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Abstract

The adult diffusely infiltrating low-grade gliomas (LGGs) are typically IDH mutant and slow-growing gliomas having
moderately increased cellularity generally without mitosis, necrosis, and microvascular proliferation. Supra-total
resection of LGG significantly increases the overall survival by delaying malignant transformation compared with a
simple debulking so accurate MR diagnosis is crucial for treatment planning. Data from meta-analysis support the
addition of diffusion and perfusion-weighted MR imaging and MR spectroscopy in the diagnosis of suspected LGG.
Typically, LGG has lower cellularity (ADCpin), angiogenesis (rCBV 4y, capillary permeability (Kirans), and mitotic
activity (Cho/Cr ratio) compared to high-grade glioma. The identification of 2-hydroxyglutarate by MR spectroscopy
can reflect the IDH status of the tumor. The initial low ADCin, high rCBV hay, and Kians Values are consistent with
the poor prognosis. The gradual increase in intratumoral Cho/Cr ratio and rCBV, . Values are well correlated with
tumor progression. Besides MR-based technical artifacts, which are minimized by the voxel-based assessment of
data obtained by histogram analysis, the problems derived from the diversity and the analysis of imaging data
should be solved by using artificial intelligence techniques. The quantitative multiparametric MR imaging of LGG

can either improve the diagnostic accuracy of their differential diagnosis or assess their prognosis.
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Key points

e LGG has lower cellularity (ADC,,;,), angiogenesis
(rCBV nay), capillary permeability (K ans), and
mitotic activity (Cho/Cr) than HGG.

e Initial low ADC;, and high CBV . and Kiyqps
values are consistent with the poor prognosis.

e A gradual increase in Cho/Cr ratio and rCBV
values is well-correlated with tumor progression.

e Critical distortions in quantifying parameters can be
minimized by proper ROI selection and voxel-based
assessment.

¢ Quantitative multiparametric MRI can either
improve the diagnostic accuracy of conventional
MRI or provide a better assessment.
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Introduction

According to the 2016 update of World Health
Organization (WHO) on the classification of tumors of
the central nervous system, diffusely infiltrating low-
grade gliomas (LGG) in the adult include the WHO
grade II astrocytoma and oligodendrogliomas but rarely
oligoastrocytomas [1, 2]. Because most of the oligoastro-
cytomas have genetic profiles typical of either diffuse as-
trocytoma or oligodendroglioma and the new WHO
classification discourages the diagnosis of tumors as oli-
goastrocytoma or mixed glioma [1, 2]. Typically, LGGs
are slow-growing tumors having moderately increased
cellularity without prominent mitosis, necrosis, and
microvascular proliferation [1]. So they usually have
more indolent clinical course than high-grade gliomas
(HGG), included anaplastic astrocytoma (grade III), ana-
plastic oligodendroglioma (grade III), and glioblastoma
(grade IV). Their incidence peaks are at an earlier age of
life (third to fourth decades), as opposed to those of
HGG (sixth to seventh decades) [1, 3]. The gliomas show
diffuse infiltration of adjacent and distant brain struc-
tures that are largely irrespective of its histological grade
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and even its low grade, it usually shows microscopic
peritumoral white matter tract invasion [1]. The demon-
stration of this diffuse infiltration is very important for
the accurate glioma diagnosis.

The precise diagnosis of LGG is critical to make an
appropriate treatment decision, because the supra-total
resection (defined as the removal of a margin around the
tumor visible on FLAIR images) significantly increases
the overall survival and delays the malignant transform-
ation of LGG [4, 5]. The surgical biopsy is reserved in
markedly diffuse lesions like a gliomatosis cerebri pat-
tern [4]. Because of the lack of consensus among various
diagnosis, management, and treatment options in LGG,
the joint tumor section of the American Association of
Neurological Surgeons and the Congress of Neurological
Surgeons published the evidence-based guidelines in
2015 [6]. These include a systematic review as well as an
evidence-based clinical practice guideline about the role
of imaging in the management of adult diffusely infiltrat-
ing LGG [7].

