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Two Quantum Protocols for 
Oblivious Set-member Decision 
Problem
Run-hua Shi1,2, Yi Mu2, Hong Zhong1, Jie Cui1 & Shun Zhang1

In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-
member Decision problem, which allows one party to decide whether a secret of another party 
belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious 
Set-member Decision problem in fields of the multi-party collaborative computation of protecting 
the privacy of the users, such as private set intersection and union, anonymous authentication, 
electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve 
the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle 
operations so that it needs lower costs in both communication and computation complexity; while 
Protocol II takes photons as quantum resources and only performs simple single-particle projective 
measurements, thus it is more feasible with the present technology.

Cryptography is an important tool that enables the secure transmission of a secret message between a 
sender and a recipient from any potential eavesdropper. On the one hand, however, the security of most 
classical cryptosystems is based on the assumption of computational complexity, which is strongly chal-
lenged by the increasing capability of computations or algorithms1,2. Especially, it is believed that some 
mathematical difficulties, e.g. the integer factorization or the discrete logarithm problems, may be fragile 
in the future with the presence of quantum computers. On the other hand, fortunately, this difficulty 
can be overcome by quantum cryptography3,4, where the security is guaranteed by physical principles. 
Since Bennett and Brassard presented the first quantum key distribution protocol5, quantum cryptogra-
phy has been widely studied and rapidly developed. Accordingly, a lot of results have been gained, such 
as quantum key distribution6, quantum teleportation7, quantum signature8, and other novel quantum 
computations9.

Furthermore, in many cryptographic tasks, it requires to protect not only the data privacy, but also 
the user privacy. Private query is an important problem of this type. Suppose that a user, Alice, wants to 
know an item of a database held by a database provider, Bob, but does not want him to know which item 
she is interested in. Bob in turn wants to limit the amount of item that she can get from the database.

In 2008, Giovannetti, et al.10,11 for the first time presented a cheat sensitive quantum private query 
(QPQ) protocol. In their protocol, Alice and Bob only exchange two quantum messages. For example, 
Alice wants to find out the jth record of Bob’s database. She first prepares two n-qubit query states j  and 
( + )/j0 2 . She then sends, in random order, these two query states to Bob, waiting for his first reply 
before sending the second. As a response to query, Bob performs two oracle operations on the two query 
states and then sends them back to Alice, respectively. Finally, Alice processes the two returned states 
( )j A j  and ( ( ) + ( ) )/A j A j0 0 2 , where the ( )A j  is the content of the jth record in the data-

base. By measuring the first state she obtains the value of ( )A j , and further she checks Bob’s potential 
attack with ( )A j , that is, she checks whether the superposition in the second state is preserved. Compared 
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to known private information retrieval protocols, this QPQ protocol achieves an exponential reduction 
in both communication and computation complexity. Later, Olejnik12 presented an improved protocol 
for QPQ using phase-encoded queries, in which the oracle operation and the encoding method are subtly 
selected so that one query state ( + )/j0 2  can achieve two aims simultaneously, i.e., obtaining the 
expected item and checking Bob’s potential attack. So the communication complexity and the computa-
tion complexity in Olejnik’s protocol are further reduced.

In addition, Jakobi et al.13 proposed a novel and practical quantum private query protocol based on 
SARG04 quantum key distribution (QKD) protocol14. By using SARG04 QKD, an asymmetric key can 
be distributed between Alice and Bob, where Alice only knows one bit of the key, while Bob knows the 
whole key. For instance, Bob prepares a long sequence of photons which are randomly in one of four 
states ↑{ , ↓ , → , ← } and sends them to Alice. Then Alice measures each received photon in  


 or ↔ basis at random. Obviously, Alice will measure half of the qubits she receives in the correct basis. 
When Bob subsequently announces the bases, we can easily see that (I) Bob knows the entire “raw key”, 
(II) Alice knows half of the bits and (III) Bob cannot know which ones Alice has measured correctly. In 
order to reduce Alice’s information on the key, Alice and Bob cut the raw key into multiple substrings 
of length N, and add these strings bitwise to obtain the final key with length N. Later, Gao et al. gener-
alized Jakobi’s protocol and proposed a similar 4-state QPQ protocol15, which uses four generalized states 
{ 0 , 1 , ′0 , ′1 }, where θ θ′ = +0 cos 0 sin 1  and θ θ′ = −1 cos 0 sin 1 }. Gao’s protocol 
exhibits better database security than Jakobi’s protocol, but has a higher probability with which Bob can 
correctly guess the address of Alice’s query. Subsequently, to improve the security, yang et al. proposed a 
flexible B92-based QPQ protocol16.

