seeding density 2 × 105 cells in
order to reach 60% confluency at the time of transfection, 48 h
prior to transfection and then transfected with 1 ug of the
pCDNA3.1 (−) backbone, Hemagglutinin (HA)-tagged-
MeCP2-WT (encoding MeCP2 e2 isoform), HA-tagged-
K135Q-MeCP2 and HA-tagged-K135R-MeCP2 plasmids. The
G418 disulfate salt solution (Sigma G8168-10ML) selection was
started 48 h after transfection at a concentration of 0.4 mg/ml,
and the G418 containing media was replaced every 3–4 days
until total selection was achieved and overexpression confirmed
by Western blots.

RT-PCR and qPCR
Total RNA was isolated using the Aurum™ Total RNA Mini Kit
(Bio Rad) and 2 µg of RNA was used to produce cDNA via the
SuperScript® III First-Strand Synthesis System for RT-PCR
(Invitrogen). Intron-spanning primers designed for gene
expression analysis are summarized in Table 1. All primers
were validated by end-point PCR (RT-PCR), a minus reverse
TABLE 1 | qPCR Primers used in the current study.

Forward primer

qPCR
CDH1 TGC CCA GAA AAT GAA AAA GG
EGFR CTT CCT CCC AGT GCC TGA ATA
HDAC1 CGA GAC GGG ATT GAT GAC GA
HIPK3 AAA AGG ACG ATC TGC CCC TG
IL6 CCA GGA GAA GAT TCC AAA GAT
KDM3A TCA CAG GAG CCA CAG TAG GA
KDM3B CCC ACA CCA GGT TCA CAA TCT
KMT2B CTC CGG AAG TGC ACC TTT GA
LANCL2 GGC AGC AAA AGT GGA CCA AG
MALAT1 GCC TGG AAG CTG AAA AAC GG
MAP1B GAG ATG CTG CCA ATG CCt CT
MECP2 CCC ATC AAC ACG GAA GAA AAG
MRPS17 TTG GCG GAG GTG ACC AAA
NEAT1 CCC TGT GCT TCC GAC TTC AT
NUPR2 AGC TTT ACG ACT GCC TGG AC
PSPH CGG CAT AAG GGA GCT GGT AA
SRA1 AGC CCA CAA GTT TCC CAG TC
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transcription control (−RT control) was included in all RT-PCR
experiments. Equal amount of synthesized cDNA was used for
qPCR using the Power UP SYBR Green (Thermofisher Scientific,
A25778) and the CFX96 Real-Time System C1000 Touch
Thermal Cycler (Bio Rad). b-actin gene expression was used as
endogenous control for mRNA quantification, as is not a MeCp2
target gene in both cell lines studied and its expression didn’t
change after the depletion of MeCP2 in RNA-seq analysis.

Western Blots
Protein extracts were generated using RIPA lysis buffer
supplemented with protease inhibitor cocktail (Thermo Fisher
Scientific). The protein concentration was measured with the
BCA method. Approximately 50 mg of protein from each sample
was loaded on NuPAGE™ 4–12% Bis-Tris Protein Gels (Thermo
Fisher Scientific) and run at 175 V constant voltage. A constant
voltage of 30 V was used for protein transfer onto polyvinylidene
fluoride (PVDF) membranes (Millipore-Sigma). Blots were
probed with rabbit anti-MeCP2 antibodies (1:1,000; Cell
Signaling) and mouse anti-HA antibodies (1:2,000; Santa Cruz)
overnight at 4°C. After three washes with tris-buffered saline and
polysorbate 20 (TBST; Fisher scientific), blots were then
incubated with anti-rabbit HRP conjugate secondary antibody
(1:5,000) and anti-mouse HRP conjugate at room temperature
for 1 h. After washing three times, chemiluminescence (Pierce
ECL Western blotting substrate: Thermofisher Scientific,
A25778) was then used to visualize protein bands. b-actin
antibody (1:10,000; Santa Cruz) was used as control.

Immunofluorescence
About 1 × 105 cells were plated on coverslips 48 h prior and they
were washed with PBS and then fixed with 4% paraformaldehyde
for 15 min. After washing with PBS they were then permeabilized
with 0.2% Triton X-100 for 20 min and blocked with 5% BSA for
30 min. Following that, cells were incubated with primary
antibodies MeCP2 (Cell Signaling, 3456S), or HA (Cell
Reverse Primer

GTG TAT GTG GCA ATG CGT TC
CTC CGT GGT CAT GCT CCA AT
ACT TGG CGT GTC CTT TGA TAG T
TCC AAA GTG CTG AAC CTG ACT
GGA AGG TTC AGG TTG TTT TCT G
AGA TCA TCA AAC CTG GAA GGC A

A GCC AAC CGC ATC TTT CAC TG
CCG TGG ATG GCT GAT CTG TAG
CTC GCT GCC AAA TCA CAT CG
TGG AA AAC GCC TCA ATC CCA
CAG GGT CAT TCC CAC TCA CC

T GCA GGG TGG GGT CAT CAT AC
ACA TGC TTT GCT CGT GGA AC
CCC TGG CCT AGT GGA AAT GG
CTT CGA ACA GGT CCT TCG GT
GGC TGC GTC TCA TCA AAA CC
GGC TTG AAA GCT CTT GCA CC
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Signaling, 3724S) for 1 h at room temperature, washed with PBS
three times and then incubated in the dark with Phalloidin 568
and secondary antibodies ALEXA-488 goat anti rabbit conjugate
for 1 h at room temperature. After three PBS washes the
coverslips were mounted with ProLong® Gold Antifade
Mountant with DAPI (Thermo Fisher Scientific), the slides
were allowed to cure for 48 h and then examined under the
Nikon T-1E scanning confocal microscope, with a 60× objective,
and analyzed with NIS software.

