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THE BIGGER PICTURE The genome contains instructions for building the function and structure of organ-
isms. Recent high-throughput techniques have made it possible to generate massive amounts of genomics
data. However, there are numerous roadblocks on the way to turning genomic data into tangible
therapeutics. We observe that genomics data alone are insufficient for therapeutic development. We need
to investigate how genomics data interact with other types of data such as compounds, proteins, electronic
health records, images, and texts. Machine learning techniques can be used to identify patterns and extract
insights from these complex data. In this review,we survey awide range of genomics applications ofmachine
learning that can enable faster and more efficacious therapeutic development. Challenges remain, including
technical problems such as learning under different contexts given low-resource constraints, and practical
issues such as mistrust of models, privacy, and fairness.
SUMMARY

Thanks to the increasing availability of genomics and other biomedical data, many machine learning algo-
rithms have been proposed for a wide range of therapeutic discovery and development tasks. In this survey,
we review the literature onmachine learning applications for genomics through the lens of therapeutic devel-
opment. We investigate the interplay among genomics, compounds, proteins, electronic health records,
cellular images, and clinical texts. We identify 22 machine learning in genomics applications that span the
whole therapeutics pipeline, from discovering novel targets, personalizing medicine, developing gene-edit-
ing tools, all the way to facilitating clinical trials and post-market studies. We also pinpoint seven key chal-
lenges in this field with potentials for expansion and impact. This survey examines recent research at the
intersection of machine learning, genomics, and therapeutic development.
INTRODUCTION

Genomics studies the function, structure, evolution, mapping,

and editing of genomes.1 It allows us to understand biological

phenomena, such as the roles that the genome plays in dis-

eases. A deep understanding of genomics has led to a vast array

of successful therapeutics to cure a wide range of diseases, both

complex and rare.2,3 It also allows us to prescribe more precise

treatments4 or seek more effective therapeutics strategies such

as genome editing.5

Recent advances in high-throughput technologies have led to

an outpouring of large-scale genomics data.6,7 However, the

bottlenecks along the path of transforming genomics data into
This is an open access article und
tangible therapeutics are innumerable. For instance, diseases

are driven by multifaceted mechanisms, so to pinpoint the right

disease target requires knowledge about the entire suite of bio-

logical processes, including gene regulation by non-coding

regions,8 DNA methylation status,9 and RNA splicing;10 person-

alized treatment requires accurate characterization of disease

subtypes, and the compound’s sensitivity to various genomics

profiles;4 gene-editing tools require an understanding of the

interplay between guide RNA and the whole-genome to avoid

off-target effects;11 monitoring therapeutics efficacy and safety

after approval requires the mining of gene-drug-disease rela-

tions in the electronic health record (EHR) and literature.12 We

argue that genomics data alone are insufficient to ensure clinical
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implementation, but it requires the integration of a diverse set of

data types, from compounds, proteins, cellular image, and EHRs

to scientific literature. This heterogeneity and scale of data

enable the application of sophisticated computational methods

such as machine learning (ML).

Over the years, ML has profoundly impacted many applica-

tion domains, such as computer vision,13 natural language pro-

cessing,14 and complex systems.15 ML has changed computa-

tional modeling from expert-curated features to automated

feature construction. It can learn useful and novel patterns

from data, often not found by experts, to improve prediction

performance on various tasks. This ability is much needed in

genomics and therapeutics, as our understanding of human

biology is vastly incomplete. Uncovering these patterns can

also lead to the discovery of novel biological insights. Also,

therapeutic discovery often consists of large-scale resource-

intensive experiments, which limit the scope of experiments,

and many potent candidates are therefore missed. Using accu-

rate prediction by ML can drastically scale up and facilitate

the experiments, catching or generating novel therapeutics

candidates.

Interests in ML for genomics through the lens of therapeutic

development have also grown for two reasons. First, for

pharmaceutical and biomedical researchers, ML models have

undergone proof-of-concept stages in yielding astounding per-

formance often for previously infeasible tasks.16,17 Second, for

ML scientists, large/complex data and difficult/impactful prob-

lems present exciting opportunities for innovation.

This survey summarizes recent ML applications related to ge-

nomics in therapeutic development and describes associated

challenges and opportunities. We broadly define the term geno-

mics as functional aspects of genes, including what genes are

present, how genes are expressed given different contexts,

what the relations are among genes, and so forth. Several re-

views of ML for genomics have been published.18–20 Most of

these previous works focused on studying genomics for biolog-

ical applications, whereas we study them in the context of

bringing genomics discovery to therapeutic implementations.

We identify 22 ‘‘ML for therapeutics’’ tasks with genomics

data, ranging across the entire therapeutic pipeline, which was

not covered in previous surveys. Moreover, most of the previous

reviews focused on DNA sequences, while we go beyond DNA

sequences and study a wide range of interactions among DNA

sequences, compounds, proteins, multi-omics, and EHR data.

In this survey, we organize ML applications into four therapeu-

tic pipelines: (1) target discovery: basic biomedical research to

discover novel disease targets to enable therapeutics; (2) thera-

peutic discovery: large-scale screening designed to identify

potent and safe therapeutics; (3) clinical study: evaluating the ef-

ficacy and safety of the therapeutics in vitro, in vivo, and through

clinical trials; and (4) post-market study: monitoring the safety

and efficacy of marketed therapeutics and identifying novel indi-

cations. We also formulate these tasks and datamodalities inML

languages, which can help ML researchers with limited domain

background to understand those tasks. In summary, this survey

presents a unique perspective on the intersection of ML, geno-

mics, and therapeutic development.

The survey is organized as follows (Figure 1). In the next sec-

tion, we provide a brief primer on genomics-related data. We
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also review popular ML models for each data type. In the subse-

quent three sections, we discuss ML applications in genomics

across the therapeutics development pipeline. Each section de-

scribes a phase in the therapeutics pipeline and contains several

ML applications and ML models and formulations. In the penul-

timate section, we identify seven open challenges that present

numerous opportunities for ML model development and also

novel applications. We provide a GitHub repository (https://

github.com/kexinhuang12345/ml-genomics-resources) that cu-

rates a list of resources discussed in this survey.

A PRIMER ON GENOMICS DATA AND MACHINE
LEARNING MODELS

With advances in high-throughput technologies and data man-

agement systems, we now have vast and heterogeneous data-

sets in the field of biomedicine. This section introduces the basic

genomics-related data types and their ML representation and

provides a primer on popular ML methods applied to these

data. First, we discuss the data representatsion in genomics-

related tasks. In Table 1, we provide a set of pointers to high-

quality datasets that cover the discussed data representations.

Genomics-related biomedical data
DNAs

The human genome can be thought of as the instructions for

building functional individuals. DNA sequences encode these in-

structions. Like a computer, for which we build a program based

on 0/1 bit, the basic DNA sequence units are called nucleotides

(A, C, G, and T). Given a list of nucleotides, a cell can build a

diverse range of functional entities (programs). There are

approximately 3 billion base pairs for the human genome, and

more than 99.9% are identical between individuals. If a subset

of the population has different nucleotides in a genome position

than the majority, this position is called a variant. This single

nucleotide variant is often called a SNP. While most variants

are not harmful (they are said to be functionally neutral), many

correspond to the potential driver for phenotypes, including

diseases.

Machine learning representations. A DNA sequence is a list of

ACGT tokens of length N. It is typically represented in three

ways: (1) a string fA;C;G; TgN; (2) a two dimensional matrix

W˛R43N, where the ith column Wi corresponds to the ith nucle-

otide and is a one-hot encoding vector of length 4, where A, C, T,

and G are encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1],

respectively; or (3) a vector of f0; 1gN, where 0 means it is not a

variant and 1 a variant. An example is depicted in Figure 2A.

Gene expression/transcripts. In a cell, the DNA sequence of

each gene is transcribed into messenger RNA (mRNA) tran-

scripts. While most cells share the same genome, the individual

genes are expressed at very different levels across cells and tis-

sue types and given different interventions and environments.

These expression levels can be measured by the count of

mRNA transcripts. Given a disease, we can compare the gene

expression in people with the disease with expression to people

in healthy cohorts (without the disease of interest) and associate

various genes with the underlying biological processes in this

disease. With the advance of single-cell RNA sequencing

(scRNA-seq) technology, we can now obtain gene expression

https://github.com/kexinhuang12345/ml-genomics-resources
https://github.com/kexinhuang12345/ml-genomics-resources


Figure 1. Organization and coverage of this
survey
Our survey covers a wide range of important ML
applications in genomics across the therapeutics
pipelines. In addition, we provide a primer on
biomedical data modalities and machine learning
models. Finally, we identify seven challenges filled
with opportunities.
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for the different types of cells thatmake up a tissue. The availabil-

ity of transcripts of tens of thousands of cells creates new oppor-

tunities for understanding interactions among the behaviors of

different cell types in a cell population.

Machine learning representations. Gene expressions/tran-

scripts are counts of mRNA. For a scRNA-seq experiment, given

M cells/individuals with N genes, we can obtain a gene expres-

sion matrix W˛ZM3N, where each entry Wi;j corresponds to the

transcript counts of gene j for cell/individual i. An example is de-

picted in Figure 2B.

Proteins

Most of the genes encoded in the DNA provide instructions to

build a diverse set of proteins, which perform a vast array of func-

tions. For example, transcription factors are proteins that bind to

the DNA/RNA sequence and regulate their expression in

different conditions. A protein is a macro-molecule and is repre-

sented by a sequence of 20 standard amino acids or residues,

where each amino acid is a simple compound. Based on this
sequence code, it naturally folds into a

three-dimensional (3D) structure, which

determines its function. As the functional

units, proteins present a large class of ther-

apeutic targets. Many drugs are designed

to inhibit/promote proteins in the disease

pathways. Proteins can also be used as

therapeutics such as antibodies and

peptides.

Machine learning representations. Pro-

teins have diverse forms. For a protein

with N amino acids, it can be represented

in the following formats: (1) a string

fA;R;N;D;.gN of amino acid sequence

tokens; (2) a contact map matrix

W˛RN3N where Wi;j is the physical dis-

tance between ith and jth amino acids;

(3) a protein graph G with nodes corre-

sponding to amino acids, where nodes

are connected based on rules such as a

physical distance threshold or k-nearest

neighbors; (4) a protein 3D grid with 3D

discretized tensor, where each grid point

ðx; y; zÞ corresponds to amino acids in

the 3D space. An example is depicted in

Figure 2C.