In this paper, we define a new but interesting problem, Oblivious Set-member Decision problem, 
which allows a server, Bob, to decide whether a secret of a user, Alice, belongs to his private set in an 
oblivious manner. That is, Bob wants to know whether Alice’s secret is a member of his private set. 
But Alice does not want him to know which member it is. Oblivious Set-member Decision can be 
used to privately compute multi-party set intersection and union which are widely applied in some 
privacy-preserving and information-sharing settings17. In addition, there are also lots of practical appli-
cations of Oblivious Set-member Decision in fields of the identifiable or verifiable circumstances, such 
as anonymous authentication, electronic voting and electronic auction. Thus Oblivious Set-member 
Decision problem is one of the most fundamental and key problems within the multi-party collaborative 
computation of protecting the privacy of the users.

In next section, inspired by the QPQ protocols mentioned above, we proposed two quantum proto-
cols for Oblivious Set-member Decision problem, which one subtly applies the powerful quantum oracle 
operations, while the other utilizes the asymmetric key between Alice and Bob based on the technologies 
of Quantum Key Distribution.

Results
Here, we first give a definition of Oblivious Set-member Decision protocol.

Definition 1 (Oblivious Set-member Decision Protocol). A user, Alice, inputs a secret k, and a server, 
Bob, inputs a private set , , …,k k k{ }n1 2 . Finally, Alice gets nothing but Bob outputs one bit 0 or 1. This 
protocol should meet the following requirements:

Correctness.  Bob gets 1 if k ∈ {k1, k2, … kn}, and 0 otherwise.

Alice’s Privacy.  Except knowing whether Alice’s secret belongs to his private set, Bob cannot obtain 
any other secret information about Alice’s secret k.

Alice’s anonymity.  Bob cannot know which member it is, if Alice’s secret is a member of his private 
set.

Bob’s Privacy.  Alice cannot know any secret information about Bob’s private set.

Protocol I.  Protocol I follows some ideas from QPQ in refs 10,12, and refers to the oracle of Grover 
search algorithm2. Suppose Alice’s secret k and Bob’s all private member kis are the elements of ⁎

N, where 
 = , , …, −⁎ N{1 2 1}N . Protocol I consists of 5 steps, which are described in detail as follows:

Step 1. Alice prepares a query state ψ , where ψ = + k0
2

 and k is her secret. Then Alice sends the 
query state ψ  to Bob by an authenticated quantum channel.

Step 2. After receiving the query state ψ  from Alice, Bob applies an oracle O1 on it, where the oracle 
O1 is a unitary operator, defined as follows:

( ) = ( − )( − ) ( − ) , ( )f x x k x k x k modN 1n1 2

( ) = ( )/ , ( )⌈ ⌉⁎f x f x N 2
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Furthermore, Bob tosses a coin to decide whether applies another oracle O2 on the state φ . That is, 
if the outcome is the head, he performs the oracle O2 on the state φ . Otherwise, he does nothing. 
Obviously, he performs the oracle O2 on the state φ  only with the probability of 1

2
, where the oracle O2 

is defined by
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Then Bob sends the state ϕ  back to Alice by the authenticated quantum channel.
Step 3. After receiving the state ϕ  from Bob, Alice performs an honest test. That is, Alice checks 

whether the superposition in the returned state is preserved as follows: + k0
2

 or + k0
2

. Since the two 
possible states are obviously orthogonal and further Alice knows the value of k, she is able to completely 
distinguish them by a von Neumann measurement. If Alice finds a cheat of Bob, she will terminate this 
protocol; otherwise continue to the next step.

Step 4. Alice extracts out the phase information ( )p k  of the returned state ϕ  by distinguishing it 
between + k0

2
 and + k0

2
, i.e., ( ) =p k 1 if it is in the state + k0

2
, and ( ) = −p k 1 otherwise. Then 

she sends the classical information ( )p k  to Bob by the authenticated classical channel.
Step 5. After receiving the classical information ( )p k  from Alice, Bob decrypts it to further obtain 
( )⁎f k , where (− ) = ( )( )+⁎

p k1 f k 1  if he has applied the oracle O2, and (− ) = ( )( )⁎
p k1 f k  otherwise. If 

( ) =⁎f k 0, Bob can decide that Alice’s secret belongs to his private set. Otherwise, it doesn’t.