Magnetic resonance imaging (MRI) is the modality of
choice in the diagnostic assessment of LGG and provides
a reasonably good delineation of the gliomas [5, 7]. The
quantitative assessment of advanced MR imaging tech-
niques has long been used both for the preoperative evalu-
ation of gliomas by providing molecular and metabolic
information in addition to the routine anatomical evalu-
ation [7, 8]. There is also a significant role in follow-up
particularly in the differentiation of the post-irradiation
changes and of the pseudo-progression [7]. The quantita-
tive multiparametric MRI approach can improve the
diagnostic accuracy of conventional MRI [8]. In this edu-
cational review, we aim to define the spectrum and diag-
nostic value of the available advanced imaging techniques
in neuro-oncology. We will also review the added value as
well as the possible pitfalls of using quantitative MRI tech-
niques in addition to conventional MRI. Finally, the review
will assess the importance of advanced MRI acquisition
technique standardization in clinical practice of neuro-
oncology.

Imaging technique

The multiparametric MRI evaluation of LGG includes the
conventional anatomical MRI sequences, namely T2,
fluid-attenuated inversion recovery (FLAIR) and pre- and
post-contrast T1-weighted images. In addition, the proto-
col includes advanced MRI techniques such as
susceptibility-weighted imaging (SW1I), diffusion-weighted
imaging (DWI), perfusion-weighted imaging (PWI), MRI
spectroscopy (MRS), and functional MRI (fMRI) tech-
niques. The T1 and FLAIR sequences should be preferred
as volumetric acquisitions particularly for the follow-up to
make an appropriate comparison about the tumor pro-
gression or the high-grade transformation of LGG [7].
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The subtracted images of pre- and post-contrast 3D T1-
weighted or FLAIR images provide a better assessment of
tumoral enhancement. The SWI is quite important to
identify the intratumoral calcifications, microbleeds, vas-
culature and allows the calculation of intratumoral sus-
ceptibility score (ITSS) [9]. The DWI and the calculation
of apparent diffusion coefficient (ADC) should always be
in the routine diagnostic protocol, but at present diffusion
kurtosis imaging is usually reserved for research purposes.
Dynamic susceptibility contrast (DSC) and/or dynamic
contrast-enhanced (DCE) perfusion imaging techniques
are crucial for both the initial diagnosis and the follow-up
of LGG [7, 9, 10]. Arterial spin labeling (ASL) perfusion is
an alternative perfusion technique, which uses the
magnetically labeled water protons as a contrast material
and can also be used for the same purposes but it does
not allow the calculation of relative cerebral blood volume
(rCBV) [11]. It is usually preferred in patients with
previous severe allergic/anaphylactoid reaction to a
gadolinium-based contrast agent; patients with severe
renal disease (eGFR < 30 mL/min/1.73 m?) or acutely de-
teriorating renal function; patients who would be at risk of
nephrogenic systemic fibrosis; and patients who are, or
might be, pregnant [11, 12]. The MRS is usually reserved
for diagnostic verification and problem solving but not for
the routine diagnosis [7]. But recently, high-resolution
MRS technique with selective TE and different editing
method is being used in glioma diagnosis to detect 2-
hydroxyglutarate (2-HG), which accumulates within the
gliomas having isocitrate dehydrogenase 1 and 2 (IDH 1/
2) mutations [13, 14]. Diffusion tensor imaging and tracto-
graphy with or without fMRI are usually reserved for pre-
operative evaluation of selected cases. The new emerging
MRI techniques, such as amide proton transfer (APT) im-
aging [15, 16], sodium MRI [17], and MR elastography
[18] can also be used for glioma grading but they are usu-
ally reserved for research purposes.