Chromatin Immunoprecipitation (ChIP)
Cells were plated for 72 h and the media was changed 24 h prior
to the experiment. The cells were subjected to 1% formaldehyde
cross-linking (Sigma) for 8 min at room temperature. The cross-
linking reaction was quenched by adding glycine (Sigma) to a
final concentration of 0.125 M for 5 min at room temperature.
The medium was then removed and cells were washed twice with
cold PBS containing protease inhibitor cocktail (Thermo Fisher
Scientific). Cells were scraped in PBS and pelleted. Pellet was
resuspended in SDS Lysis buffer (50 mM Tris–HCl pH 8.0,
10mM 0.5M EDTA, and 1% SDS) with protease inhibitor
cocktail and sonicated in a Diagenode Bioruptor 300 sonicator.
Sonication conditions involved 20 cycles (30” ON/30” OFF) for
MDA-MB-468 and 25 cycles for MCF7 cells. Sonication was
evaluated for every experiment in a 1% agarose gel and
chromatin fragments showed a distribution in the 100–800 bp
range. The soluble chromatin fraction was collected and
incubated for 2 h at 4°C with either MeCP2 (Sigma, M9317),
or rabbit IgG (Sigma I5006). Dynabeads Protein A (Invitrogen)
were washed and then added to the chromatin-antibody mixture
and mutated for 2 h at 4°C. Beads were washed with a low salt
wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
Tris–HCl pH 8.1, and 150 mM NaCl), a high salt wash buffer
(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–HCl pH
8.1, and 500 mMNaCl), and TE (1 mM EDTA and 10 mM Tris–
HCl pH 8). Reverse-crosslinking was performed at 65°C
overnight followed by treatment with RNaseA (Invitrogen) for
2 h at 37°C and proteinase K (Invitrogen) at 55°C for 2 h. The
chromatin was eluted and purified using Qiaquick PCR
purification kit (Qiagen) and subjected to ChIP-PCR to
evaluate the occupancy of MeCP2 along the promoters of
target genes. The primers listed in Table 2 were used for analysis.

ChIP Sequencing
For ChIP-Seq experiments, ChIP DNA was prepared as
described above library preparation was followed by high
throughput sequencing with Illumina Hi-seq 2000 at
GENEWIZ Corporation.

RNA Sequencing
RNA was prepared as described above, and library preparation
and sequencing were performed at Center for Biotechnology &
Genomics of Texas Tech University. RNA quality was
determined using RNA Screen Tpe (Agilent). Ribosomal RNA
depletion was achieved using NEB Next rRNA Depletion Kit
(Human/Mouse/Rat) (NEB # E6310X). RNA fragmentation,
double stranded cDNA and adaptor ligation was generated
Frontiers in Oncology | www.frontiersin.org 4
using NEBNext Ultra II Directional RNA Library Prep
according to the manufacturer’s protocol (NEB # E7760L).
PCR enriched libraries were quantified by Qubit and
equimolar indexed libraries (different samples had different
indexes for multiplexing) were pooled. Pooled libraries were
quantitatively checked using the Agilent Tapestation 2200 and
quantified using Qubit. The libraries were then diluted to 200 pM
and spiked with 2% phiX libraries (Illumina control). The
transcriptome sequencing was performed on the barcoded
stranded RNA-Seq libraries using Illumina NovaSeq 6000 SP
flow cell, paired-end reads (2 × 50 bp).

ChIP Sequencing and RNA Sequencing
Data Analysis
For ChIP-Seq analysis, the FASTQ files were analyzed using
DNASTAR’s Laser Gene software. MEME-ChIP was used to
analyze MeCP2 binding motifs and TOMTOM to identify if
those motifs were similar to known consensus sequences using
theMEME Suite Programs http://meme-suite.org/index.html (53).
We downloaded the FASTQdata sets of RRBS forMCF7 cells from
the ENCODE portal (54) (https://www.encodeproject.org/) with
the following identifiers: ENCSR943EFS, andENCSR939RXT; then
avisualized with Integrative Genomics Viewer (IGV). Venn
diagrams to identify the overlapping genes were generated using
the Venny tool https://bioinfogp.cnb.csic.es/tools/venny/index.
html. For RNA-Seq analysis, the RNA-Seq reads were normalized
by RPKM and assembled by mapping reads directly to the
annotated human reference genome using the DNASTAR
SeqMan software (DNASTAR, Inc., Madison, WI). Differential
gene expression levels were quantified using Fisher’s Exact Test
Signal Search in the DNASTAR ArrayStar software package
(DNASTAR, Inc., Madison, WI). Differentially expressed genes
werefiltered if theymet the criterion for a two-fold change, a p-value
that was less than.05 at a 95% confidence interval. For each
comparison, genes were sorted based on fold change, from low to
high. The resultswere ported intoExcel spreadsheetswhere the log2
of the fold change for each gene was calculated.

RNA Analysis In Silico
Relative RNA expression of 20 selected genes in breast cancer
and normal adjacent tissue was downloaded from UCSC Xena
platform on 11th of April 2020 (1,092 breast cancer primary
tumors and 114 normal tissues).
Liquid Chromatography/Mass
Spectrometry (LC–MS/MS)
PC3 and MDA-MB-468 cells were cultured and seeded in p150
mm dishes at 37°C under atmospheric oxygen conditions. Once
70% confluent, cells were treated with DMSO, 2µM panobinostat,
10 µM Inhibitor-IV, 10 µM Inhibitor-VII, and 10 µM pracinostat
for 45 min to 1.5 h and harvested in RIPA buffer (with complete
protease inhibitor cocktail, 1 µM Trichostatin A and 1 mM
nicotinamide). Protein concentration was quantified by the BCA
method. Immunoprecipitation was performed using 4 mg of anti-
MeCP2 antibody (Cell Signaling) and incubated for 2 h at 4°C.
Protein A dynabeads (Invitrogen) were added to the immune-
December 2020 | Volume 10 | Article 576362
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TABLE 2 | ChIP-PCR Primers used in the current study.