Protocol II. Protocol II is inspired by the ideas from refs 13,15,16 in which an asymmetric key is dis-
tributed between Alice and Bob based on Quantum Key Distribution, where Alice only knows a few bits 
of the key, while Bob knows the whole key. Protocol II includes 6 steps, which is described in detail as 
follows:

Step 1. Bob creates an N-element database by his private set , , …,k k k{ }n1 2 , where the jth element 
( ) =p j 1 if =j ki ( ∈ , , …, )i n{1 2 } , and ( ) =p j 0 otherwise. Furthermore, Bob generates a random 

integer ∈ ⁎r N and computes ( ) = ( ) +s j p j r for =j 1 to N (encryption). Here +  denotes the binary 
XOR operation.

Step 2. By calling Gao et al.’s protocol15, Alice and Bob share an N-bit key K r, where Bob knows the 
whole key K r and Alice knows only q bits of K r, where q is a security parameter. Furthermore, among 
these q bits, Alice randomly chooses −q 1 bits to check Bob’s honesty. That is, she requests Bob to 
announce the values of these bits. If these bits announced by Bob aren’t completely same as those Alice 
has recorded, it will show that Bob is dishonest. If Alice finds a cheat of Bob, she will terminate this 
protocol; otherwise continue to the next step.

Step 3. Suppose the remaining one bit known by Alice is the jth bit ( )K jr  of the raw key K r. However, 
she expects to get the kth bit of the shared key, where k is Alice’s secret. So she declares the number 
= −s j k.
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Step 4. Bob replaces the announced −q 1 bits in the key K r by random 0 or 1 integer. Then Bob 
shifts K r by s and finally gets an asymmetric key K shared between Alice and Bob, where Bob knows the 
whole shared key, while Alice only knows the kth bit of the shared key. Furthermore, Bob encrypts all 
( )s j s by using the key K in one-time pad method, that is, he computes ( ) = ( ) + ( )e j s j K j  for =j 1 to 

N, where ( )K j  is the jth bit of the shared key K. Then Bob publishes the whole encrypted database (i.e., 
all ( )e j s for =j 1 to N) at a public server.

Step 5. Alice gets ( )e k  from the public encrypted database of Bob, and further decrypts it to obtain 
( )s k , since ( ) = ( ) + ( )e k s k K k  and she (only) knows ( )K k . Then Alice sends the classical information 
( )s k  to Bob by the authenticated classical channel.

Step 6. After receiving the classical information ( )s k  from Alice, Bob computes ( ) = ( ) +p k s k r 
(decryption). If ( ) =p k 1, then he can deduce that Alice’s secret k belongs to his private set , , …,k k k{ }n1 2 , 
i.e., ∈ , , …,k k k k{ }n1 2 . Otherwise, ∉ , , …,k k k k{ }n1 2 .

Here we give a simple example to better illustrate Protocol II, as shown in Figs 1 and 2. In our exam-
ple, Alice has a secret 7 (i.e., k =  7), and Bob has a private set , , , ,{1 4 6 9 11} in ⁎

12. On the one hand, 
Alice and Bob share an asymmetric key K (see Fig. 1), where Alice only knows the seventh bit of K (i.e., 
K(7)), while Bob knows all bits of K. On the other hand, Bob creates a private database ( )p{ 1 , ( )p 2 ,…, 
( )p 12 } by his private set, where ( ) = ( ) = ( ) = ( ) = ( ) =p p p p p1 4 6 9 11 1 and other ( )p j s are equal 

to 0 (see Fig. 2), further encrypts each item ( )p j  twice by using two different keys, r and ( )K j , and finally 
publishes all ( )e j s. Obviously, Alice can rightly get ( )s 7  by computing ( ) + ( )K e7 7 , but not ( )p 7  with-
out knowing r. However, Bob can rightly get ( )p 7  by computing ( ) +s r7 , but he does not know which 
item of his private database it is equivalent to, except knowing Alice’s secret does not belong to his private 
set since ( ) =p 7 0.