Radiomic data for the histopathological features
of LGGs

According to guideline, conventional MRI is the first-
order technique (Level II evidence) to identify the loca-
tion of the tumor and its relation to adjacent cerebral
structures [7]. The diffusion and perfusion images are
quite helpful in the assessment of LGG (Level II, Class
II/1IT evidence) by providing a better identification of tu-
moral heterogeneity than anatomic MRI sequences and
provide the differential diagnosis for tumor subtype and
grade [7]. The diagnostic potential of MRS and positron
emission tomography (Level III, Class III evidence) are
still being defined [7]. The data of radiologic-pathologic
correlation from meta-analysis of current literature [10,
11, 15, 19-31] demonstrates that the tumoral cellularity
correlates with low T2 signal and low ADC; atypia with
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low ADC and high fractional anisotropy; mitotic activity
with high Cho/Cr, Cho/NAA ratios, rCBV, and APT sig-
nal; the microvascular proliferation with high rCBV, vol-
ume transfer coefficient (Ki.ns), volume fraction of
plasma (V}), and ITSS; and necrosis with necrotic cavity
and high lactate levels on MR spectroscopy.

The differential diagnosis and grading of gliomas are
still debating. The quantitative multiparametric MR im-
aging approach can better differentiate LGG from HGG
with very high sensitivity (84.2%), and specificity (100%)
than conventional MRI, thereby reducing the risk of
inappropriate or delayed surgery, respectively [8]. By this
purpose, a significant amount of quantitative data has
been collected during the last decade and a lot of
different cut-off values have been defined for the grading
of gliomas in the literature as summarized in Table 1 [7,
9-11, 19-30]. The most common parameters defined in
literature for grading are maximum relative cerebral
blood volume (rCBV,,,x), minimum normalized ADC
(nADC,,in), and choline to creatine (Cho/Cr) ratio.
The defined cut-off values for glioma grading are 1.75
for rCBV ., in the largest cohort [19] ranging be-
tween 0.94 and 3.34 [9-11, 19-22], 1.07 x 10~°> mm*/s
for nADC,,;, in the largest cohort [24] ranging
between 0.31 and 1.31 [23-28] and 1.56 for Cho/Cr
ratio in the largest cohort [19] ranging between 1.3
and 2.04 [29-31]. There was a considerable variation

Table 1 Radiomic data for differential diagnosis of low-grade vs
high-grade gliomas

Parameters Low-grade  High-grade  Cut of value [Ref]
glioma glioma (range) [Ref]

rCBVmax Low High 1.76 [10, 19] (0.94-3.34)
[9-11,19-22]

rCBVyip Low High 144 [22] (1.08-1.81) [22]

NADCin High Low 1.07 % 1072 mm?/s [24]
(0.31-1.31) [23-28]

Cho/Cr ratio Low High 1.56 [19] (1.3-2.04)
[29-31]

MKyip Low High 0.17 [28] (0.11-0.28) [28]

FATc Low High 0.3 [25] (0.14-0.63) [25]

MDimin High Low 0.98 mm?/s [25]
(0.76-0.91) [25]

Kerars High Low 1.18 [22] (0.91-145) [22]

Ve High Low 143 [22] (1.06-1.80) [22]

[TTS grade 12 26 NA [9]

APT signal (%) Low High 2.23% [15]

(1.53%-3.70%) [15]

rCBV nax maximum relative cerebral blood volume, rCBV,; standardized mean
difference of rCBV yax, NADC,,;, normalized minimum apparent diffusion
coefficient, Cho/Cr choline/creatine, MKy, mean difference in mean kurtosis,
FA7c odds ratio of fractional anisotropy in the tumor core, MD,,;, minimum
mean diffusivity, kyqns Standardized mean difference of volume transfer
coefficient, V, standardized mean difference of volume fraction of
extravascular extracellular space, ITTS intratumoral susceptibility score, APT
percent amide proton transfer signal
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in cut-off values because of the difference in the
study design, types of MRI devices, coils, sequences,
post-processing algorithms, picking up hot points vs.
histogram analysis, and diverse methodology in
determining cut-off values. A standardized, multicen-
ter acquisition and analysis protocol for the imaging
data is feasible and highly reproducible, having a
comparable high diagnostic accuracy in glioma grad-
ing according to the new WHO 2016 classification
scheme [21].