Compounds

Compounds are molecules that are

composed of atoms connected by

chemical bonds. They can interact with

proteins and drive important biological
processes. In their natural form, compounds have a 3D struc-

ture. Small-molecule compounds are the major class of ther-

apeutics.

Machine learning representations. A compound is usually rep-

resented as (1) an SMILES string where it is a depth traversal or-

der of the molecule graph or (2) a molecular graph Gwhere each

node is an atom and edges are the bonds. An example is illus-

trated in Figure 2D.

Diseases

A disease is an abnormal condition that affects the function and/

ormodifies the structure of an organism. It is derived from factors

such as genotypes, environments, and economic status, with

intricate mechanisms driven by biological processes. They are

observable and can be described by certain symptoms.

Machine learning representations. Diseases are represented

by (1) symbols in the disease ontology such as ICD-10 codes

or (2) text description of the specific disease. An example is de-

picted in Figure 2E.
Patterns 2, October 8, 2021 3



Table 1. High-quality machine learning datasets references and pointers for genomics therapeutics tasks

Pipeline (related section) Task Reference Data link

Target discovery (‘‘machine

learning for genomics in

target discovery’’)

DNA/RNA-protein binding Zeng et al.57 http://cnn.csail.mit.edu/

methylation state Levy et al.195 https://github.com/Christensen-Lab-

Dartmouth/PyMethylProcess

RNA splicing Harrow et al.196 https://www.gencodegenes.org/

spatial gene expression Weinstein et al.197 https://portal.gdc.cancer.gov/

cell-composition analysis Avila Cobos et al.198 https://go.nature.com/3mxCZEv

gene network construction Shrivastava et al.86 https://github.com/Harshs27/GRNUlar

variant calling Chen et al.199 https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA511646/

variant prioritization Landrum et al.200 https://www.ncbi.nlm.nih.gov/clinvar/

gene-disease association Piñero et al.201 https://www.disgenet.org/

pathway analysis Fabregat et al.202 https://reactome.org/

Therapeutics discovery

(‘‘machine learning for

genomics in therapeutics

discovery’’

drug response Yang et al.203 https://www.cancerrxgene.org/

drug combination Liu et al.204 http://drugcombdb.denglab.org/

CRISPR on-target Leenay et al.205 https://tdcommons.ai/single_pred_tasks/

CRISPROutcome/

CRISPR off-target Störtz and Minary206 http://www.CRISPRsql.com/

virus vector design Bryant et al.156 https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA673640/

Clinical study (‘‘machine

learning for genomics in

clinical studies’’)

cross-species translation Poussin et al.207 https://www.intervals.science/resources/

sbv-improver/stc

patient stratification Curtis et al.208 https://www.cbioportal.org/

patient-trial matching Zhang et al.182 https://github.com/deepenroll/DeepEnroll/

tree/master/Synthetic%20Data

Mendelian randomization Hemani et al.189 https://www.mrbase.org/

Post-market study (‘‘machine

learning for genomics in

post-market studies’’)

biomedical literature mining Pyysalo et al.209 http://mars.cs.utu.fi/BioInfer/?q=download
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Biomedical networks

Biological processes are not driven by individual units but

consist of numerous interactions among various types of entities

such as cell-signaling pathways, protein-protein interactions,

and gene regulation. These interactions can be characterized

by biomedical networks, where they provide a systems view to-

ward biological phenomena. In the context of diseases, a

network can also contain interactions among phenotypes or dis-

ease mechanisms. These networks are also referred to as dis-

ease maps.

Machine learning representations. Biomedical networks are

represented as graphs, where each node is a biomedical entity

and an edge corresponds to relations among them. An example

is depicted in Figure 2F.

Spatial data

With the advance of microscopes and fluorescent probes, we

can visualize cell dynamics through cellular images. By imaging

cells under various conditions such as drug treatment, they allow

us to identify the effect of conditions at a cellular level. Further-

more, spatial genomic sequencing techniques now allow us to

visualize and understand the gene expression for cellular pro-

cesses in the tissue environment.

Machine learning representations. Cellular image or spatial

transcriptomics can be represented as a matrix of size M3 N,
4 Patterns 2, October 8, 2021
where M;N is the width and height of the data or number of

pixels/transcripts along this dimension, and each entry corre-

sponds to the pixel of the image or the transcript count in the

case of spatial transcriptomics. Additional channels (a separate

matrix of size M3 N) encode for information such as

colors or various genes for spatial transcriptomics. After aggre-

gation, the spatial data can be represented as a tensor of size

M3 N3 H, where H is the number of channels. An example is

illustrated in Figure 2G.

Texts

One common categorization of texts is structured versus un-

structured data. Structured data follow rigid form and are easily

searchable, whereas unstructured data are in a free-form format

such as texts. While they are more difficult to process, they

contain crucial information that usually does not exist in struc-

tured data. The first important example of text encountered in

therapeutics development includes clinical trial design proto-

cols, where texts describe inclusion and exclusion criteria for trial

participation, often as a function of genome markers. For

example, in a trial to study gefitinib for EGFR-mutant non-small

cell lung cancer, one of the trial eligibility criteria would be ‘‘An

EGFR sensitizing mutation must be detected in tumor tissue.’’22

The second type of clinical text is clinical notes documented in

EHRs. While the majority of the EHR data are structured, the

http://cnn.csail.mit.edu/
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
https://www.gencodegenes.org/
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https://go.nature.com/3mxCZEv
https://github.com/Harshs27/GRNUlar
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA511646/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA511646/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.disgenet.org/
https://reactome.org/
https://www.cancerrxgene.org/
http://drugcombdb.denglab.org/
https://tdcommons.ai/single_pred_tasks/CRISPROutcome/
https://tdcommons.ai/single_pred_tasks/CRISPROutcome/
http://www.crisprsql.com/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA673640/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA673640/
https://www.intervals.science/resources/sbv-improver/stc
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https://www.cbioportal.org/
https://github.com/deepenroll/DeepEnroll/tree/master/Synthetic%20Data
https://github.com/deepenroll/DeepEnroll/tree/master/Synthetic%20Data
https://www.mrbase.org/
http://mars.cs.utu.fi/BioInfer/?q=download
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Figure 2. Therapeutics data modalities and their machine learning representation
Detailed descriptions of each modality can be found in ‘‘genomics-related biomedical data.’’
(A) DNA sequences can be represented as a matrix where each position is a one-hot vector corresponding to A, C, G, T.
(B) Gene expressions are a matrix of real value, where each entry is the expression level of a gene in a context such as a cell.
(C) Proteins can be represented in amino acid strings, a protein graph, and a contact map where each entry is the connection between two amino acids.
(D) Compounds can be represented as a molecular graph or a string of chemical tokens, which are a depth-first traversal of the graph.
(E) Diseases are usually described by textual descriptions and also symbols in the disease ontology.
(F) Networks connect various biomedical entities with diverse relations. They can be represented as a heterogeneous graph.
(G) Spatial data are usually depicted as a 3D array, where two dimensions describe the physical position of the entity and the third dimension corresponds to
colors (in cell painting) or genes (in spatial transcriptomics).
(H) Texts are typically represented as a one-hot matrix where each token corresponds to its index in a static dictionary.
The protein image is adapted fromGaudelet et al.;21 the spatial transcriptomics image is adapted from 10xGenomics; the cell painting image is fromCharles River
Laboratories.
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unstructured clinical notes contain valuable information to

support various applications such as post-market research on

treatments.

Machine learning representations. Clinical texts are similar to

texts in common natural language processing. The standard

way to represent them is a matrix of size M3 N, where M is

the number of total vocabularies and N is the number of tokens

in the texts. Each column is a one-hot encoding for the corre-

sponding token. An example is depicted in Figure 2H.

Machine learning methods for biomedical data
MLmodels learn patterns from data and leverage these patterns

to make accurate predictions. Numerous ML models have been

proposed to tackle different challenges. This section briefly intro-

duces the main mechanisms of popular ML models used to

analyze genomic data. Figure 3 describes a typical ML for geno-

mics data workflow. We also provide a list of public benchmarks

or competitions that compare various discussed ML methods in

Table 2.

Preliminary

A typical ML model for genomics usage is as follows. Given an

input of a set of data points, where each data point consists of

input features and a ground-truth biological label, an ML model

aims to learn a mapping from input to a label based on the

observed data points, which are also called training data. This

setting of predicting by leveraging known supervised labels is
also called supervised learning. The size of the training data is

called the sample size. ML models are data-hungry and usually

need a large sample size to perform well.

The input features can be DNA sequences, compound graphs,

or clinical texts, depending on the task at hand. The ground-truth

label is usually obtained via biological experiments. The ground

truth also presents the goal for an ML model to achieve. Thus, if

the ground-truth label contains errors (e.g., human labeling error

or wet-lab experiments error), the MLmodel could optimize over

the wrong signals, highlighting the necessity of high-quality data

curation and control. It is also worth mentioning that the input

can also present quality issues, such as shifts of the cell image,

batch effect for gene expressions, and measurement errors.

There are various forms of ground-truth labels. If the labels are

continuous (e.g., binding scores), the learning problem is a

regression problem. And if the labels are discrete variables

(e.g., the occurrence of interaction), the problem is a classifica-

tion problem. Models focusing on predicting the labels of the

data are called discriminative models. Besides making predic-

tions,MLmodels can also generate new data points bymodeling

the statistical distribution of data samples. Models following this

procedure are called generative models.