Security of the protocols
Protocol I. The oracles O1 and O2 are all phase transformation operations, where the former is utilized 
to encode ( )⁎f k , while the later to further encrypt it in the one-time pad method. On the one hand, 
obviously Alice doesn’t know ( )⁎f k  with ( )p k  due to the oracle O2. However, Bob can get it rightly by 
whether or not the oracle O2 has been performed and then he can easily decide whether Alice’s secret 
lies in his private set by the value of ( )⁎f k . That is, it guarantees the correctness of Protocol I. On the 
other hand, we can easily see that ( )⁎f k  doesn’t leak Alice’s secret k. Even if ( ) =⁎f k 0, it doesn’t yet 
leak which member it is equal to. That is, it guarantees Alice’s anonymity.

Figure 1.  Illustration of creating the asymmetric key. (a) How to reduce Alice’s information on the key. 
(b) How to process the raw key K r to get the final key K.
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Furthermore, Alice’s privacy depends on Bob’s impossibility of discriminating the query state sent 
from Alice. Two basic laws of quantum theory enforce this: No-cloning Theorem which forbids the cre-
ation of identical copies of an arbitrary unknown quantum state, and Heisenberg Uncertainty Principle 
which implies that it is impossible to measure the state of any system without disturbing that system. In 
order to extract the secret information about k from the query state ψ = + k0

2
, obviously Bob must 

measure the state ψ , but he will certainly disturb it. We will analyze two measure-based attacks by a 
dishonest Bob in detail.

First, if Bob directly measures the query state + k0
2

 by a simple projective measurement (intercept), 
the measured result can be either 0  or k  with the probabilities 1

2
 and 1

2
, respectively. If he gets k , he 

can successfully pass the honest test by re-preparing a new quantum system in the state ψ = + k0
2

 and 
returning it to Alice (resend). However, if he gets 0 , he cannot pass the honest test. In short, this 
intercept-resend attack will be discovered in the honest test with the probability of 1

2
. That is, Protocol I 

is cheat sensitive10,12.
Furthermore, we discuss a more complicated entangle-measure attack by a dishonest Bob that he is 

able to prepare an ancillary system and entangle the ancillary system with the query state from Alice by 
his local unitary operations, and afterwards he can measure the ancillary system to get the partial infor-
mation about Alice’s secret. Suppose that the initial state of the ancillary system is 0 B

 and Bob’s dishon-
est action when he receives Alice’s query state can be described by a unitary operator ∼U AB as follows:

η φ η= + − , ( )
∼U V0 0 0 1 8AB A B A B AB0 0 0 0

η φ η= + − , ( )
∼U k k V0 1 9AB A B k A k B k k AB

Figure 2.  Bob’s encoding and encrypting methods. All ( )p j s, ( )s j s and ( )K j s are private, while all ( )e j s are 
public. Alice can only decrypt ( )e 7  to further get ( )s 7  with the key ( )K 7 . Finally, Bob can rightly get ( )p 7  by 
computing ( ) = ( ) +p s r7 7 .
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( )+ =
+k k0

2
, respectively, i.e.,

φ = , ( )V0 0 11A B AB0 0

φ = , ( )k V 0 12A B k k AB

φ+ = . ( )+ +k V 0 13A B k k AB

In order to completely pass the honest test, we can easily deduce that the following condition holds 
in Eq. (10):
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In addition, after applying the unitary operator ∼U AB, in order to fully pass the honest test, the returned 
states cannot contain other vectors except the vectors of 0 A

 and k A
. So Eqs. (8) and (9) should be 

changed into the following equations, accordingly:

η φ η φ= + − , ( )
∼U k0 0 0 1 16AB A B A B A k B0 0 0

η φ η φ= + − . ( )
∼U k k0 1 0 17AB A B k A k B k A B0

By Eq. (15), when =k 0, we further get
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If we compute the scalar product between Eqs. (17) and (20), then we will obtain the identity

η φ φ η φ φ η φ φ

η φ φ η φ φ η

= − + − −
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Since φ φ ≤+ 1B k B0  and φ φ ≤ ≤+ 1 1B k k B
, so we get

η η η≤ − + − − . ( )1 1 1 22k k k

That is,

η≤ , ( )1 23k

which implies

η = . ( )1 24k

Thus, we can obtain the following expanded expression
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Similarly, if we compute the scalar product between Eqs. (15) and (25), then we will obtain

φ φ φ φ= + .
( )+ +1 1

2
1
2 26B

k B B
k k B0

By Eq. (26), it gives

φ φ = , ( )+ 1 27B k B0

φ φ = . ( )+ 1 28B k k B

From Eqs. (27) and (28), it shows that if Bob wants to be sure that he passes the honest test, then the 
final states of the ancillary system B for any choice of k will coincide with φ

B0 , that is, the states of the 
ancillary system B are independent from the secret k. Therefore, even though Bob performs an 
entangle-measure attack, he will not obtain any secret information about the secret k.