Typically, LGG has lower cellular density than HGG
so has a higher ADC,;, and minimum mean diffusivity,
and lower fractional anisotropy and mean kurtosis values
than HGG [23-28]. The optimal threshold was 0.98 x
1072 mm?/s for ADC,;, and 0.17 for the mean difference
in mean kurtosis [26, 28]. The LGG has lower perfusion
parameters such as K, volume fraction of extravascu-
lar extracellular space (V.), mean vascular density, and
rCBV . values than HGG [9, 10, 19, 22]. This is pri-
marily due to the fact that they are less prone to secret
vascular endothelial growth factor, having low micro-
vascular proliferation and lack of immature, hyper-
permeable neo-microvascularity [9, 10, 19, 22]. The
rCBV .« threshold of 1.76 has the highest diagnostic ac-
curacy for diffuse astrocytoma [10]. The LGG has also a
lower maximum mean relative tumor blood flow/normal
white matter ratio [11] and relatively lower ITSS degrees
[9] than HGG, primarily due to a lack of tortuous, disor-
ganized, dilated, and leaky tumoral capillaries. The LGG
has significantly lower Cho/Cr or Cho/ N-acetyl aspar-
tate (NAA) ratios and higher myoinositol to Cr ratio
than HGG due to having lower membrane turnover
rates and production of proteolytic enzymes [29, 30].
LGG has a significantly lower APT signal intensity than
HGGs [15, 16]. There is not a meaningful change in pro-
tein content of tumor and a moderate correlation be-
tween APT signal intensity and Ki-67 proliferation index
[14]. Histogram analysis of APT imaging provides in-
creased accuracy for the identification of contrast-
enhancing LGG that mimics HGG [16].

Perfusion and diffusion images may also play a role
(Level III) in consideration of tumor prognosis and in
distinguishing different classes of LGG in terms of prog-
nosis [7]. Poor outcome is well correlated with low
ADC,,;, values ranging between 0.799 x 10~ mm?/s and
1.69 x 1072 mm?/s [32-34], high rCBV ., values ranging
between 1.46 and 5.195 [32, 33, 35] and high permeabil-
ity with Ki;ans values more than 0.05 min ™" and V, values
more than 5ml/100 g [36].

In determining high-grade transformation, anatomical
MRI (level II) is the first-order technique [7]. New con-
trast enhancement and increase in tumor size more than
3 mm per year may signify a transformation to a higher
grade [7, 37]. Serial PWI and MRS (level III) are also
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useful for astrocytic tumors, baseline, and gradual longi-
tudinal elevations in rCBV,,,, values and Cho/Cr ratios
are associated with shorter time to tumor progression
[7]. However, these can be difficult to standardize in
clinical practice for oligodendrogliomas and mixed gli-
omas. Higher growth rate more than 3mm per year
[37], higher baseline rCBV,,, values more than 1.52—
1.75 [37-39] and higher Cho/Cr ratio more than 2.4
[37] are well correlated with high-grade transformation.
In transforming LGQG, a significant increase in rCBV .,
can occur up to 12 months before contrast enhancement
becomes apparent on T1-weighted MR images [39] and
a significant increase in Cho/Cr ratio can occur up to
15 months before the rCBV,,,, elevation [37].

Radiomic data for the genetic and molecular
features of LGGs

According to the updated WHO 2016 classification, 75—
80% of grade II diffusely infiltrating astrocytomas have
IDH1/2 mutation and 20-25% do not [1, 3]. An IDH1/2
mutant diffusely infiltrating astrocytoma has also had a
loss of nuclear alpha-thalassemia/mental retardation
syndrome X-linked expression (ATRX) status and TP53
mutations [1, 3]. Although WHO 2016 is based on the
basis of combined phenotypic and genotypic classifica-
tion as well as the generation of integrated diagnoses,
WHO grading of gliomas remained unchanged [1]. Es-
sentially LGG has mild nuclear atypia, moderate pleo-
morphism, high degree of cellular differentiation, and
low MIB-1, with intrinsic capacity to progress to IDH1
mutant anaplastic astrocytoma or glioblastoma [1, 3].