When labels are not available, an ML model can still identify

the underlying patterns within the unlabeled data points. This

problem setting is called unsupervised learning, whereby

models discover patterns or clusters (e.g., cell types) by
Patterns 2, October 8, 2021 5



A B C Figure 3. Machine learning for genomics
workflow
(A) The first step is to curate a machine learning
dataset. Raw data are extracted from databases of
various sources and are processed into data points.
Each data point corresponds to an input of a series
of biomedical entities and a label from annotation or
experimental results. These data points constitute a
dataset, and they are split into three sets. The
training set is for the ML model to learn and identify
useful and generalizable patterns. The validation set
is for model selection and parameter tuning. The
testing set is for the evaluation of the final model.
The data split could be constructed in a way to
reflect real-world challenges.
(B) Various ML models can be trained using the
training set and tuned based on a quantified metric
on the validation set such as loss L that measures
how good this model predicts the output given the
input. Lastly, we select the optimal model given the
lowest loss.
(C) The optimal model can then predict on the test
set, where various evaluation metrics are used to
measure how good the model is on new unseen
data points. Models can also be probed with ex-
plainability methods to identify biological insights
captured by the model. Experimental validation

is also common to ensure the model can approximate wet-lab experimental results. Finally, the model can be deployed to make predictions on new
data without labels. The prediction becomes a proxy for the label from downstream tasks of interest.
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modeling the relations among data points. Self-supervised

learning uses supervised learning methods for handling unla-

beled data. It creatively produces labels from the unlabeled

data (e.g., masking out amotif and using the surrounding context

to predict the motif).14,23

In many biological cases ground-truth labels are scarce, in

which case few-shot learning can be considered. Few-shot

learning assumes only a few labeled data points but many unla-

beled data points. Another strategy is called meta-learning,

which aims to learn from a set of related tasks to form the ability

to learn quickly and accurately on an unseen task.

If a model integrates multiple data modalities (e.g., DNA

sequence plus compound structure), it is called multi-modal

learning. When a model predicts multiple labels (e.g., multiple

target endpoints), it is called multi-task learning.

In biomedical ML problems, high-quality data curation is a key

step. Biomedical data are usually generated fromwet-lab exper-

iments, and are thus prone to numerous experimental glitches. A

dataset usually results from different biotechnology platforms,

batches, time points, and conditions. Thus, accurate and careful

pre-processing and data fusion are tremendously important;

otherwise, the ML model may learn from biased or erroneous

data. Numerous data-processing protocols have also been

formulated, such as batch-effect corrections,24 imputation,25

and datasets integration.26 Efforts in curating ML-ready thera-

peutics datasets have also been initiated.27

In this survey, we argue that the integration of genomics data

with other biomedical entity types is the key to transforming data

into therapeutic products. This integration also goes beyond

integrating different contexts such as cellular, tissue, and organ-

ism at temporal scales. Data integration in ML is a well-studied

subject. There are mainly three categories.28 The first is at the

dataset level, where datasets are fused and aligned to form a

combined dataset and then fed into the ML model. The second
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is for each data type or dataset foe which a separate ML model

is used to encode it, after which the ML models are combined in

the ML latent space. The third is integration on the output space,

where model predictions are aggregated through ensembles.

For each task covered in this survey, we specify the data-inte-

gration strategy.

Classic ML models

Traditional ML usually requires a transformation of input to

tabular real-valued data, where each data point corresponds

to a feature vector. In our context, these are pre-defined features

such as the SNP vector, polygenic risk scores, and chemical fin-

gerprints. These tabular data can then be fed into a wide range of

supervised models, such as linear/logistic regression, decision

trees, random forest, support vector machine, and naive

Bayes.29 They work well when the features are well defined. A

multi-layer perceptron30 (MLP) consists of at least three layers

of neurons, where each layer is fed into a non-linear activation

function to capture these patterns. When the number of layers

is large, it is called a deep neural network (DNN). Classic ML

models are very simple to implement and are highly scalable.

They can serve as a strong baseline. However, they only accept

real-valued vectors as inputs and do not fit the diverse biomed-

ical entity types such as sequence and graph. Also, these vec-

tors are usually features engineered by humans, which further

limits their predictive powers. Examples are shown in Figures

4A and 4B.

Suitable biomedical data. Any real-valued feature vectors built

upon biomedical entities such as SNP profile and chemical fin-

gerprints.

Convolution neural network

Convolution neural networks (CNNs) represent a class of DNNs

widely applied for image classification, natural language pro-

cessing, and signal processing such as speech recognition.31

A CNN model has a series of convolution filters, which allow it



Table 2. Public benchmarks and competitions of machine learning for therapeutics with genomics data

Name Focus Link

MoleculeNet molecule learning http://moleculenet.ai/

Therapeutics Data Commons general therapeutics https://tdcommons.ai/benchmark/

overview/

DREAM general biomedicine https://dreamchallenges.org/

SBV-IMPROVER human-mouse translation https://www.intervals.science/resources/

sbv-improver/stc

TAPE protein engineering https://github.com/songlab-cal/tape

CASP protein structure https://predictioncenter.org/

GuacaMol molecule generation https://www.benevolent.com/guacamol

Open Problems single-cell analysis https://openproblems.bio/

RxRx cell painting https://www.rxrx.ai/

Kaggle-MoA mechanism of action https://www.kaggle.com/c/lish-moa

Kaggle-HPA single-cell classification https://www.kaggle.com/c/hpa-single-cell-

image-classification
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to identify local patterns in the data (e.g., edges, shapes for im-

ages). Such networks can automatically extract hierarchical

patterns in data. The weight of each filter reveals patterns.

CNNs are powerful in picking up the patterns locally, which is

ideal for biomedical tasks whereby local structures are impor-

tant to the outcome, such as consecutive blocks of genes

(conserved motifs) in DNA sequence and substructures in com-

pound string representation. However, they are restricted to

grid-structured data and do not work for non-Euclidean objects

such as gene regulatory networks or 3D biochemical struc-

tures. Also, CNNs are translation invariant, which is a double-

edged sword. On the one hand, it can robustly predict even if

one perturbs the input by translation. On the other hand, it

might not be ideal with biomedical data whereby order/spatial

location information is crucial for the outcome such as time-se-

ries gene expression trajectory. An example is depicted in

Figure 4C.

Suitable biomedical data. Short DNA sequence, compound

SMILES strings, gene expression profile, and cellular images.

Recurrent neural network

A recurrent neural network (RNN) is designed to model sequen-

tial data, such as time series, event sequences, and natural lan-

guage text.32 The RNN model is sequentially applied to a

sequence. The input at each step includes the current observa-

tion and the previous hidden state. RNN is natural to model var-

iable-length sequences. There are two widely used variants of

RNNs: long short-term memory (LSTM)33 and gated recurrent

units.34 RNNs are natural candidates for sequential data such

as DNA/protein sequence and textual data, where the next token

depends on previous tokens. However, they often suffer from the

vanishing gradient problem, which precludes them from

modeling long-range sequences. Thus, it is not ideal for a long

DNA sequence. An example is depicted in Figure 4D.

Suitable biomedical data. DNA sequence, protein sequence,

and texts.

Transformer

Transformers35 are a recent class of neural networks that

leverage self-attention: assigning a score of interaction among

every pair of input features (e.g., a pair of DNA nucleotides). By
stacking these self-attention units, the model can capture

more expressive and complicated interactions. Transformers

have shown superior performances on sequence data, such as

natural language processing. They have also been successfully

adapted for state-of-the-art performances on proteins36 and

compounds.37 Transformers are powerful, but they are not scal-

able due to the expensive self-attention calculation. Despite

several recent advances to increase the maximum size to the or-

der of tens of thousands,38 this limitation has still prevented its

usage for extremely long sequences such as genome sequences

and usually requires partitioning and aggregation strategies. An

example is depicted in Figure 4E.

Suitable biomedical data. DNA sequence, protein sequence,

texts, and image.

Graph neural networks

Graphs are universal representations of complex relations in

many real-world objects. In biomedicine, graphs can represent

knowledge graphs, gene expression similarity networks, mole-

cules, protein-protein interaction networks, and medical ontol-

ogies. However, graphs do not follow rigid data structures as

in sequences and images. Graph neural networks (GNNs) are a

class of model that converts graph structures into embedding

vectors (i.e., node representation or graph representation vec-

tors).39 In particular, GNNs generalize the concept of convolution

operations to graphs by iterative passing and aggregating mes-

sages from neighboring nodes. The resulting embedding vectors

capture the node attributes and the network structures. GNNs

are a powerful tool to model any graph-structured biomedical

data. However, when adapting GNNs to the biomedical domain,

special attention is required. For example, GNNs heavily rely on

the assumption of homophily, where similar nodes are con-

nected. In biomedical networks, however, it has been shown to

exhibit more complicated behavior such as skip similarity.40

Besides, the local message-passing schemes oversimplify

biochemical graph structures. Domain-motivated GNN design

where biophysical principles are integrated is highly desirable.41

An example is depicted in Figure 4F.

Suitable biomedical data. Biomedical networks, compound/

protein graphs, and similarity network.
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Figure 4. Illustrations of machine learning models
Details about each model can be found in ‘‘machine learning methods for biomedical data.’’
(A) Classic machine learning models featurize raw data and apply various models (mostly linear) to classify (e.g., binary output) or regress (e.g., real value output).
(B) Deep neural networks map input features to embeddings through a stack of non-linear weight multiplication layers.
(C) Convolutional neural networks apply many local filters to extract local patterns and aggregate local signals through pooling.
(D) Recurrent neural networks generate embeddings for each token in the sequence based on the previous tokens.
(E) Transformers apply a stack of self-attention layers that assign a weight for each pair of input tokens.
(F) Graph neural networks aggregate information from the local neighborhood to update the node embedding.
(G) Autoencoders reconstruct the input from an encoded compact latent space.
(H) Generative models generate novel biomedical entities with more desirable properties.
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Autoencoders

Autoencoders (AEs) are an unsupervised method in deep

learning. AEs map the input data into a latent embedding

(encoder) and then reconstruct the input from the latent embed-

ding (decoder).42 Their objective is to reconstruct the input from

a low-dimensional latent space, thus allowing the latent represen-

tation to focus on essential properties of the data. Both encoders

and decoders are neural networks. AEs can be considered as a

non-linear analog to principal component analysis. The gener-

ated latent representation captures patterns in the input data

and can thus be used to carry out unsupervised learning tasks

such as clustering. Among its variants, the denoising autoen-

coders take partially corrupted inputs and are trained to recover

original undistorted inputs.43 Variational autoencoders (VAEs)

model the latent space with probabilistic models. As these prob-

abilities are complex and usually intractable, they adopt a varia-

tional inference technique to approximate these probabilistic

models.44 AEs are widely used to map gene expression to latent

states without any labels, and these latent embeddings are useful

for downstream single-cell analyses. One disadvantage of AEs is

that they model training data, while in single-cell analysis test

data can come from different settings from training data. It is

thus challenging to obtain accurate latent embeddings with AEs

on novel test data. An example is depicted in Figure 4G.