In addition, Bob’s privacy is guaranteed by the encoding and encrypting methods discussed above. 
If Alice honestly executes this protocol, she cannot obtain any secret information about Bob’s private set. 
If Alice is dishonest, the simplest attack for her is to send a false query state +j k

2
 to Bob, instead of the 

true query state + k0
2

. Then the corresponding state returned from Bob will be in ±(− ) ± (− )( ) ( )⁎ ⁎
j k1 1

2

f j f k
 

(i.e., )±j k
2

. From the returned state, Alice can only infer that ( ) = ( )⁎ ⁎f j f k  or ( ) ≠ ( )⁎ ⁎f j f k , but she 
cannot further deduce whether j or k belongs to Bob’s private set because she does not know the values 
of ( )⁎f j  and ( )⁎f k . Furthermore, for more general case, Alice sends a more general sate ∑ x

N
1  to Bob, 

instead of the true query state + k0
2

. Accordingly, the returned state will be in Σ ± (− ) ( )⁎
x1

N
f x1 , 

where ( ) ∈ ,⁎f x {0 1}. Obviously, Alice cannot extract out the phase information ( )⁎f x  of single basis 
state x  from the returned state, though she can approximatively count the number of the members in 
Bob’s private set. However, if Alice sends a false query state, she will run a risk with the probability of 1

2
 

that she cannot gain ( )p k  rightly, which further affects Bob’s right output. That is, Bob cannot rightly 
make a decision of the set-member relation without the right phase information ( )p k . For example, in 
anonymous authentication applications, If Alice can prove that her secret is a member of Bob’s private 
set (but which member is unknown) by Protocol I, then Bob will believe that Alice is an authorized user 
and further open the corresponding resources or provide services to Alice. But, if Alice sends a false 
query state, the verification will fail with the probability of 1

2
.

Protocol II.  When Alice and Bob honestly execute this protocol, the correctness is guaranteed by the 
asymmetric key shared between Alice and Bob, whose security is based on the security of Quantum key 
Distribution18–20.

In Protocol II, Alice only sends the classical messages s and ( )s k  to Bob except checking information. 
Clearly, Bob cannot get any secret information about Alice’s secret only from these messages except 
knowing whether it is a member of his private set. That is, it guarantees Alice’s privacy. Furthermore, 
Alice’s anonymity depends on the security of the asymmetric key13,15. When creating the asymmetric 
key, if Bob is dishonest, he can perform the following two attacks: one is to send other states (e.g., ) 
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than he announces (e.g., ↑{ , → )} , and the other is to perform an entangle-measure attack, that is, 
he prepares a state of two qubits ( ↑ + → )R RA B A B

1
2 0 1 , where the first qubit is sent to Alice 

and the second is kept in Bob’s register, and afterwards he will measure the state in his register to gain 
some information on the conclusiveness of Alice’s measurement. However, as analyzed in refs 13,15 these 
attacks will introduce bit errors. That is, if Bob gains information on the conclusiveness of Alice’s bits, he 
will lose information on the bit values she has recorded. In fact, it is impossible for Bob to have both the 
correct bit value and conclusiveness information of Alice’s measurement (i.e., the address of the correct 
basis). Therefore, Bob cannot simultaneously obtain the bit ( )K j , which is the correctly measured result 
of Alice, and the corresponding address j. In our proposed Protocol II, in order to check Bob’s honesty, 
Alice will compare −q 1 measurement results with these corresponding bits that Bob’s announces. Thus, 
for a dishonest Bob, the success probability to completely pass the honest test in Step 2 of Protocol II is 
not more than 

( − )