Forward primer Reverse Primer

ChIP-PCR
ACOT2 GGT TTT GCT GTG ATG GCT CT AAG GTA GTG TGT GTT GGG GTA G
AP1M2 ACA GAG ATG TGC GGT GCA A TTC CAC CCT CAG CCA TTG AT
AQP1 ACT TCA GCA ACC ACT GGG TAG ATT TCC TGT CCT CTG GCT GTC
ATG4D TGT ACC GTG GGC TTC TAT GC CAC CTT TTC AGG GGT GGA CA
CCT6A TTG GTT CAT TGC GAC TAC CA TCA CTT GAG GCC AGG AGT TT
CHCHD2 AGT AAT GGC GTG ACC CAA TGT TGG TTG GAA TTG GGA ACT TGA TG
DKK1 ATT GGC AGG AAC AGG ATG TGT GAG TGG AAT GAG GAA GGA TTT GT
DLX1 GGT CTT CAT TTG TTG CTC GC AAT CCT TCC TGC GCC CTA AT
DNMT1 CAA AAG GGG AAC CTT GTT CA CCT GGG AGG AAG AAA TAG GG
DUX4 TTG CCA TTT GTT CAC TCT GC TGA TCC TGG GGT TGA AAG TC
EGFR CCT TGG CAC CTT TCT ACT GC TGG AAA ATC GGC TTC AAA AC
EIF3G ATT GGC TCA GGG CTA TTG GT GGC TTT GCC TTC ATC AGC TT
EYA2 ATG AAG AAC AAG CCC CCG AG GGG GCT GAG GGT GCA TAA AT
FBXL7 ATC CAG AGA GGT GCG TTT GG GAG TGG GTG CAG ACA GAC AA
GBAS CCT CTT GGG AGG TCA ACA AA GCA TAC GTC ATC TTG CAT GG
GHSR TTC AGA GTG GAG AGC TTT CTC TGG TGA GCT GAC TAT CTC TCT CCC A
GRK7 AAT GGT TGC TGG ACG AAC AC ATC CCT GTG GAC AAT ACT GGT G
H2AFB2 AGA TAG CAC ACT CAA CGC CC CTT GGC CGT CAG GTA CTC AA
HDAC1 CTG AGC TAA ATC AGC ACC CG CCT CCC ACT GCC CTA CAT AGA
HIPK3 TCC TTC CCG ACC TCA CAC A ACT GGC ACT CTT TCA TGG TGG
HIST1H4F TGT TTG TCT TCG ATC ATG TCT GG GGC GTC CCG TAT CAC ATT CT
ICAM1 ATT GTC CGG GAA ACT GGA CG ACA ACA GGC GGT GAG GAT TG
ICAM3 CAT GGT CCA GTG GGA AAG GT ATA GGC TTG TAC GCC ATC CC
ICAM5 ACT AGA CGG AAG TGG GAC AGA GTC AAG TTT CCA CCA CGC AG
ID2 GAG CTG TGC GTG AAA TTG CT ACC GCT TAT TCA GCC ACA CA
IL6 AGC ATC CCT CCA CTG CAA AG GTG CCC ATG CTA CAT TTG CC
ILF3 AGG CAG CTA CTC CTA CTC GAA CAC CAC TTG TCC TCC TCC TAA
JARID2 ACG AGT GTA TGG GTG AGT GC CCA TTG CAG CCA TTT GTC CC
KDM1A AAG CCA ACG GAC AAG CTG TA ACA TCA CAT CAT CTC TAC CCT CA
KDM1B AGT TTG GAA AAC CTG CAA CAC T AGA GTA GGT GAT TTC GCT GGG
KDM2A TGC TTC TCA ATG TGC TCT CCA GCC AGG CTG AAA ACA CTT ACT T
KDM3B AAC TCC TTT GCT CTC AGC GT TCC AAA TCT TAC CTC CCC GTC
KDM4A GGG TCA AAG CAC TTG GGG AT GCT TCA CAG AGC AAC AAG GC
KMT2A ACC ACC ATG TGA CTA TTG GAC TT ACA GCT CTT ACA GCG AAC ACA
KMT2B AAC CCC ACC CAT TTC CCT GTT TGG GAG GCC AGG AAG TTG AA
KRI1 TGA TAA ATG CGG GGG TCC TT TCC ATC CTA ATC CCT ACG CTG A
LANCL2 CCA TTA ACT TGG GAG GCT GA GGA CTG CAA TGT CAC CAA TG
METTL7A GCT CTG TGG ATG TGG TGG TC CTC ACA CCC TTT CAC TCA CCG
MRPS17 TAG GTG CCA AGG ATG GTT TC CTC CCA AAG GTC AAG GAT CA
NUPR1L AAA GCC TGC GGA ACT TCA TA GGA TGG TTT CGA TCT CCT GA
OXCT2 TTG ATG TCG TCC ACC GTC AG GAC CTG GCG AAC TGG ATG AT
P2RY11 CTG GTG GTT GAG TTC CTG GT GCT GAT GCA GGT GAT GAA GA
PPAN-P2RY11 GAC ACT GTC TCT CCC CAC AGA CCC AAT CTG GGG CGT TCA ATC
PSPH GTG CTT GAA GGT GGG TAG GA CTG TGG ATT CTG CAA GAG CA
SEC61G CCT GGG TTC AAG CAA TTC TG CAC CCG AGG TCA GGA GTT TA
SIRT1 AAG AAA GGC AGT CGG ACC AT GCT GAC CTA CAG TAA GCA CTC A
SIRT5 AAC CAC AGA CCT GCC TGA GT TCC CTC TCC CAT CAG GGT AT
SLC44A2 ACC CTA CTT CAT GTC GCC C TCA TGC ACC CCC AGT CTA CAT
SUMF2 CAA CAC AGA CCC CCA TCT CT CAT GGC TCA CTA CAG CCT CA
TCEB3C CTC AGA AAT CGC CTC CTG TC GAG AGT GCT TCT GGG TTT GC
TCEB3CL2 CTC AGA AAT CGC CTC CTG TC GGA GAG TGC TTC TGG GTT TG
VOPP1 TTC CAC AGC ACT CCT CAC AG GAA TGA GGC AGC AGA AGT CC
VSTM2A AAG GTT GGA TGG GTT TTT CC ACA CTG GCA AAT TCC GTT TC
WNT3A GGC ATG GGG AGG TAT GCA AT GAA TCT GGC CGT GTG CTT TG
WT1 GCT TGA ATG AGT GGT TGG GGA ACC GCT GAC ACT GTG CTT CTC
ZNF154 TCT CCA GCA TCA CAT CAC GG TCC TCT CAG TTG GGG AGC TT
ZNF713 AGT CAC AAA AAT CCA GAG CCC A AGA ACA GGC AGG AAT CCA TGA

Castro-Piedras et al. MeCP2 Targets and Post-Translational Modifications
complex and incubated for 2 h at 4°C. IP protocol was followed as
mentioned above. Beads were washed with RIPA buffer (four
times) and autoclaved water (two times). Dry beads were shipped
to Applied Biomics Inc. (Hayward, CA) for acetylation site
Frontiers in Oncology | www.frontiersin.org 5
identification by LC–MS/MS mass spectrometry on a fee-based
service. The specific lysine residues that were acetylated, exhibited
ion peaks at mass/charge (m/z) ratio of ~126 as summarized in
Figure 4A.
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Statistical Analysis
Statistical analysis was performed using unpaired student’s t tests
(Graph Pad Prism software) to assess whether differences
observed in the various experiments were significant. All
results are expressed as mean ± SEM and considered
significant at *p <0.05, **p <0.01 and ***p <0.001.
RESULTS