There is a big survival difference between IDHI-
mutated vs. wild-type gliomas. Although IDH1 mutant
glioblastoma has still significantly worse outcomes than
grade II and III gliomas, there are no differences in sur-
vival between IDH mutant grades II and III [40]. For this
reason, Shirahata et al. proposed a novel, improved grad-
ing system for IDH-mutant astrocytic gliomas [41]. The
premise is cyclin-dependent kinase Inhibitor 2A/B
homozygous deletion with combination of necrosis and
copy number variation has the most relevant results for
survival but the proliferation (mitotic count) has only a
minor influence on survival [41].

The IDH mutant LGG is usually located in the frontal
lobe followed by temporal lobe and infratentorial loca-
tion (Fig. 1). They are mostly solid and do not enhance.
They have usually well-defined border and T2/FLAIR
“mismatch” sign represented as homogeneous high sig-
nal on T2 sequence but bright rim and dark center on
FLAIR images [42]. Typically, they have higher ADC,,;,
and lower rCBV,,,, values than wild-type tumors and
are represented with a slight increase in Cho/NAA as
well as Cho/Cr ratios [10, 42, 43]. Radiomic features ex-
tracted from the optimal texture analysis of ADC and

Page 4 of 11

T2 FLAIR images play an important role in the noninva-
sive prediction of the IDH1 mutation and loss of ATRX
expression status in LGGs [43]. Choi and colleagues
showed the existence of 2-HG and glutamate multiplets
in patients with IDH-mutated grade II-III tumors, with
100% sensitivity and specificity [13].

IDH-wild-type LGGs may not have been demonstrated
because imaging and histopathology features look low
grade, but molecular and clinical features suggest an
early stage of primary glioblastoma [44]. Recent litera-
ture recommends the use of diffuse astrocytic glioma,
IDH-wild-type, with molecular features of glioblastoma,
WHO grade IV ak.a. “Molecular GBM” diagnosis [45].
This is basically based on the existence of epidermal
growth factor amplification or combined whole chromo-
some 7 gain, whole chromosome 10 loss (+7/-10) or
telomerase reverse transcriptase promoter mutation, re-
gardless of its histological WHO grade [45]. IDH wild-
type diffuse astrocytomas are more likely to exhibit con-
trast enhancement with intratumoral necrosis and peri-
tumoral edema, but not cyst (Fig. 2). The ADCcan of
1.2 can be used as an optimal cutoff value to differenti-
ate IDH wild-type and IDH-mutant gliomas irrespective
of WHO grade and tumors with ADC,,¢,, less than 1.08
had poor survival [46]. The absence of a 2-HG peak in
MR spectroscopy is also consistent with the IDH wild-
type tumors [13, 14]. Furthermore, recent literature also
demonstrates that IDH-mutated astrocytomas have
higher ADC [46—48] and lower rCBV values [47-49], an
APT signal [15, 16], the relaxation-weighted sodium sig-
nal to total sodium signal ratio [17], oxygen extraction
fraction [50], and tumor stiffness [18] than IDH wild-
type tumors.

According to WHO 2016 update, diffusely infiltrating
oligodendroglioma (Fig. 3) is a slow-growing glioma with
IDH1 or IDH2 mutation and codeletion of chromosomal
arms 1p and 19q (1p19q-codeletion) [1]. They have higher
rCBV and V, and lower ADC,,.,, values than the same
grade diffusely infiltrating astrocytomas because of having
a chicken wire-fine capillary network causing higher tissue
perfusion even in grade II [51-57]. Higher V, values are
usually with the presence of cortical involvement and cal-
cification and/or hemorrhage [53]. The rCBV ratio,
greater than 1.6 is predictive of the 1p19q-codeleted geno-
type with 92% sensitivity and 76% specificity [54]. Cho/Cr
ratio had the highest predictive value, with moderate ac-
curacy (69%) when combined with rCBV ., [55]. They
have also higher ITSS than the same grade diffuse astrocy-
tomas due to increased angiogenesis, dense vascularity,
microbleeds, or microcalcifications [52].