Suitable biomedical data. Unlabeled data.

Generative models

In contrast to making a prediction, generative models aim to

learn a sufficient statistical distribution that characterizes the un-
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derlying datasets (e.g., a set of DNA sequences for a disease)

and its generation process.45 Based on the learned distribution,

various kinds of downstream tasks can be supported. For

example, from this distribution one can intelligently generate

optimized data points. These optimized samples can be novel

images, compounds, or RNA sequences. One popular model is

called generative adversarial networks (GANs)46 consisting of

two submodels: a generator that captures the data distribution

of a training dataset in a latent representation and a discriminator

that determines whether a sample is real or generated. These

two submodels are trained iteratively such that the resulting

generator can produce realistic samples that potentially fool

the discriminator. An example is depicted in Figure 4H.

Suitable biomedical data. Data in which new variants can have

more desirable properties (e.g., molecule generation for drug

discovery).47,48 Depending on the data modality, different en-

coders can be chosen for the generative models.

MACHINE LEARNING FOR GENOMICS IN TARGET
DISCOVERY

A therapeutic target is amolecule (e.g., a protein) that plays a role

in the disease’s biological process. The molecule could be tar-

geted by a drug to produce a therapeutic effect such as inhibi-

tion, thereby blocking the disease process. Much of target

discovery relies on fundamental biological research in depicting

a full picture of human biology and, based on this knowledge, to

identify target biomarkers. In this section, we review ML for
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genomics tasks in target discovery. First, we review six tasks

that use ML to facilitate understanding of human biology, and

second, we describe four tasks in using ML to help identify drug-

gable biomarkers more accurately and more quickly.

Facilitating understanding of human biology
Oftentimes, the first step for developing any therapeutic agent is

to generate a disease hypothesis and understand the disease

mechanisms. This requires some understanding of basic human

biology, since diseases are complicated and driven bymany fac-

tors. ML applied to genomics can facilitate basic biomedical

research and help us to understand disease mechanisms. A

wide range of relevant tasks have been tackled by ML, from pre-

dicting splicing patterns,49,50 DNA methylation status,51 to de-

coding the regulatory roles of genes.52,53 The majority of previ-

ous reviews have focused on this theme only. Many tasks

could be covered in this theme. In this review, we chose six

important tasks based on the following criteria: (1) the task is

closely tight to understanding disease mechanism and discov-

ering targets, as this survey focuses on therapeutics develop-

ment; (2) the task is popular (i.e., sufficient literature exists),

and ML has successfully been applied to it; (3) the overall selec-

tion is diverse to cover different data modalities, ML task formu-

lation and ML representations (e.g., graphs, images, vectors).

For a full review of biological understanding, we refer readers

to Angermueller et al.54

DNA-protein and RNA-protein binding prediction

DNA-binding proteins bind to specific DNA strands (binding

sites/motifs) to influence the transcription rate to RNA, chromatin

accessibility, and so forth. These motifs regulate gene expres-

sion and, if mutated, can potentially contribute to diseases. Simi-

larly, RNA-binding proteins bind to RNA strands to influence

RNA processing, such as splicing and folding. Thus, it is impor-

tant to identify the DNA and RNA motifs for these binding

proteins.

Traditional approaches are based on position weight

matrices (PWMs), but they require existing knowledge about

the motif length and typically ignore interactions among the

binding-site loci. ML models trained directly on sequences to

predict binding scores circumvent these challenges. A CNN is

a great match for this task because CNN’s filters operate in a

mechanism similar to that of PWMs by convolving over snip-

pets of motifs and assigning higher weights to the motifs that

are important. We can also examine binding-site motifs through

visualizing CNN filter weights. Based on this key observation,

various methods have been proposed. For example, Alipanahi

et al.55 use a CNN to train large-scale DNA/RNA sequences

with varying lengths to predict the binding scores. While DNA

sequence alone provides strong signals, other channels of in-

formation could further aid the binding prediction. For example,

Kircher et al.56 show that including evolutionary features

for identifying chromatin proteins/histone marks binding

can further improve the performance. Similarly, Zhou and

Troyanskaya53 show that integrating another CNN model on

additional information from the epigenomics profile further im-

proves performance. Extending CNN-based models, a large

body of works has been proposed to predict DNA- and RNA-

protein binding.57,58–60 While CNN models are highly predictive,

the interpretability is limited in its resolution, as the CNN filter
has a window size of around 100–200 base pairs. The base-

resolution model is highly ideal for identifying granular informa-

tion such as transcription factor (TF) cooperativity. Recently,

Avsec et al.61 have shown the benefits of the base-resolution

CNN model in TF binding prediction.

Machine learning formulation. Given a set of DNA/RNA se-

quences, predict their binding scores. After training, use feature

importance attribution methods to identify the motifs. An illustra-

tion of the task is presented in Figure 5A.

Methylation state prediction

DNA methylation adds methyl groups to individual A or C bases

in the DNA to modify gene activity without changing the

sequence. It is a commonly used mediator for biological pro-

cesses such as cancer progression and cell differentiation.63

Thus, it is important to know the methylation status of DNA se-

quences in various cells. However, since the single-cell methyl-

ation technique has low coverage, most of the methylation

status at specific DNA positions is missing, requiring accurate

imputation.

Classical methods can only predict population-level status

given features instead of cell-level status because cell-level pre-

diction requires granular and complex modeling of long sequen-

tial methylation status.64,65 Sequential MLmodels such as RNNs

and CNNs are ideal choices because they can capture the

non-linear sequential dependencies that are hidden in the

methylation sequence. For example, given a set of cells with their

available sequenced methylation status for each DNA position

and the DNA sequence, Angermueller et al.51 accurately infer

the unmeasured methylation statuses at a single-cell level.

More specifically, the imputation of DNA methylation positions

uses a bidirectional RNN on a sequence of cells’ neighboring

available methylation states and a CNN on the DNA sequence.

The combined embedding takes into account information be-

tween DNA and methylation status across cells and within cells.

Alternative architecture choices have also been proposed, such

as using Bayesian clustering66 or a variational AE.67 Notably, it

can also be extended to RNA methylation state prediction. Zou

et al.68 apply CNN on the neighboring methylation status and

the word2vec model on RNA subsequence for RNA methylation

status prediction. The main challenge in DNA methylation pre-

diction is the number of CpG sites, which could bemanymillions.

The ability of the model to accommodate such long-range

information is limited in current ML models due to issues such

as vanishing gradient problems in RNN and scalability issues

for transformers.

Machine learning formulation. For a DNA/RNA position with

missing methylation status, given its available neighboring

methylation states and the DNA/RNA sequence, predict the

methylation status on the position of interest. The task is illus-

trated in Figure 5B.

RNA splicing prediction

RNA splicing is a mechanism to assemble the coding regions

and remove the non-coding ones to be translated into proteins.

A single gene can have various functions by splicing the same

gene in different ways given different conditions. López-Bigas

et al.69 estimate that as many as 60% of pathogenic variants

responsible for genetic diseases may influence splicing. Gefman

et al.70 identify around 2% of synonymous variants and 0.6% of

intronic variants as likely pathogenic due to alternative splicing
Patterns 2, October 8, 2021 9
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Figure 5. Task illustrations for the theme ‘‘facilitating understanding of human biology’’
(A) A model predicts whether a DNA/RNA sequence can bind to a protein. After training, one can identify binding sites based on feature importance (see ‘‘DNA-
protein and RNA-protein binding prediction’’).
(B) A model predicts missing DNA methylation state based on its neighboring states and DNA sequence (see ‘‘methylation state prediction’’).
(C) A model predicts the splicing level given the RNA sequence and the context (see ‘‘RNA splicing prediction’’).
(D) A model predicts spatial transcriptomics from tissue image (see ‘‘spatial gene expression inference’’).
(E) A model predicts the cell-type compositions from the gene expression (see ‘‘cell-composition analysis’’).
(F) A model constructs a gene regulatory network from gene expressions (see ‘‘gene network construction’’.
Panel (C) is adapted from Xiong et al.,50 and the spatial transcriptomics image in panel (D) is from Bergenstråhle et al.62
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defects. Thus, it is important to be able to identify the genetic

variants that cause alternative splicing. Traditional wet-lab mea-

surements of splicing levels are highly unscalable.

Xiong et al.50 pioneer the use of ML in splicing prediction. They

model this problem as predicting the splicing level of an exon,

measured by the transcript counts of this exon, given its neigh-

boring RNA sequence and the cell-type information. It uses

Bayesian neural network ensembles on top of curated RNA fea-

tures and has demonstrated its accuracy by identifying known

mutations and discovering new ones. Notably, this model is

trained on large-scale data across diverse disease areas and tis-

sue types. Thus, the resulting model can predict the effect of a

new unseen mutation within hundreds of nucleotides on the

splicing of an intron without experimental data. This property
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of generalization across new contexts is crucial but is particularly

difficult for ML due to its natural tendency to overfit on spurious

correlation. In addition, to predict the splicing level given a triplet

of exons in various conditions, recent models have been devel-

oped to annotate the nucleotide branchpoint of RNA splicing.

Paggi and Beherano71 feed an RNA sequence into an RNN, pre-

dicting the likelihood of being a branchpoint for each nucleotide.

Jagadeesh et al.72 further improve the performance by inte-

grating features from the splicing literature and generate a highly

accurate splicing-pathogenicity score.

Machine learning formulation. Given an RNA sequence and its

cell type, if available, for each nucleotide, predicts the probability

of being a spliced breakpoint and the splicing level. The task is

illustrated in Figure 5C.
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Spatial gene expression inference

Gene expression varies across the spatial organization of tissue.