MeCP2 Binds Novel Genes in Breast
Cancer Cells Associated With Diverse
Biological Functions
Since the discovery that MeCP2 regulates transcription and
mutations in the gene cause Rett Syndrome, there has been
considerable interest in what regulates its function and what
downstream genes are targeted (55, 56). DNA methylation and
its readers influence transcription activation and repression in a
context-dependent manner depending on the genomic location
of binding (57, 58). While this process is known to be frequently
altered in cancers (59–61), many unknowns remain regarding
the role of MeCP2 in regulating gene expression. Given
abnormal DNA methylation in breast cancers (10, 12, 62, 63)
and MeCP2 amplification in cancers (41), we wanted to identify
new MeCP2 target genes and map novel sites of MeCP2 post-
translational acetylation in breast cancer cells. We first examined
MeCP2 protein expression in breast cancer cells and noted a
range of expression across all lines with higher expression (64,
65) in MDA-MB-468 and BT-549 cells (Figure 1A). Both of
these lines are derived from triple negative breast cancer (TNBC)
which lack the expression of hormone receptors (ER and PR) and
do not overexpress the growth factor receptor, HER2. To identify
novel genomic targets of endogenous MeCP2, we performed
MeCP2 ChIP-Seq analyses across two breast cancer cell lines
(MCF7 and MDA-MB-468). These cells were chosen because
they represent two different breast cancer subtypes and show
relatively different MeCP2 protein expression levels. Also,
inclusion of MCF7 in the ENCODE Project enabled
comparison of our ChIP-Seq data with other publicly available
data for epigenetic marks mapped in this cell line.

MeCP2 ChIP-Seq had not been done in MDA-MB-468 cells
and our analysis revealed that MeCP2 binds to a wide spectrum
of target genes (~20,000 in MDA-MB-468 and ~1,337 in MCF7
cells) ranging from miRNA, lncRNA, snRNA, processed and
unprocessed pseudogenes, antisense and protein-coding genes.
These genes are associated with a diverse range of cellular
processes like gene expression, organization of the extracellular
matrix, transport, or signal transduction, as shown in Figures
1B, C. In MeCP2 ChIP-Seq in MDA-MB-468 cells, we found that
MeCP2 binds to multiple novel targets not previously associated
with MeCP2 function in the context of breast cancer. Some of
these included the following genes: a) SSU72 Homolog, RNA
Polymerase II CTD Phosphatase (SSU72), a protein phosphatase
that catalyzes the dephosphorylation of the C-terminal domain
of RNA polymerase II (66); b) CAPN2 (Calpain 2), a calcium-
sensitive cysteine protease (67); c) Plexin B2 (PLXNB2), a class B
Frontiers in Oncology | www.frontiersin.org 6
transmembrane receptor that participates in axon guidance and
cell migration in response to semaphorins (68); d) Zinc Finger
SWIM-Type Containing 4 (ZSWIM4); e) RUNX Family
Transcription Factor 3 (RUNX3) a transcription factor that
functions as a tumor suppressor and is frequently deleted or
transcriptionally silenced in cancer (69, 70), and f) Solute Carrier
Family 45 Member 4 (SLC45A4) (Figure 1B). Additionally, in
MCF7 some of the notable genes included a) Ubiquitin Specific
Peptidase 34 (USP34), a ubiquitin hydrolase that removes
conjugated ubiquitin from AXIN1 and AXIN2, acting as a
regulator of Wnt signaling pathway (71); b) Maltase–
Glucoamylase (MGAM), an enzyme that plays a role in the
digestion of starch (72); c) GDP-Mannose 4,6-Dehydratase
(GMDS), an enzyme that participates in the synthesis of GDP-
fucose from GDP-mannose (73); d) Solute Carrier Family 45
Member 4 (SLC45A4); e) CCDC26 Long Non-Coding RNA
(CCDC26), a lncRNA class associated with Malignant Glioma
and Astrocytoma (74, 75); and f) Sidekick Cell Adhesion
Molecule 1 (SDK1) (Figure 1C). Moreover, 60% of the MCF7
loci (806 of 1,336) overlapped with MDA-MB-468 loci, including
gene such as USP34, MGAM, GMDS, SLC45A4, CCDC26, and
SDK1 (Figure 1D). We further analyzed the methylation status
for genes in MCF7 cells for which publically available Reduced
Representation Bisulfite Sequencing (RRBS) data was available
(Figure S1). We found that MeCP2 binds to genes in MCF7 cells
in regions where CpG methylation had been mapped such as
SDK1, a cell adhesion molecule; Jagged 2 (JAG2), a Notch ligand;
glycogenin 2 (GYG2), an enzyme involved in glycogen synthesis
(Figure 1C, Figure S1C). These novel MeCP2 targets as well as
others in Figure S1 had not previously been linked with MeCP2,
but have been linked with pathobiology associated with cancer
(76–84) or genetic disorders such as Leigh syndrome (85) and
Raine syndrome (86, 87). We also found that MeCP2 binds to
genomic regions devoid of CpG methylation such as for USP34,
MGAM, GMDS, SLC45A4, SSU72, CAPN2 and PLXN2 (Figures
S1B–C). Similarly, while these are novel targets of MeCP2, many
have been implicated in diverse cancers (67, 71, 88–92). This
further shows the complexity of MeCP2 binding across the
genome. To identify the DNA motifs associated with MeCP2
genomic binding, we analyzed the genomic fragments sequenced
in our MeCP2 ChIP-Seq analyses performed in triplicate. The
MEME-ChIP analysis revealed a motif consistent across three
independent experiments for both MDA-MB-468 and MCF7
cells (Figure 1E and Table 3).
MeCP2 Localizes to Novel Genes and
Regulates Their Expression
We further determined the global occupancy of MeCP2
with respect to cellular functions and performed pathway
analysis to identify the core pathways associated with the
newly identified target genes in MDA-MB-468 and MCF7. We
observed an enrichment of the gene expression, immune system,
metabolism, metabolism of proteins, and signal transduction
pathways (Figure 2A). We further randomly chose more than
100 genes identified in the triplicate analysis of MeCP2 ChIPseq
in MDA-MB-468 cells and validated MeCP2 binding viaMeCP2
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ChIP-PCR, some of which are shown in Figure 2B. Consistent
with our MeCP2 ChIPseq analyses, we found via MeCP2 ChIP-
PCR that MeCP2 localizes to various gene promoters involved in
diverse biological processes such as immune system regulation
(IL6, ICAM3, and ICAM5), signal transduction (EGFR,
WNT3A, and DKK1), transcription (KMT2A, SIRT1, HDAC1,
DNMT1), developmental biology (DUX4) and lncRNAs
Frontiers in Oncology | www.frontiersin.org 7
(MALAT-1 and NEAT1) in MDA-MB-468 cells (Figure 2B).
Several of the lncRNA targets identified are poorly studied, so we
examined transcript expression patterns of some associated with
MeCP2 MALAT1 and NEAT1 and established expression
patterns across a panel of breast cancer cells. To determine
whether MeCP2 depletion would lead to a change in
expression of novel gene targets, MeCP2 was stably depleted
A