Possible pitfalls and solutions
The first problem preventing a proper data quantifica-
tion are MRI artifacts, which are mainly related to
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Fig. 1 Grade Il astrocytoma with IDH1 mutation, 30% p53, and 3% Ki67 is located on the posterior aspect of the right frontal lobe on axial MR
images. There is a mismatch sign on T2 (a) and FLAIR (b) images. The tumor has a high signal on ADC (c) images and does not enhance on
post-contrast T1-weighted image (d). The tumor has low rCBV, . values compared to normal parenchyma on the DSC-perfusion image (e).
Increased Cho/Cr ratio inside the tumor borders is prominent on both the MR spectrum obtained by 144 ms echo time (f) and colored Cho map
(g). The high-resolution MR spectroscopy by 69 ms of echo time (h) reveals the 2-HG peak causing a triplet within the glutamine-glutamate
complex (Glu-GIn), which is consistent with the existence of IDHT mutation

magnetic field like susceptibility or inhomogeneity arti-  sensitive pulse sequences, shorter TE values, wider re-
facts, or to patient caused by (in)voluntary motion, blood  ceiver bandwidths or by applying parallel imaging tech-
flow, or cerebrospinal fluid pulsation [58, 59]. The mag-  niques, and patient-based artifacts can be eliminated by
netic field-based distortions can be reduced by using less  proper immobilization and gating techniques [58, 59].
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Fig. 2 Astrocytoma, grade Il with the absence of IDHT mutation (IDH wild-type), loss of ATRX expression, 20% p53, and 3.3% Ki67 is located on
the right temporal lobe on axial MR images. The tumor has a high signal on T2 (a), FLAIR (b), and ADC (c) images and faint enhancement on
post-contrast T1-weighted image (d). The tumor has low ITSS on SW image (e) and rCBV,,s values compared to normal parenchyma on the
DSC-perfusion image (f). The tumor has increased Cho/Cr ratio and low NAA/Cr ratio on the MR spectrum obtained by 144 ms echo time (g). The
high-resolution MR spectroscopy by 69 ms of echo time (h) reveals a singlet due to the glutamine-glutamate complex (Glu-Gln), which is
consistent with the absence of 2-HG peak and IDH1 mutation
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Fig. 3 Oligodendroglioma, grade Il with 1p19g-codeletion, intact ATRX expression, immune-negative p53, and 2% Ki67 is located on the
premotor area of the left frontal lobe on axial MR images. The irregularly contoured tumor has a heterogeneous high signal on T2 (a), FLAIR (b),
and ADC (c) images and has a central intratumoral small low signal area consistent with calcification/hemorrhage. It has faint enhancement on
post-contrast T1-weighted image (d). The tumor has relatively higher rCBV, ¢ values than normal parenchyma on DSC-perfusion image (e) and
Kirans Values on DCE-perfusion image (f). The tumor has also high Cho/Cr ratio on the MR spectrum obtained by 144 ms echo time (g) at the
similar areas of increased perfusion on colored Cho map (h)
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Small tumor diameter and vascular structures,
hemorrhagic, cystic/necrotic, and calcific changes in
the tumoral area can also cause critical distortions in
quantifying parameters. So the selection of a proper
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region of interest (ROI) avoiding this kind of areas or
the use of histogram analysis can minimize these dis-
tortive effects (Fig. 4). The usage of histogram ana-
lysis, compared with the use of the current hotspot