This heterogeneity contains important insights into the biological

effects. Regular sequencing, whether of single cells or bulk tis-

sue, does not capture this information. Recent advances in

spatial transcriptomics characterize gene expression profiles

in their spatial tissue context.73 However, integrating the

sequencing output with the tissue context provided by histopa-

thology images takes resources and time. Automatic annota-

tions could drastically save resources. He et al.62 introduce ML

to this important problem by formulating it as gene expression

prediction from histopathology images. As a histopathology

slide is an image, a natural model is through CNN. They develop

a deep CNN that predicts gene expression from histopathology

of patients with breast cancer at a resolution of 100 mm. They

also show that the model can generalize to other breast cancer

datasets without retraining. Building upon the inferred spatial

gene expression levels, many downstream tasks are enabled.

For example, Levy-Jurgenson et al.74 construct a pipeline that

characterizes tumor heterogeneity on top of the CNN gene

expression inference step. Bergenstråhle et al.75 model the

spatial transcriptomics and histology image jointly through latent

state and infer high-resolution denoised gene expression by

posterior estimation. Despite the promises, one crucial chal-

lenge of this task is the requirement of a large number of

ground-truth annotations, which are expensive to acquire in a

novel set of histopathology slides or genes. This challenge high-

lights the need for the model to learn from few examples by

adopting techniques such as meta-learning or transfer learning.

Machine learning formulation. Given the histopathology image

of the tissue, predict the gene expression for every gene at each

spatial transcriptomics spot. The task is illustrated in Figure 5D.

Cell-composition analysis

Different cell types can drive changes in gene expressions that

are unrelated to the interventions. Analyzing the average gene

expression for a batch of mixed cells with distinct cell types

could lead to bias and false results.76 Thus, it is important to de-

convolve the gene expressions of the cell-type composition from

the real signals for tissue-based RNA-seq data.

ML models can help estimate the cell-type proportions and

the gene expression. The rationale is to obtain parameters of

gene expression (a signature matrix) that characterize each

cell type through single-cell profiles. The signature matrix

should contain gene expressions that are stably expressed

across conditions. These parameters are then integrated

into the RNA-seq data to infer cell composition for a set of

query gene expression profiles. Various methods, including

linear regression77 and support vector machines,78 are used

to predict a cell-composition vector when combined with

the signature matrix to approximate the gene expression. In

these works the signature matrix is pre-defined, which may

not be optimal. A learnable signature matrix could lead to

improved accuracy. Pioneering this direction, Menden

et al.79 apply DNNs to predict cell-composition profile directly

from the gene expression, where the hidden neurons can be

considered as the learned signature matrix. Cell deconvolu-

tion is also crucial for spatial transcriptomes where each

spot could contain 2 to 20 cells from a mixture of dozens of

possible cell types. Andersson et al.80 model various cell-
type-specific parameters using a customized probabilistic

model. As spots in a slide have spatial dependencies,

modeling them as a graph can further improve performance.

Notably, Su and Song81 initiate the use of graph convolutional

network to leverage information from similar spots in the

spatial transcriptomics. There are two major challenges for

this task. The first is the quality of the gold-standard annota-

tions as the cell-proportion estimates are usually noisy. This

calls for ML methods that can model the label noise.82

Another challenge is that the proportions are highly dependent

on phenotypes such as age, gender, and disease status. How

to take into account this information in the ML models is also

valuable for more accurate deconvolution.

Machine learning formulation. Given the gene expressions of a

set of cells (in bulk RNA-seq or a spot in spatial transcriptomics),

infer proportion estimates of each cell type for this set. The task

is illustrated in Figure 5E.

Gene network construction

The expression levels of a gene are regulated via TFs produced

by other genes. Aggregating these TF-gene relations results in

the gene regulatory network. Accurate characterization of this

network is crucial because it describes how a cell functions.

However, it is difficult to quantify gene networks on a large scale

through experiments alone.

Computational approaches have been proposed to construct

gene networks from gene expression data. The majority of them

learn amapping from expressions of a gene to TF. If themapping

is successful, it is likely that this TF affects this gene. Various

mapping methods using classic ML have been proposed,

such as linear regression,83 random forest,84 and gradient boost-

ing.85 However, gene networks constructed through these

methods are not controllable in sparsity and are sensitive to

parameter changes, and thus are filled with noises. Recently,

Shrivastava et al.86 introduced a specialized unrolled algorithm

to control the sparsity of the learned network. They also lever-

aged supervision obtained through synthetic data simulators to

improve robustness further. Despite the promises, gene network

construction is difficult due to the sparsity, heterogeneity, and

noise of the gene expression data, particularly the diverse data-

sets from the integration of scRNA-seq experiments. The clinical

validation of the predicted gene associations also poses

challenges, since it is difficult to screen such a large set of

predictions.

Machine learning formulation. Given a set of gene expression

profiles of a gene set, identify the gene regulatory network by

predicting all pairs of interacting genes. The task is illustrated

in Figure 5F.

Identifying druggable biomarkers
Diseases are driven by complicated biological processes in

which each step may be associated with a biomarker. By identi-

fying these biomarkers, we can design therapeutics to break the

disease pathway and cure the disease. Machine learning can

help identify these biomarkers by mining through large-scale

biomedical data to predict genotype-phenotype associations

accurately. Probing the trained models can uncover potential

biomarkers and identify patterns related to the disease mecha-

nisms. Next, we present several important tasks related to

biomarker identification.
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Variant calling

Variant calling is the very first step before relating genotypes to

diseases. It is used to specify which genetic variants are present

in each individual’s genome from sequencing. Themajority of the

variants are biallelic, meaning that each locus has only one

possible alternative form of nucleotide compared with the refer-

ence, while a small fraction is also multi-allelic, meaning that

each locus can have more than one alternative form. As each lo-

cus has two copies, one from mother and another from father,

the variant is measured by the total set of nucleotides (e.g., for

biallelic variant, suppose B is the reference nucleotide and b is

the alternative; three genotypes are possible: homozygous

[BB], heterozygous [Bb], and homozygous alternate [bb]). Raw

sequencing outputs are usually billions of short reads, and these

reads are aligned to a reference genome. In other words, for

each locus we have a set of short reads that contain this locus.

Since sequencing techniques have errors, the challenge is to

predict the variant status of this locus accurately from the set

of reads. Manual processing of such a large number of reads

to identify each variant is infeasible. Thus, efficient computa-

tional approaches are needed for this task.

A statistical framework called the Genome Analysis Toolkit

(GATK),87 which combines logistic regression, hidden Markov

models, and Gaussian mixture models, is commonly used for

variant calling. While previous works operate on sequencing

statistics, DeepVariant88 treats the sequencing alignments as

images. The images are raw data and they containmore informa-

tion than the engineered sequencing features. It then applies

CNN to extract useful signals and has been shown to have supe-

rior performance to previous modeling efforts. DeepVariant also

works for multi-allelic variant calling. In addition to predicting

zygosity, Luo et al.89 use multi-task CNNs to predict the variant

type, alternative allele, and indel length. Many other deep

learning-based methods are proposed to tackle more specific

challenges, such as long sequencing length using LSTMs.90

Benchmarking efforts have also been conducted.91 Although

most methods have greater than 99% accuracy, thousands of

variants are still being called incorrectly, since the genome

sequence is extremely long. How to adjust ML models to focus

on the hard locus is a promising direction. Besides, variability

persists across different sequencing technologies. Another chal-

lenge is the phasing problem, which estimates whether the two

mutations in a gene are on the same chromosome (haplotypes)

or opposite ones.92 Recently, Zhao et al.93 have extended the

prediction of variants from RNA-seq gene expression data with

improved accuracy over DNA-based data. This suggests

another potentially promising avenue for future research or a

complementary approach with DNA-based methods to reduce

misclassification.94

Machine learning formulation. Given the aligned sequencing

data ([1] read pileup image, which is a matrix of dimension M

and N, with M the number of reads and N the length of reads;

or [2] the raw reads, which are a set of sequences strings) for

each locus, classify the multi-class variant status. The task is

illustrated in Figure 6A.

Variant pathogenicity prioritization/phenotype

prediction

There are many genomic variants in the human genome, at least

1million per person.Whilemany influence complex traits and are
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relatively harmless, some are associated with diseases. Com-

plex diseases are associated with multiple variants in both cod-

ing and non-coding regions of the genome. Thus, prioritization of

pathogenic variants from the entire variant set can potentially

lead to disease targets.

There are mainly two computational approaches. The first one

is to predict the pathogenicity given a set of features for a single

variant. These features are usually curated from biochemical

knowledge, such as amino acid identities. Kircher et al.56 build

on these features using a linear support vector machine and

Quang et al.95 use deep neural networks to classify whether a

variant is pathogenic. DNN shows improved performance on

classification metrics. After training, the model can generate a

ranked list of variants based on their predicted pathogenicity

likelihood whereby the top ones are prioritized. Note that this

line of work considers each variant as an input data point and as-

sumes some knowledge of the pathogenicity of the variants,

which is not the case in many scenarios, especially for new

diseases.