1
2 q 1

.
We further analyze Bob’s privacy. On the one hand, if Alice is dishonest and she wants to obtain more 

items (i.e., ( )s j s) in Bob’s private database, she has to try to obtain more bits of the shared key. As ana-
lyzed in refs 13,15 it is possible for a dishonest Alice to store the qubits received from Bob and then take 
more effective measurements (e.g., the optimal unambiguous state discrimination (USD) measurement) 
on them after getting Bob’s public information. Even so, the advantage Alice obtains by USD measure-
ment is negligible compared with the honest measurement13,15. On the other hand, though a dishonest 
Alice can theoretically get more than one ( )s j , she doesn’t yet know any ( )p j  rightly since ( ) = ( ) +p j s j r 
and r is unknown. By these ( )s j s, she can only decide that these indexes can be roughly classified into at 
most two categories: one belongs to Bob’ private set and the other doesn’t belong to it. But she cannot 
decide which category belongs to Bob’s private set.

We have analyzed the security of proposed protocols. However, please note that we mainly consider 
the honest-but-curious parties21 in our protocols, which is similar to the semi-honesty model in the 
classical settings. In classical settings, any secure protocol in semi-honesty model can be correspond-
ingly translated into a secure protocol in malicious model. However, it still needs to further study how 
to translate a protocol from semi-honesty model to malicious model in quantum settings. It is also our 
future work (especially, the definition of malicious model in quantum settings).

Performance Comparisons.  Here, we give a simple comparison of our proposed protocols with the 
related QPQ protocols. In Protocol I, we follow some ideas from QPQ in refs 10,12 to introduce two 
quantum oracles. However, compared to these related QPQ protocols, the oracles proposed in Protocol 
I are more specific and more elaborated, where one is for encoding, and the other is for encrypting. 
In Protocol II, we are inspired by the asymmetric key of QPQ in refs 13,15,16. However, compared to 
these related QPQ protocols, there are at least two good advantages of Protocol II: (1) When creating 
the asymmetric key, Alice knows some bits of the raw key, not just one. On the one hand, it is easier 
to control and create the raw key with the present technology. On the other hand, Alice can check the 
honesty of Bob by using the remaining bits among these known bits except one bit as the final key. (2) 
Bob cleverly creates a 0/1 database and further encrypts it twice by using different keys, thus it is more 
secure. Even if Alice knows more than one bit of the final asymmetric key, she also only knows the 
corresponding encrypted items.

Furthermore, we evaluate the performance of the proposed protocols, as listed in Table 1. In Protocol 
I, we introduce two powerful quantum oracle operations. In fact, the main operations of Protocol I are 
just the two oracle operations. In addition, Protocol I is a 3-round protocol obviously, which consumes 

Nlog  qubits quantum resource and 1 bit classical resource, and further performs a von Neumann meas-
urement in N-dimensional Hilbert space. Thus, Protocol I needs only ( )O 1  computation costs and 
( )O Nlog  communication costs. For Protocol II, though its round is more than 3, it is also constant, 

irrespective of k, n and N. In Protocol 2, obviously it consumes ( )O N  qubits to create the asymmetric key 
between Alice and Bob, and ( )O N  bits to store the classical database for Bob. In addition, Alice performs 
( )O N  projective measurements in 2-dimensional Hilbert space and Bob computes ( )O N  encryptions of 

one-time pad. So, Protocol II needs ( )O N  costs in both communication and computation complexity.

Classical 
resources

Quantum 
resources

Oracle 
operation

Quantum 
measurement

Communication 
Complexity

Computation 
Complexity Round

Protocol I 1 bit O(logN)
qubits Y VNM_N O(logN) O(1) O(1)

Protocol II O(N)bits O(N)qubits N SPM_2 O(N) O(N) O(1)

Table 1.   Comparison of two proposed protocols. Note: Y, N, VNM_N and SPM_2 denote Yes, No, 
von Neumann Measurement in N-dimensional Hilbert space and simple Projective Measurement in 
2-dimensional Hilbert space, respectively.
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Discussion
In this paper, we first defined Oblivious Set-member Decision problem and further proposed two constant 
round quantum protocols to solve the Oblivious Set-member Decision problem, where Protocol I has bet-
ter advantages in term of communication and computation complexity due to powerful quantum oracle 
operations, while Protocol II takes photons as quantum resources and performs single-photon projective 
measurements, and thus it is more feasible with the present technology, that is, it is easier to implement it.
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