B

D E

C

FIGURE 1 | ChIP-Seq identified novel MeCP2 binding motifs. (A) MeCP2 expression in breast cancer cell panel including non-cancer cell lines MCF12F and
MCF10A and breast cancer cell lines MCF7, T47D, BT 549, MDA-MB-468 and MDA-MB-231. (B) An assembly of IgG (first row) and MeCP2 (second row) ChIP-Seq
data in MDA-MB-468 for the SSU72, CAPN2, PLXNB2, ZSWIM4, RUNX3, and SLC45A4 genes, visualized by IGV. (C) An assembly of IgG (first row) and MeCP2
(second row) ChIP-Seq data in MCF7 for the USP34, MGAM, GMDS, SLC45A4, CCDC26 and SDK1 genes, visualized by IGV. For (B, C) each column is 4,000 bp
wide. The third rows show the gene nearest to the ChIP-Seq alignment including its location, and orientation. The medium thick dark lines are the UTRs of the gene
and the thicker dark regions are exons followed by thin lines with arrows which are the introns. (D) Venn diagram representing overlap of MeCP2 ChIP-Seq peaks
between MDA-MB-468 and MCF7 cells. (E) MEME-ChIP (Motif Analysis of Large Nucleotide Datasets) analysis of the MeCP2 binding sites identified MeCP2 specific
motifs in MDA-MB-468 cells and MCF7 cells.
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TABLE 3 | MeCP2 binding motifs.

CONSENSUS Width Fragments E-value

MDA-MB-468
Replicate #1 GTGATGTGTGYRTTCAACTCACAGAGTTGA 30 3232 8.1e-3515
Replicate #1 CTAGACAGAAKMATTCTCAGAAACTT 26 3568 1.1e-2663
Replicate #1 TTWCAYAGAGCAGWTTTGAAACACTCTTT 29 2923 6.5e-2645

Replicate #2 TTGTGATGTGTGYRTTCAACTCACAGAGT 29 3102 1.4e-3473
Replicate #2 AARCTAGACAGAAKVATTCTCAGAAA 26 3210 1.3e-2530
Replicate #2 AACVTTYCTTTTCAYAGAGCAGWTTKGAAA 30 2685 5.0e-2508

Replicate #3 TGWTGTGTGYDTTCAACTCACAGAGTTKAA 30 1762 9.7e-1782
Replicate #3 TAGACAGAAKMATTCTCAGWAACTTCYTTG 30 1325 5.0e-1682
Replicate #3 TYCTTTWCAYAGAGCAGWTTKGAAACACTC 30 1085 3.3e-1262
MCF7
Replicate #1 CTTTGTGATGTGTGYRTTCAACTCACAGA 30 815 7.2e-2719
Replicate #1 YTAGACAGARBARTTCTSARAMACTY 26 1530 2.0e-2663
Replicate #1 GCAAGTGAKATTTVRACCKCTTTGAGGYC 30 658 4.7e-1616

Replicate #2 CTTTGTGATGTGTGYRTTCAACTCACAGA 29 698 5.1e-2488
Replicate #2 YTAGACAGARBARTTCTSARAMAC 24 1273 3.1e-2310
Replicate #2 GMWTKGARKSSAATGGWRKRR 21 1428 7.5e-1387

Replicate #3 TGTAATCCCAGCWMYTYGGGAGGCYG 26 6885 2.8e-1157
Replicate #3 TTTTTKTWTTTTTWKTWGAGAC 22 7314 1.3e-709
Replicate #3 GCCACCTCGCCCGGC 15 7915 1.6e-485

Castro-Piedras et al. MeCP2 Targets and Post-Translational Modifications
with two different shRNA (sh1 and sh3) in MDA-MB-468 cells
(Figure S2A). We also observed by quantitative RT-qPCR a
change in mRNA expression of novel targets in which were
validated for knockdown (Figure S2A). A minimum of three
independent experiments showed that depletion of MeCP2
caused a change in the expression of several of the genes
whose promoter it bound. We found that knockdown of
MeCP2 in MDA-MB-468 cells caused an increase in some
genes such as IL6, KDM3B, HIPK3, KDM3A, EGFR, and
KMT2B and a reduction others such NUPR1L (also known as
NUPR2), METTL7A, PSPH, LANCL2, MRPS17 and HDAC1.
(Figure 2C and Figure S2B). Together these results show the
complexity of MeCP2-mediated regulation of gene expression.

MeCP2 Targets Genes With Differential
Expression Between Breast Cancer and
Normal Samples
To evaluate the global effect of MeCP2 on RNA expression we
performed RNA-Seq in MDA-MB-468 cells. We analyzed three
independent experiments of non-targeting control (NTC) versus
sh1 MeCP2 and NTC versus sh3 MeCP2 and found changes in 899
genes and 875 genes, respectively (Figure 3A). Overlap of ChIP-Seq
hits and RNA-Seq hits showed 175 potential transcriptional targets
of MeCP2 (Figure 3B). A pathway enrichment analysis of these
potential targets showed their participation in the immune system,
metabolism, metabolism of proteins, and signal transduction,
among other pathways (Table 4). Moreover, these genes were
differentially expressed in normal vs. breast cancer tissue (Figure
3C), and several of these target genes have been previously reported
to be tumor suppressors (93–99) while others were reported to be
oncogenes (100–103) (Figure 3D).
Frontiers in Oncology | www.frontiersin.org 8
Endogenous MeCP2 Is Acetylated at Key
Lysine Residues and KDI Further Influence
Its Acetylation Patterns
We previously reported that MeCP2 undergoes acetylation on Lys-
171 in both MCF7 and RKO cells. We further demonstrated that a
K171 acetylation mimetic did not perturb binding to select gene
targets, but it diminished interaction of MeCP2 with binding
partners such as ATRX and HDAC1 in colorectal cancer cells
(44). In vivo and in vitro studies have demonstrated the importance
of MeCP2 post-translational regulation (45, 104–107), yet little has
been done to comprehensively map novel MeCP2 PTMs. In the
current study we wanted to extend our analyses and provide a
comprehensive map of post-translational acetylation in other cancer
cell line models. In order to further understand howMeCP2 is post-
translationally regulated in TNBC breast and prostate cancer cell
lines, we systematically identified the specific lysines on endogenous
MeCP2 where acetylation was induced upon lysine deacetylase
inhibition (KDACi). We inhibited SIRT1, a class III lysine
deacetylase, using 10 µM Inhibitor-IV or 10 µM Inhibitor-VII, as
well as the class I/II/IV lysine deacetylases using 2 µM panobinostat
and 10 µM pracinostat. Given the links between DNA methylation
and/or aberrant expression of DNAmethylation readers in prostate
cancer (4, 8) and TNBC (12, 42), we focused on two model lines
representing each cancer, PC3 and MDA-MB-468, respectively.
Next, we performed immunoprecipitation of endogenous MeCP2
and analyzed the samples using LC–MS/MS. Figure 4A
summarizes the specific lysine residues that were acetylated and
exhibited ion peaks at mass/charge (m/z) ratio of ~126 under basal
(vehicle control) and KDI-induced conditions (i.e., cells treated with
panobinostat, Inhibitor-IV, Inhibitor-VII, and pracinostat) (also see
Figure S3). The mass spectrometry analyses showed that
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endogenous MeCP2 was acetylated at eight lysine residues under
basal conditions (i.e., vehicle control) with induction in acetylation
on K417 with 2 µM panobinostat; K364, K417, K431, K435 with 10
µM Inhibitor-IV; K22, K24, K27, K210 with 10 µM Inhibitor-VII;
and K12, K135, K144, K171, K233 with 10 µM pracinostat. We
found changes in acetylation patterns induced by exposure to both
pre-clinical KDIs such as SIRT1 inhibitors and pracinostat as well as
an FDA-approved inhibitor, panobinostat, which is used in the
clinic to treat leukemias and lymphomas (23, 108). Interestingly,
some of the lysine residues detected as acetylation sites (K22 and
K135) were also sites mutated in Rett Syndrome. Moreover, some of
Frontiers in Oncology | www.frontiersin.org 9
the lysine residues detected as acetylation sites (such as K135), have
been previously reported as sites linked with ubiquitination (4). We
found acetylated lysine residues across the length of the protein,
including at the N-terminus, in the methyl-binding domain (MBD),
in the intermediate domain (ID) and the transcriptional repression
domain (TRD) as well at the C-terminus region (Figure 4B).
Together, these results indicate that MeCP2 is acetylated under
basal and KDI-induced conditions in multiple cancer cell lines.