Another line of work is to use each genome profile as a data

point and use a computational model to predict disease risks

from this profile. If the model is accurate, one can obtain variants

contributing to the prediction of the disease phenotype. Predict-

ing directly from the whole-genome sequence is challenging for

two reasons. First, as the whole-genome is high-dimensional

while the cohort size for each disease is relatively limited, this

presents the ‘‘curse of dimensionality’’ challenge in ML. Second,

most SNPs in the input genome are irrelevant to the disease, pre-

senting difficulty in correctly identifying these signals from the

noise. Kooperberg et al.96 use a sparse regression model to pre-

dict the risk of Crohn’s disease for patients using genomics data

in the coding region. Paré et al.97 use gradient boosted regres-

sion to approximate polygenic risk score for complex traits

such as diabetes, height, and body mass index. Isgut et al.98

use logistic regression on polygenic risk scores to improve

myocardial infarction risk prediction. Zhou et al.99 apply DNNs

on the epigenomic features of both the coding and non-coding

regions to predict gene expression for more than 200 tissue

and cell types and later identify disease-causing SNPs. Building

upon DeepSEA, Zhou and colleagues53,100 apply CNN on epige-

nomic profiles, which are modifications of the DNA sequence

such as DNA methylation or chromatin accessibility, to predict

autism and identify experimentally validated non-coding variant

mutations. ML models usually output multiple potential candi-

dates of biomarkers, each associated with a value estimating

the likelihood for being pathogenic. The standard procedure in-

cludes a post-training ranking step to retrieve the top-K bio-

markers based on the pathogenic likelihood. However, in many

cases, the model ends up with many potential candidates,

limiting their utility. To circumvent this issue, sparsification of

the model might be useful by tricks such as adding L1 penaliza-

tion of themodel output andmodel pruning.101 Besides, injecting

model uncertainty score could be leveraged to better inform the

prediction by removing scores with low certainty.102

Machine learning formulation. Given features about a variant,

predict its corresponding disease risk and then rank all variants

based on the disease risk. Alternatively, given the DNA sequence

or other related genomics features, predict the likelihood of dis-

ease risk for this sequence and retrieve the variant in the
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Figure 6. Task illustrations for the theme ‘‘identifying druggable biomarkers’’
(A) A model predicts the zygosity given a read pileup image (see ‘‘variant calling’’).
(B) A model predicts whether the patient is at risk for the disease given the genomic sequence. After training, feature importance attribution methods assign
importance for each variant, which is then ranked and prioritized (see ‘‘variant pathogenicity prioritization/phenotype prediction’’).
(C) A graph encoder obtains embeddings for each disease and gene node, and they are fed into a predictor to predict their association (see ‘‘gene-disease
association prediction’’).
(D) A model identifies a set of gene pathways from the gene expression profiles and the known gene pathways (see ‘‘pathway analysis and prediction’’).
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sequence that contributes highly to the risk prediction. The task

is illustrated in Figure 6B.

Rare disease detection

In the United States, a rare disease is defined as one that affects

fewer than 200,000 people, with other countries similarly

defining a rare disease based on low prevalence. There are

around 7,000 rare diseases, which collectively affect 350 million

people worldwide.103 Due to limited financial incentives, un-

known disease mechanisms, and potential difficulties in recruit-

ing sufficient patients for clinical trials, more than 90% of rare

diseases lack effective treatments. Also, initial misdiagnosis is

common. On average, it takes more than 7 years and eight phy-

sicians for a patient to be correctly diagnosed. Importantly, it is

likely that targets identified for rare diseases may also be useful

for therapeutic intervention of similar more common diseases.

ML models are good at identifying patterns from complex pa-

tient data. Rare disease detection can be formulated as a classi-

fication task, similar to phenotype prediction. It aims to identify

whether the patient has a rare disease from the patient’s

genomic sequence and information such as EHRs. If sufficient

data from patients with a rare disease and suitable controls exist,

ML models can be applied to detect rare diseases. Also, the ge-

netic complexity of rare diseases is that they have missing heri-

tability, which could be harbored in regulatory regions instead of

the coding regions. Leveraging this important knowledge, Yin

et al.104 propose a two-step CNN approach whereby one CNN

first predicts the promoter regions likely associated with
amyotrophic lateral sclerosis. Another CNN detects whether

the patient has a rare disease based on genotypes in the

selected genomic regions.

However, rare diseases pose special challenges to ML

compared with classical phenotype prediction because these

diseases have an extremely low prevalence in the data while

most data points belong to the control set. This data imbalance

makes it difficult for ML models to pick up signals and prevent

them from making an accurate prediction. Thus, special model

designs are required. The standard way for data imbalance in-

cludes oversampling the rare cases or downsampling the major-

ity of cases. A more sophisticated and powerful strategy is using

synthetic data by generating fake but realistic rare cases.

Popular approaches combine minority points to forge a new

point.105–107 Intelligent synthetic data generation by modeling

the minority data distribution through generative models could

lead to more realistic samples. Cui et al.108 pioneer a generative

adversarial network (GAN) model to generate synthetic but real-

istic rare disease patient embeddings to alleviate the class

imbalance problem and show a significant performance increase

in rare disease detection. Besides generating realistic data, low-

resource learning techniques can also be applied to rare disease

cases. For example, Taroni et al.109 use a transfer learning

framework to adapt a smaller set of rare disease genomic data

from large-scale genomic data with a diverse set of diseases.

Specifically, they leverage biological principles by constructing

latent variables shared across a wide range of diseases. These
Patterns 2, October 8, 2021 13
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variables correspond to genetic pathways. As these variables

are the fundamental biology units, they can be naturally adopted

even for smaller datasets such as rare disease cohorts.

Machine learning formulation. Given the gene expression data

and other auxiliary data of a patient, predict whether this patient

has a rare disease. Also, identify genetic variants for this rare dis-

ease. The task is illustrated in Figure 6B, which is the same as

phenotype prediction.

Gene-disease association prediction

Although numerous genes are now mapped to diseases, human

knowledge about gene-disease association mapping is vastly

incomplete. At the same time, we know many genes are similar

to each other, as is also the case for diseases.We can impute un-

known associations from known ones by many similarity rules

that govern the gene-disease networks to leverage these similar-

ities. One notable rule is the ‘‘guilt by association’’ principle.110

For example, disease X and gene a are more likely to be associ-

ated if we know gene b associated with disease X has a similar

functional role as gene a. In contrast to variant prioritization

focusing on predicting one specific disease, gene-disease asso-

ciation predictions aim to predict any disease-gene pairs.

Many graph-theoretic approaches such as diffusion111 have

been applied to gene-disease association prediction. However,

they require strong assumptions about the data. Learnable

methods have also been heavily investigated. Studies have

shown that integrating similarity across multiple data types can

help gene-disease prediction.112 Notably, Luo et al.113 fuse infor-

mation from protein-protein interaction and gene ontology

through a multi-modal deep belief network. Cáceres and Pacca-

naro114 use phenotype data to transfer knowledge from other

phenotypically similar diseases using a network diffusion

method, whereby the phenotypical similarity is defined by the

distance on the disease ontology trees. As gene-disease rela-

tions can be viewed as graphs, GNN is an ideal modeling choice

by formulating it as a link prediction problem. However, GNNs

highly rely on the principle of homophily in social networks

whereas biomedical interaction networks present more compli-

cated graph connectivity. Notably, Huang et al.40 observe the

skip similarity in biomedical graphs and propose a novel GNN

to improve gene-disease association prediction. As some dis-

eases such as rare diseases are not well annotated compared

with other common diseases, predicting molecularly uncharac-

terized (no known biological function or genes) diseases is diffi-

cult but crucial. This poses a special requirement for ML models

to generalize to low-represented data groups, often formulated

under the long-tail prediction regime.115

Machine learning formulation. Given the known gene-disease

association network and auxiliary information, predict the asso-

ciation likelihood for every unknown gene-disease pair. The task

is illustrated in Figure 6C.

Pathway analysis and prediction

Many diseases are driven by a set of genes forming disease

pathways. Pathway analysis identifies these gene sets through

transcriptomics data and leads toward a more complete under-

standing of disease mechanisms. Many statistical approaches

have been proposed. For example, Gene Set Enrichment

Analysis116 leverages existing known pathways and calculates

statistics on omics data to seewhether any pathway is activated.

However, it treats each pathway as a set while no relation among
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the genes is provided. Other topology-based pathway

analyses117 that take into account the gene relational graph

structure are also proposed. Many pathway analyses suffer

from noise and provide unstable pathway activation and inhibi-

tion patterns across samples and experiments. Ozerov et al.118

introduce a clustered gene importance factor to reduce noise

and improve robustness. Current pathway analysis heavily relies

on network-based methods.119 Another approach is to under-

stand potential disease mechanisms by probing explainable

ML models that predict genotype-to-disease association.

Explainable artificial intelligence (AI) models identify small gene

sets or a gene subgraph that mostly contribute to the prediction.

However, this requires modeling the underlying biological pro-

cesses. Many efforts have been made to simulate cell-signaling

pathways and corresponding hierarchical biological processes

in silico. Karr et al.120 devised the first whole-cell approach to

predict cell growth fromgenotype using a set of differential equa-

tions. Recently, an ML model called visible neural network121

simulates the hierarchical biological processes (gene ontology)

in a eukaryotic cell as a feedforward neural network where

each neuron corresponds to a biological subsystem. This model

is trained end-to-end from genotype to cell fitness phenotype

with good accuracy. A post hoc interpretability method that as-

signs scores for each subsystem generates a likely mechanism

for the fitness of a cell after training. This method has been

extended recently to train on genomics data related to prostate

cancer phenotype to generate disease pathways.122

Machine learning formulation. Given the gene expression data

for a phenotype and known gene relations, identify a set of genes

corresponding to disease pathways. The task is illustrated in

Figure 6D.

MACHINE LEARNING FOR GENOMICS IN
THERAPEUTICS DISCOVERY

After a drug target is identified, a campaign to design potent

therapeutic agents to modulate the target and block the disease

pathway is initiated. These therapeutics can be a small molecule,

an antibody, or gene therapy, among others. The discovery con-

sists of numerous phases and subtasks to ensure the efficacy

and safety of the therapeutics. Genomics data also play a role

in this process. In this section, we review ML for genomics in

therapeutics discovery under two main themes. We first investi-

gate the relation of small-molecule drug efficacy given different

cellular genomic contexts. We then review how ML can enable

the design of various gene therapies.

Improving context-specific drug response
Precision medicine aims at developing the treatment strategy

based on a patient’s genetic profile. This contrasts with the tradi-

tional ‘‘one-size-fits-all’’ approach, which assigns the same

treatments to patients with the same diseases. Personalized ap-

proaches have been one of the most sought-after endeavors in

the field due to their numerous advantages such as improving

outcomes and reducing side effects,4 especially in oncology,

where several biomarkers could lead to drastically different

treatment plans.3 Despite the promise to understand the rela-

tions among treatments, diseases, high-dimensional genomics

profiles, and the various outcomes, large-scale experiments in
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Figure 7. Task illustrations for the theme ‘‘improving context-specific drug response’’
(A) A drug encoder and a cell-line encoder produce embeddings for drug and cell line, respectively, which are then fed into a predictor to estimate drug response
(see ‘‘drug response prediction’’).
(B) Drug encoders first map two drugs into embedding, and a cell-line encoder maps a cell line into embeddings. Three embeddings are then fed into a predictor
for drug synergy scores (see ‘‘drug combination therapy prediction’’).
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combinatorial complexity are required to investigate these rela-

tionships.123ML provides valuable tools to facilitate this process.