Fig. 4 Pilocytic astrocytoma, grade | with immune-negative IHD-1, CD138 and Neu N, and 1% Ki67 is located on the right fronto-parietal lobe on
axial MR images. The lobulated but regularly contoured tumor has cystic and solid components on T2 (a) and FLAIR (b) images and relatively low
ADC values (c). The solid components of the tumor have heterogenous enhancement on post-contrast T1-weighted image (d). On DSC-perfusion
image (e) two ROIs picked areas showing strong (MC1) and weak (MC2) enhancement and their mirrored counterpart areas (mMC1 and mMC2)
from normal parenchyma. The perfusion signal to time graph (f) shows increased perfusion curve on MC1 tumoral core (solid yellow curve)
compared to mMC1 normal parenchyma curve (dotted yellow curve) but distorted irregular curve on MC2 weakly enhanced area (pink solid
curve) due to partial volume effect of cystic component of tumor causing erroneous rCBV values. Similarly, while MR spectrum obtained by 144
ms echo time from MC1 region (g) is consistent with tumoral spectrum with increased Cho/Cr ratio and decreased NAA, the MR spectra from
MC2 region (h) show distorted and unrecognizable curves due to the same reason

8 % 100
Normal time (sec)




Bulakbasi and Paksoy Insights into Imaging (2019) 10:122

technique, can increase the diagnostic accuracy and
the interobserver reproducibility in glioma grading as
well as potentially improve patient care [56, 57]. Also
emerging Al algorithms can provide the voxel-based
assessment of data obtained by histogram analysis or
other methods. The voxel-based assessment of im-
aging data provides new quantitative information,
which is invisible to human assessment and can more
precisely extract and use thousands of different and
new radiomic features, which are validated as the
quantitative imaging biomarkers to characterize intra-
tumoral dynamics throughout diagnosis and treatment
[60-63]. The second problem is the analysis of data.
Recent multiparametric MRI techniques produce a
significant amount of imaging data with massive di-
versity from patient to patient. The analysis and post-
processing of this large volume of data is not only
complex and time-consuming but also lacks
standardization. The newly emerging AI techniques
using diagnostic hypotheses and scalable machine-
learning algorithms have the potential of automated
processing of large data volumes and can enhance the
current performance of quantitative cancer imaging
[63]. Providing standardization is more difficult be-
cause of the variety of hardware and software pro-
duced by different vendors, mostly makes the exact
comparison of the results difficult. Also, the differ-
ences in the scanner type, magnetic field strength, ac-
quisition parameters, protocols, and determination of
standard threshold levels make this comparison less
reliable. The standardized, multicenter acquisition and
analysis protocols can generate more feasible and
highly reproducible data and increase the diagnostic
accuracy [21]. The AI algorithms using the data
mined by machine-learning methods can help to
minimize the effects caused by lack of standardization
resulting in more reliable results.

Conclusion

The parameters obtained from the quantification of mul-
tiparametric brain MRI can provide an adequate diagno-
sis of LGG and help to differentiate them from HGG.
The LGG has a lower cellularity (ADC,,;,), angiogenesis
(rCBVpmax), capillary permeability (Kians), and mitotic
activity (Cho/Cr) than HGG. Besides these basic param-
eters, thousands of different and new radiomic features
have been defined in the literature and more will
continue to emerge with the advent of Al techniques.
The initial low ADC,;, values, high rCBV .y, and K ans
values are consistent with the poor prognosis. The
gradual increase in intratumoral Cho/Cr ratio and
rCBV .« values are well correlated with tumor progres-
sion. The major problems in the quantitative multipara-
metric MR imaging of LGGs include the diversity of
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imaging equipment and techniques. This can be mini-
mized by using a comparable standardized, multicenter
acquisition and analysis protocols and the analysis of
large volume data, which can be solved by the auto-
mated processing methods of Al. The radiomic features
obtained by quantitative multiparametric MRI can en-
hance the current performance and the clinical potential
of a predictive cancer diagnosis.
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