Next, we wanted to determine the impact of K135 acetylation
on MeCP2 subcellular localization. We chose to study this site
since it is situated in a highly conserved MBD domain and is a
A

B

C

FIGURE 2 | Novel genes targeted and regulated by MeCP2 in breast cancer. (A) Pie graph showing enriched pathways of ChIP-hits for MDA-MB-468 and MCF7
cell lines generated by Reactome pathway analysis. (B) ChIP-Seq experiments for IgG and MeCP2 were performed in MDA-MB-468. ChIP followed by end-point
PCR was performed to validate 60 genes targeted by MeCP2. (C) Representative of two-independent RT-qPCR-based analysis to evaluate expression changes of
MeCP2, EGFR, IL6, NUPR2, PSPH, CDH1, MAP1B, METTL7A, MALAT1, NEAT1, AND SRA1 genes in MDA-MB-468 (NTC, sh1 MeCP2, and sh3 MeCP2) cells.
Transcript levels were normalized to actin transcript levels.
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residue mutated in Rett syndrome patients. In order to probe the
functional significance of MeCP2 acetylation, we generated HA-
tagged wild-type MeCP2, HA-tagged deacetylation mimetics
(K135R), HA-tagged acetylation mimetics (K135Q). Once the
mutations were confirmed by sequencing, we then transfected
and selected MDA-MB-468 cells with the plasmids for stable
expression. Overexpression of HA-tagged MeCP2 constructs was
confirmed by protein expression of WT and point mutants in
MDA-MB-468 cells (Figure S4B). Using immunofluorescence
assays, we detected that HA-tagged wild-type MeCP2,
deacetylation mutants (K135R), and acetylation mutants
(K135Q) were mostly in the nucleus of stably expressing
MDA-MB-468 cells (Figure 5). These data demonstrate that
post-translational acetylation on K135 lysine residue does not
alter MeCP2 sub-cellular localization and calls for future studies
Frontiers in Oncology | www.frontiersin.org 10
to examine the role of acetylation at this residue as well as others
identified in this report.
DISCUSSION

The present study provides valuable insight on two important
fronts. First, we identify novel genes that are subject to MeCP2-
mediated regulation. Second, we provide a comprehensive
identification of novel sites of post-translational acetylation
associated with different cancer types and in response to
multiple classes of deacetylase inhibitors. Concerning genomic
analyses, these findings are important because we identify novel
MeCP2 target genes linked with tumor progression which were
not previously linked with MeCP2. While global DNA
December 2020 | Volume 10 | Article 57636
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FIGURE 3 | MeCP2 depletion induces transcriptional changes in MDA-MB-468 cells. (A) A volcano plot showing up-regulated (red) and down-regulated genes
(blue) in RNA-Seq analysis between NTC and sh1 MeCP2 (upper panel) and NTC vs sh3 MeCP2 (bottom panel). (B) Venn diagram representing overlap of MeCP2
ChIP-Seq peaks and RNA-Seq analysis in MDA-MB-468 cells. (C) Differential expression of 20 selected genes of the 175 genes common in MDA-MB-468 ChIP-Seq
and RNA-Seq. (D) Role of selected genes in cancer tumorigenesis.
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TABLE 4 | Pathway analysis of the intersecting genes of MeCP2 ChIP-Seq and RNA-Seq.

Pathway identifier Pathway name Genes

R-HSA-9612973 Autophagy RRAGD
R-HSA-1640170 Cell Cycle DMGDH;MECP2;DACH1;PIM1;L1CAM;PHLDA1
R-HSA-8953897 Cellular responses to external

stimuli
DMGDH;DACH1;NCF1;RRAGD;ADRA1B;CRYAB

R-HSA-1266738 Developmental Biology DMGDH;NRP2;ADGRV1;PLXND1;SEMA3E;IRS2;L1CAM;MECP2;DACH1;COL4A1;ITGA10;COL5A2;PI3;
KRTAP3-1;EPHA2

R-HSA-1643685 Disease JAG2;DMGDH;PDGFRA;FLII;PCDH8;IRS2;ISG15;FMO3;L1CAM;MECP2;NT5E;DACH1;TBXAS1;PIM1;GPC2;
LRAT;GGT1;TMEM45A;MUC6

R-HSA-73894 DNA Repair TNNT2;ISG15
R-HSA-1474244 Extracellular matrix organization MECP2;MMP25;COL4A1;ITGB4;COL7A1;ITGA10;COL5A2;P3H2;LTBP1
R-HSA-74160 Gene expression (Transcription) DMGDH;MECP2;GRIN2A;DACH1;CAV1;IGFBP3;RRAGD;PCDH8;NALCN;ANKRD6
R-HSA-109582 Hemostasis PDGFRA;CAV1;TFPI2;L1CAM;F3;PSG9;CEACAM3;PSG8;ISLR;PSG5;PSG4;ITGA10;HABP4;TIMP3;SLC16A8;