Drug response prediction

It is known that the same small-molecule drug could have

various response levels given different genomic profiles. For

example, an anticancer drug has a different response to different

tumors. Thus, it is crucial to generate an accurate response pro-

file given drug-genomics profile pairs. However, to experimen-

tally test each combination of available drugs and cell-line geno-

mics profiles is prohibitively expensive.

An ML model can be used to predict a drug’s response in a

diverse set of cell lines in silico. An accurate ML model can

greatly narrow down the drug screening space and reduce

experimental costs and resources. Various models have

been proposed to improve the accuracy, such as matrix

factorization,124 VAEs,125 ensemble learning,126 similarity

network model,127 and feature selection.128 While promising,

one challenge is that the current public database has a limited

number of drugs and genomics profiles tested, focusing on a

small set of tissues or approved drug classes. It is often difficult

for a model to generalize automatically to new contexts such as

novel cell types and structurally diverse drugs with limited sam-

ples. For realistic adoption, ML models that can generalize to

new domains given only a few labeled data points are thus highly

desirable. This problem fits well with the few-shot meta-learning

regime. Recently, Ma et al.129 tackled the few-shot drug

response prediction problem. They apply model-agnostic

meta-learning to learn from screening data of a set of tissues

to generalize to new contexts such as new tissue types and

pre-clinical studies in mice.130 In addition to accurate prediction,

for a domain scientist to adopt the usage, it is also important to

allow understanding of how the ML model makes the drug

response prediction and what drug response mechanism is

leveraged by it. Motivated by this, Kuenzi et al.131 firstly apply

visible neural networks121 in the drug response prediction

context by generating potential mechanisms and validating

them through experiments using CRISPR, in vitro screening,

and patient-derived tissue cultures.
Machine learning formulation. Given a pair of drug compound

molecular structures and gene expression profiles of the cell

line, predict the drug response in this context. The task is illus-

trated in Figure 7A.

Drug combination therapy prediction

Drug combination therapy, also called cocktails, can expand the

use of existing drugs, improve outcomes, and reduce side ef-

fects. For example, drug cocktails can modulate multiple targets

to provide a novel mechanism of action in cancer treatments.

Also, by reducing dosages for each drug, it may be possible to

reduce adverse effects. However, screening the entire space

of possible drug combinations and various cell lines is not

feasible experimentally.

ML that can predict synergistic responses given the drug pair

and the genomic profile for a cell line can prove valuable. Clas-

sical MLmethods such as naive Bayes132 and random forests133

have shown initial success on independent external data. Deep

learning methods such as DNNs134 and deep belief networks135

have shown improved performance. Integration withmulti-omics

data on cell lines has also further improved the performance,

such as microRNA expression and proteomic features.136

Similar to drug response prediction, one important challenge is

to transfer across tissue types and drug classes. Kim et al.137

pioneer this direction by conducting transfer learning to adapt

models trained on data-rich tissues such as brain and breast tis-

sues to understudied tissues such as bone and prostate tissues.

Machine learning formulation. Given a combination of drug

compound structures and a cell line’s genomics profile, predict

the combination response. The task is illustrated in Figure 7B.

Improving efficacy and delivery of gene therapy
Gene therapy is an emerging therapeutics class, which delivers

nucleic acid instruction into patients’ cells to prevent or cure dis-

ease. These instructions include (1) replacing disease-causing

genes with healthy ones, (2) turning off genes that cause dis-

eases, and (3) inserting genes to produce disease-fighting pro-

teins. Special vehicles called vectors are used to deliver these

instructions (cargoes) into the cells and induce sufficient
Patterns 2, October 8, 2021 15
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Figure 8. Task illustrations for the theme ‘‘improving efficacy and delivery of gene therapy’’
(A) A model predicts various gene-editing outcomes given the gRNA sequence and the target DNA features (see ‘‘CRISPR on-target outcome prediction’’).
(B) First, a model search through similar sequences to the target DNA sequence in the candidate genome and generate a list of potential off-target DNA se-
quences. Next, an on-targetmodel predicts whether the gRNA sequence can affect these potential DNA sequences. The ones that have high on-target effects are
considered potential off-targets (see ‘‘CRISPR off-target prediction’’).
(C) An optimal model (oracle function) is first obtained by training on a gold-label database. Next, a generativemodel generates de novo virus vectors potent in the
oracle fitness landscape (see ‘‘virus vector design’’).
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therapeutic effects. Many choices exist, such as naked DNA,

virus, and nanoparticles. Virus vectors have become popular

due to their natural ability to directly enter cells and replicate their

genetic material. Despite the promise, numerous challenges still

exist in reaching the expected effect, such as the host immune

response, viral vector toxicity, and off-target effects. In recent

years, ML tools have been shown to help tackle many of these

challenges.

CRISPR on-target outcome prediction

CRISPR/Cas9 is a biotechnology that can edit genes in a precise

location. It allows the correction of genetic defects to treat dis-

ease and provides a tool with which to alter the genome and to

study gene function. CRISPR/Cas9 is a system with two impor-

tant players. Cas9 protein is an enzyme that can cut through

DNA, where the CRISPR sequence guides the cut location.

The guide RNA sequence (gRNA) determines the specificity for

the target DNA sequence in the CRISPR sequence. While exist-

ing CRISPRmostly make edits by small deletions, it is also under

active research to carry out repair which, after cutting, a DNA

template is provided to fill in the missing part of the gene. In the-

ory, CRISPR can correctly edit the target DNA sequence and

even restore a normal copy, but in reality the outcome varies

significantly given different gRNAs.138 It has been shown that

the outcome is decided by factors such as gRNA secondary

structure and chromatin accessibility.139 Some of the desirable

outcomes include insertion/deletion length, indel diversity, and

the fraction of insertions/frameshifts. Thus, it is crucial to design
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a gRNA sequence such that the CRISPR/Cas system can

achieve its effect on the designated target (also called on-target).

ML methods that can accurately predict the on-target

outcome given the gRNA would facilitate the gRNA design pro-

cess. Many classic ML methods have been investigated to pre-

dict various repair outcomes given gRNA sequence, such as

linear models,140,141 support vector machines,142 and random

forests.143 However, they do not capture the high-order non-

linearity of gRNA features. Deep learning models that apply

CNNs to automatically learn gRNA features show further

improved performance.144,145 Despite the promise, numerous

challenges still exist. For example, ML models are data-hungry.

There is only a limited set of data with CRISPR knockout exper-

iments, affecting the model’s generalizability to new contexts

such as new tissues. Besides, current models can only predict

outcome while being incapable of generating the mechanism

of how this gRNA sequence leads to the CRISPR outcome. For

this high-stake biotechnology explainability is crucial, as an un-

explained adverse effect could be detrimental for ML-designed

gRNA sequence.

Machine learning formulation. With a fixed target, given the

gRNA sequence and other auxiliary information such as target

gene expression and epigenetic profile, predict its on-target

repair outcome. The task is illustrated in Figure 8A.

CRISPR off-target prediction

As CRISPR can cut any region that matches the gRNA, it can

potentially cut through similar off-target regions, leading to
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significant adverse effects. This is a major hurdle for CRISPR

techniques for clinical implementations.146 Similar to on-target

prediction, the off-target prediction is to predict whether gRNA

could cause off-target effects. In contrast to on-target, where

we have a fixed given DNA region, off-target prediction requires

identifying potential off-target regions from the entire genome.

Thus, the first step is to search and narrow down a set of

potential hits using alignment algorithms and distance

measures.147,148 Next, given the targets and the gRNA, a model

needs to score the putative target-gRNA pair. The model also

needs to aggregate these scores, since one gRNA usually has

multiple putative off-targets. Various heuristics aggregation

methods have been proposed and implemented.149–152

Listgarten et al.149–152 introduce ML for off-target prediction

and show evidence of improved performance. They adopt a

two-layer boosted regression tree where the first layer scores

each gRNA-target pairs and the second layer aggregates the

scores. Building upon this work, Lin and Wong153 apply CNN

on a fused DNA-gRNA pair representation and achieve improved

performance. There are still many open questions. For example,

current ML approaches consist of two-stage approaches with

first a heuristic search and then scoring. An end-to-end model

that can automatically generate de novo candidate off-target se-

quences could be beneficial. Also, similar to the on-target pre-

diction, as data of richer contexts such as different cell, tissue,

and organism types become available, more sophisticated

models that can generalize well on all contexts would be ideal.

Machine learning formulation. Given the gRNA sequence and

the off-target DNA sequence, predict its off-target effect. The

task is illustrated in Figure 8B.

Virus vector design

To deliver gene therapy instructions to cells and induce ther-

apeutic effects, virus vectors are used as vehicles. The design

of the virus vector is thus crucial. The recent development of

adeno-associated virus (AAV) capsid vectors has led to a

surge in gene therapy due to its favorable tropism, immunoge-

nicity, and manufacturability properties.154 However, there are

still unsolved challenges, mainly regarding the undesirable

properties of natural AAV forms. For example, up to 50%–

70% of humans are immune to the natural AAV vector, which

means the human immune system would destroy it without

delivering it to the targeted cells.155 This means that those pa-

tients are not able to receive gene therapies. Thus, designing

functional variants of AAV capsids that can escape the im-

mune system is crucial. Similarly, it would be ideal to design

AAV variants with higher efficiency and selectivity to the tissue

target of interest.

The standard method to generate new AAV variants is through

‘‘directed evolution’’ with limited diversity, most still similar to

natural AAV. However, this is very time- and resource-intensive

while the resulting yields are also low (<1%). Recently, Bryant

et al.156 became the first to develop an ML-based framework

to generate AAV variants that can escape the immune system

with a >50% yield rate. They first train an ensemble neural

network that aggregates DNN, CNN, and RNN using customized

data collection to assign accurate viability scores given an AAV

from diverse sources. They then sample iteratively on the predic-

tor viability landscape to obtain a set of highly viable AAVs. Many

opportunities remain open formachine-aided AAV design.157 For
example, this framework can be easily extended to other targets

in addition to the immune system viability, such as tissue selec-

tivity, if a high-capacity ML property predictor can be con-

structed. Further improvements could be made by alternative

generative strategies such as reinforcement learning or VAEs.