KIF1A;RAPGEF3;CD177
R-HSA-168256 Immune System DMGDH;NCF1;MAST4;ITGB4;FBXO27;IRS2;CST6;MECP2;C4B;MMP25;DACH1;PIM1;SNCG;PI3;MUC6;

CD177;PDGFRA;OSBPL6;IL34;LIF;ISG15;OLFM4;CEACAM3;BST2;RAPGEF3
R-HSA-1430728 Metabolism ARL9;DMGDH;CLIC5;NRP2;MOGAT2;WNK4;LTBP1;NALCN;NT5E;DACH1;GPC2;LRAT;ST3GAL6;SLC16A8;

GGT1;UGT1A7;GGT2;OSBPL6;CAV1;CYP4B1;FMO3;KMO;TIAM2;AKR1B10;TBXAS1;RAPGEF3
R-HSA-392499 Metabolism of proteins DMGDH;OSBPL6;NCF1;FBXO27;IGFBP3;PCDH8;P3H2;LTBP1;NALCN;ZDBF2;MECP2;NT5E;LGALS1;

DACH1;COL4A1;COL7A1;TNNT2;ATP13A4;CPE;ST3GAL6;FOLR1;TMEM45A;MUC6;RABL6
R-HSA-1852241 Organelle biogenesis and

maintenance
RABL6

R-HSA-9609507 Protein localization P3H2
R-HSA-162582 Signal Transduction DMGDH;CLIC5;NRP2;NCF1;PLXND1;FLII;STK39;IRS2;GRIK2;ADRA1B;NALCN;MECP2;NT5E;DACH1;GPC2;

LRAT;ST3GAL6;NTSR1;JAG2;PDGFRA;EDN1;CAV2;PDE6G;CAV1;GPR55;L1CAM;F3;TIAM2;FOSL1;
AKR1B10;COL4A1;COL5A2;PPP1R1B;RRAGD;RAPGEF3;RABL6

R-HSA-382551 Transport of small molecules DMGDH;SLC15A1;DACH1;TTYH1;ATP10D;WNK4;ATP13A4;ATP13A5;SLC16A8;SLC12A7;NALCN
R-HSA-5653656 Vesicle-mediated transport TBC1D2;MAST4;COL4A1;COL7A1;P3H2;HSF4;KIF1A;FOLR1;KIAA0319;RABL6
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hypomethylation frequently occurs during tumorigenesis (60,
61), the promoters of TSGs may undergo hypermethylation
(109–111) and these aberrant changes in both the marks and
the enzymes that modify them are being intensively examined for
novel therapies (112–116). These epigenomic changes may
instigate genomic instability or generate a heritable molecular
signature, which enables tumor progression, so identification of
novel genomic targets of MeCP2 is very important (117–119).

Previous reports linked MeCP2 expression with ER status (3)
and with BRCA1 promoter silencing (120), which provided
further rationale for assessing genome-wide MeCP2 profiling
in both MCF7 and MDA-MB-468 cells, which represent two
subtypes of breast cancer. We found that MeCP2 binds to
multiple regions of genes, including promoters, exons, and
introns. These novel targets have been associated with a wide
range of regulatory and signaling pathways. We found that there
was an overlap of around 800 genes between the two cell lines,
and there were distinct MeCP2 binding motif enrichments
between both cell lines. We observed that not only did MeCP2
bind many novel gene targets, but its depletion also led to both
increases and decreases in their corresponding RNA transcripts.
This is especially important given that studies demonstrate
MeCP2 binds to methylated cytosines and hydoxymethylated
cytosines in mCH dinucleotides, a property wherein many
unknowns remain (31–33, 35, 36, 38, 121). We discovered that
MeCP2 localizes at various gene promoters involved in diverse
processes such as autophagy (ATG4D), immune cell regulation
(IL6), chromatin organization (KDM3B, KDM2A, KMT2B,
KMT2A, KDM1A, HDAC1, HIST1H4F), circadian clock
Frontiers in Oncology | www.frontiersin.org 11
(SIRT1), developmental biology (EGFR, DKK1, SUMF2),
extracellular matrix organization (ICAM5, ICAM3, ICAM1)
and metabolism (EIF3G, SLC44A2, SUMF2, OXCT2,
ACOT2, PSPH).

Recently, MeCP2 was shown to be amplified in human tumors
and can mimic the function of activated Ras in cancer models (42),
and also acts as a critical bridge linking information encoded in
methylated DNA to epigenetic regulators (40, 122). Although
MeCP2 binds methyltransferases (25), co-repressors (123)
histone deacetylases (26), chromatin modulators (41), and long
noncoding RNAs (lncRNAs) (124, 125) and other epigenetic
regulators (4), much remains unknown about what regulates
these interactions and what regulates binding to mCG vs. mCA
dinucleotides as well as methylation-independent binding (126).
However, our previous report provided some of the first insight
into the role of post-translational regulation of MeCP2 binding to
co-repressor proteins. We found that K171 acetylation regulates
MeCP2 interaction with HDAC1 and ATRX (44). It is worth
noting that the severity of Rett syndrome is influenced by the
location of the mutation. For example, the site of the mutation can
strongly impact cognitive and psychomotor skills as well as
neonatal encephalopathy and death. Some mutations have been
shown to disrupt conserved AT-hook regions and cause differential
localization of a-Thalassemia/Mental Retardation Syndrome X-
Linked (ATRX) (23). ATRX is a critical SWI/SNF-like chromatin
remodeler (127) and our previous report demonstrates that a novel
PTM on MeCP2 regulates MeCP2-ATRX binding, which is a
critical aspect of MeCP2 function (43). Our present study
identified an additional 17 novel sites of post-translational
December 2020 | Volume 10 | Article 576362
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MeCP2 acetylation in triple-negative breast cancer and prostate
cancer cell lines. Notably, nine of these lysines (K12, K135, K144,
K177, K210, K233, K289, K364, K352, and K417) have been shown
to bemutated in patients with Rett Syndrome.We identified four of
these sites in our previous study mapping MeCP2 acetylation in
MCF7 breast cancer cells and RKO colon cancer cells (K22, K135,
K171, and K289) (43). Based on previous findings one may reason
that one or more of these novel PTMs may be influencing MeCP2
function in cancer progression. Another example of the impact of
post-translational regulation comes from transgenic models
involving single MeCP2 serine residues that undergo post-
Frontiers in Oncology | www.frontiersin.org 12
translational regulation which show distinct neurological defects
(106, 128), and phosphorylation of specific serine residues is
enriched at specific gene promoters (104). However, much less is
known about the role of MeCP2 acetylation as a regulatory switch
in any context. Our more thorough mapping of novel MeCP2
acetylation PTMs performed here is a first step in defining their
functional significance which is beyond the scope of the present
study. Based onMeCP2 acetylation patterns induced by the various
pre-clinical or clinical lysine deacetylase inhibitors, it is likely that
KDACi’s that target class I/II vs. class III HDACs will influence
MeCP2 function in both common and distinct ways. Based on
A

B C

FIGURE 4 | Endogenous MeCP2 is acetylated at key lysine residues. (A) The table indicates putative lysine residues that were found to be acetylated on MeCP2
under basal condition (DMSO) and upon deacetylase inhibition using 2 µM panobinostat (PANO), 10 µM SIRT1/2 Inhibitor-IV (IV), 10 µM SIRT1/2 Inhibitor-VII (VII),
and 10 µM pracinostat (PRAC) and showed ion peaks at mass/charge (m/z) ratio of ∼126 in PC3 and MDA-MB-468 cells. (B) Approximate representation of the
position of acetylated lysine (K) residues on MeCP2 conserved domain is shown. N, N-terminal; MBD, Methyl-binding-domain: A-T Hook domain: TRD,
Transcriptional repression domain: His-rich, Histidine-rich domain: Pro-rich, Proline-rich domain, C, C-terminal.
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acetylation mapping one can also reason that MeCP2 interaction
with different KDACs may lead to important role in cell-type-
specific biology driven by unique acetylation patterns. We
previously demonstrated that lysine acetylation serves as a
regulatory switch in Wnt pathway signaling (129, 130) and
cancer-associated steroidogenesis (131, 132). The current study
provides yet another example of the scope of post-translational
acetylation and may help explain how SIRT1 preferentially targets
active (133, 134) vs. repressed genes (135) depending on its
deacetylation of specific non-histone partners (136, 137). Future
work may identify more factors involved in this SIRT1-MeCP2
regulatory network, and through such work, our understanding of
Frontiers in Oncology | www.frontiersin.org 13
the key molecular relationships in cancer may lead to deeper
understanding of the mechanism of action of epigenetic therapies
and KDAC inhibitors.
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DATA SHEET 2 | MeCP2 acetylation site identification by LC-MS/MS mass
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SUPPLEMENTARY FIGURE 1 | MeCP2 binds to unmethylated DNA (A) An
assembly of IgG (first row), MeCP2 (second row) ChIP-Seq, and RRBS (third row)
data in MCF7 for USP34, MGAM, GMDS, SLC45A4, CCDC26 and SDK1 genes,
visualized by IGV. Each column is 4,000 bp wide. The third rows show the gene
nearest to the ChIP-Seq alignment including its location, and orientation. The
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medium thick dark lines are the UTRs of the gene and the thicker dark regions are
exons followed by thin lines with arrows which are the introns. (B) Schematic
representations of the top ChIP-Seq hits where the red box indicates the MeCp2
binding, the white circles indicated methylated regions identified by RRBS and the
medium thick blue lines are the UTRs of the gene and the thicker blue regions are
exons followed by thin lines which are the introns. (C) Table of MeCp2 ChIP-Seq
hits summarizing the presence/absence of CG methylation identified by RRBS in
MCF7 cells.

SUPPLEMENTARY FIGURE 2 | Validation of MeCP2 knockdown. (A) Left
panel. Western blot to evaluate the protein levels of MeCP2 in MDA-MB-468 (NTC,
sh1 MeCP2, and sh3 MeCP2) cells. Right panel. RT-qPCR analysis to evaluate
expression of MeCP2 in MDA-MB-468 (NTC, sh1 MeCP2, and sh3 MeCP2) cells.
Transcript levels were normalized to actin transcript levels. (B) Representative of
two-independent RT-qPCR-based analysis to evaluate expression changes of
NUPR2, PSPH, LANCL2, MRPS17, HDAC1, KDM3B, HIPK3, KDM3A, EGFR and
KMT2B genes in MDA-MB-468 (NTC and sh MeCP2) cells. Transcript levels were
normalized to actin transcript levels.

SUPPLEMENTARY FIGURE 3 | Pharmacological inhibition of lysine
deacetylases and key lysine residues acetylated on endogenous MeCP2.
Acetylation of MeCP2 detected by Western blotting. (A) PC3 cells were treated with
deacetylase inhibitors: DMSO as vehicle control, and SIRT1/2 Inhibitor-IV for a short
time period range from 10 min to 1:15 h. (B) MDA-MB-468 were treated with
deacetylase inhibitors: DMSO as vehicle control, and SIRT1/2 Inhibitor-IV for a short
time period range from 10 to 120 min. (C) MDA-MB-468 were treated with
deacetylase inhibitors: DMSO as vehicle control, and with various doses of SIRT1/2
Inhibitor-IV. For all immunoprecipitations equal amount of protein were loaded for
each immunoprecipitation set up using acetyl-lysine (Ac-K) antibody as per
protocol. Acetylation of MeCP2 was detected by Western blotting along with
positive control, whole cell extract (WCE) using MeCP2 specific antibody. Species-
matched IgG was used as a negative control. IgG heavy chain (IgG Hc) was blotted
for as a control for equal antibody loading for immunoprecipitation and GAPDH for
WCE. (D) The table indicates putative lysine residues that were found to be
acetylated on MeCP2 under basal condition (DMSO) and upon deacetylase
inhibition using 2 µM panobinostat (PANO), 10 µM Inhibitor-IV (IV), 10 µM Inhibitor-
VII (VII), and 10 µM pracinostat (PRAC) and showed ion peaks at mass/charge (m/z)
ratio of ∼126 in PC3 and MDA-MB-468 cells.

SUPPLEMENTARY FIGURE 4 | Expression profile of lncRNA across normal and
breast cancer cell lines. (A) RNA samples were extracted and converted to cDNA by
reverse transcriptase enzyme. RT-PCR was performed to determine the expression
of MALAT-1, MEG3, NEAT-1, CDKN2B, GAS5, SRA1, MIR31HG LncRNAs, and
Beta actin as positive control in MCF12F normal breast cells and MCF7, BT549,
MDA-MB-468, MDA-MB-231 and T47D breast cancer cell lines. (B) Stable
expression of empty vector (EV), HA-epitope tagged MeCP2 wild type (WT), HA-
tagged deacetylation mutants (K to R), HA-tagged acetylation mutants (K to Q) on
K135 lysine residues in MDA-MB-468 cells.
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