Machine learning formulation. Given a set of virus sequences

and their labels for a property X, obtain an accurate predictor

oracle and conduct various generation modeling to generate

de novo virus variants with a high score in X and high diversity.

The task is illustrated in Figure 8C.

MACHINE LEARNING FOR GENOMICS IN CLINICAL
STUDIES

After a therapeutic is shown to have efficacy in the wet lab, it is

further evaluated in animals and then on humans in full-scale

clinical trials. ML can facilitate this process using genomics

data. We review the following three themes. In this section

we first study the long-standing problem of translating results

from animals to humans and show that ML can enable better

translation by better characterization of the molecular differ-

ences. We then review ML techniques to curate a better patient

cohort to which the therapeutic can be applied, as it can greatly

affect the clinical trial outcome. Last, we survey alternative ML

techniques called causal inference to augment clinical trials in

cases where traditional trials are not ethical or are difficult to

conduct.

Translating pre-clinical animal models to humans
Before therapeutics move into trials on humans, they are vali-

dated through extensive animal model experiments (pre-clinical

studies). However, despite successful pre-clinical studies, more

than 85% of early trials for novel drugs fail to translate to

humans.158 One of the main factors for this failure is the gap be-

tween animal and human biology and physiology. Animal models

do not mimic the human disease condition. However, by

comparing large-scale omics data between animals and hu-

mans, we can identify translatable features and use ML to align

animal and human models.

Animal-to-human translation

One of the central questions of animal-to-human translation is

the following. If a study establishes relations between pheno-

types and genotypes based on interventions in animals, do these

relations persist in humans? Conventional computational

methods construct cross-species pairs (CSPs) and compare

the pair’s molecular profile to find differential expression.159

Despite identifying several differential features associated with

the disease, these methods often do not accurately translate

to humans. One of the reasons is that human diseases are pre-

sent simultaneously due to modulation on multiple pathways

while the mouse model is an idealistic isolated system with the

sole influence from the target disease. This gap of comorbidities

may bias and occlude the true differential features. ML could

help because it is good at modeling non-linear systems,160

although explainability methods are sought after to make sense

of the non-linear relations.

To formulate it in ML, the genotype-phenotype relations can

be captured by a computational model that builds upon an ani-

mal’s molecular profile (such as using gene expression data to
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Figure 9. Task illustration for the theme
‘‘translating pre-clinical animal models to
humans’’
A model first obtains translatable features between
mouse and human by comparing their genotypes.
Next, a predictor model is trained to predict
phenotype given the mouse genotype. Given the
translatable features, the predictor is augmented
and makes predictions on human genotypes (see
‘‘animal-to-human translation’’).
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predict disease phenotypes). We can then evaluate the trained

computational model to human molecular profiles (test set) and

find out whether themodel can accurately predict human pheno-

types. A large ML challenge called SBV-IMPROVER was con-

ducted to predict protein phosphorylation on human cells from

rat cells using genomics and transcriptomics data under 52

stimulation conditions.161 A wide range of ML approaches

such as DNNs, trees, and support vector machines have been

applied and have shown promising extrapolation performance

to humans.

However, the aforementionedworks directly adoptMLmodels

trained on mice and tested on humans, while we know human

data present characteristics different from those of mouse

data. This poses a challenge for ML, since the ML model often

suffers from the out-of-distribution generalizability issue. Thus,

it is crucial to explicitly model this out-of-distribution property

by identifying and leveraging translatable features between ani-

mals and humans. Notably, Brubaker et al.162 propose a semi-

supervised technique that integrates unsupervised modeling of

human disease-context datasets into the supervised component

that trains onmouse data. In addition, works that directly train on

CSPs have been proposed. For example, Normand et al.163 aim

to identify translatable genes. For every gene, they compute the

disease effect size for humans and rats in each CSP and apply

linear models to fit them. After fitting, they use the mean of the

linear model as the predicted human effect size for this gene.

They show improved gene selection by up to 50%. Another

important avenue of research is computational network models,

which leverage existing biological knowledge about system-

level signaling pathways and mechanistic models. They have

been shown to identify transferrable biomarkers and predictable
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pathways.164,165 The animal-to-human

translation problem is tackling a central

problem in ML: domain adaptation. Basi-

cally, it requires the model to bridge the

gap between the source domain and target

domain, where sources are data that are

labeled while the target domain only has

input but no label.166 Opportunities to

leverage advanced domain adaptation

techniques to this problem remain open.

Another challenge is that data availability

is a hurdle to applying ML for this problem,

since it requires new data for every animal

model and disease indication.

Machine learning formulation. Given ge-

notype-phenotype data of animals and

only the genotype data of humans, train
the model to fit the phenotype from the genotype and transfer

this model to humans. The task is illustrated in Figure 9.

Curating high-quality cohorts
To study the efficacy of therapeutics in the intended or target

patient groups, a clinical trial requires a precise and accurate pa-

tient population in each arm.167 However, due to the heterogene-

ity of patients, it may be difficult to recruit and enroll appropriate

patients. ML can help characterize important factors for the pri-

mary endpoints and quickly identify them in patients by predict-

ing patient molecular profiles.

Patient stratification/disease subtyping

Patient stratification in clinical trials is designed to create more

homogeneous subgroups with respect to risk of outcome or

other important variables that might impact the validity of the

comparison between treatment arms. Some therapeutics may

be highly effective in one patient subgroup and have a weak or

even no effect in other subgroups. In the absence of appropriate

stratification in heterogeneous patient populations, the average

treatment effect across all patients will obscure potentially

strong effects in a subpopulation. Conventional stratification

methods rely on manual rules on a few available features such

as clinical genomics biomarkers, but this might ignore signals

arising from rich patient data. ML can potentially identify these

important criteria for stratification based on heterogeneous

data sources such as genomics profiles, patient demographics,

and medical history.

This problem can be approached as unsupervised learning,

whereby we strive to obtain representations that can easily

group each sample of gene expression into distinct categories

and claim each category as a subtype. These methods include
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Figure 10. Task illustrations for the theme ‘‘curating high-quality cohort’’
(A) Given the patient’s gene expressions and EHRs, a model clusters them into subgroups (see ‘‘patient stratification/disease subtyping’’).
(B) A patient model obtains patient embedding from his/her gene expression and EHR. A trial model obtains trial embedding based on trial criteria. A predictor
predicts whether this patient is fit for enrollment in the given trial (see ‘‘matching patients for genome-driven trials’’).
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clustering,168,169 gene network stratification,170 and matrix

factorization.171 Integrating existing biomedical knowledge can

be useful. Notably, Chen et al.172 propose a DNN-based clus-

teringmethod in which a supervised constraint on gold-standard

subtype knowledge is included. As the data are high-dimen-

sional and heterogeneous, fusing diverse data sources can

help models to obtain a comprehensive picture of the patient

conditions and lead to more accurate and granular stratification.

Notably, Wang et al.173 aggregate mRNA expression, DNA

methylation, and microRNA data through similarity network

fusion for cancer subtyping. Similarly, Jurmeister et al.174

leverage DNAmethylation profiles to subtype lung cancers using

DNN and Li et al.175 apply topological data analysis on the pa-

tient-patient similarity network constructed from each patient’s

genotype and EHR data to identify type 2 diabetes subgroups.

Despite the accuracy, these methods suffer from interpretability,

which is especially important in patient stratification. A black-

box stratification output based on a complex model is often

not trustworthy for practitioners to adopt. Explainable ML

models are thus highly desirable. Decision-tree methods are a

classical interpretable ML model. For example, Valdes et al.176

apply a boosted decision-tree method with high accuracy

compared with a standard decision tree while still providing

clues for how the model makes the accurate prediction/stratifi-

cation. For detailed discussion on the challenge for explainabil-

ity, we refer readers to a later section (‘‘discussion: open chal-

lenges and opportunities’’).

Machine learning formulation. Given the gene expression and

other auxiliary information for a set of patients, produce criteria

for patient stratification. The task is illustrated in Figure 10A.

Matching patients for genome-driven trials

Clinical trials suffer from difficulties in recruiting a sufficient num-

ber of patients. Mendelsohn et al.177 report that 40% of trials fail

to complete accrual in the National Clinical Trial Network and

Murthy et al.178 show that less than 2% of adults with cancer

enroll in any clinical trials. Many factors can prevent successful

enrollment, such as limited awareness of available trials and inef-

fective methods to identify eligible patients in the traditional

manual matching system.179

Automated patient-trial matching could be desirable to in-

crease enrollment by taking account into the heterogeneous pa-

tient data and trial eligibility criteria. Conventional patient-trial
matching methods rely on rule-based annotations. For example,

Tao et al.180 conducted a real-world outcome analysis using an

automatic patient-trial matching alert system based on the pa-

tient’s genomic biomarkers and showed improved results

compared with manual matching. However, these are based

on heuristics matching rules, which often omit useful information

in rich patient data. These complex data modalities call for

DNNs. Notably, Bustod and Pertusa181 introduce DNN to

generate eligibility criteria, but no matching is done. Recently,

advanced ML methods have been proposed to leverage the

EHR data from patients to match the eligibility criteria of a

trial. Zhang et al.182 pioneered the study on using advanced

pre-trained Bidirectional Encoder Representations from Trans-

formers model for encoding trial protocols into sentence embed-

ding, and used a hierarchical embedding model to represent

patient longitudinal EHR. Building upon this work, Gao et al.183

propose a multi-granularity memory network to encode struc-

tured patient medical codes and use a convolutional highway

network to encode trial eligibility criteria, showing significant

improvement over previous conventional rule-based methods.

However, genomics information is not included. Methods that

fuse genome and EHR data to represent patients could further

improve matching efficiency in genome-driven trials.

Machine learning formulation. Given a pair of patient data (e.g.,

genomics, EHR) and trial eligibility criteria (text description), pre-

dict the matching likelihood. The task is illustrated in Figure 10B.
Inferring causal effects
Clinical trials study treatment efficacy on humans. Numerous un-

measured confounders can lead to a biased conclusion about

the efficacy. To eliminate these confounders, randomization is

conducted such that the control and treatment groups would

have an equal distribution of confounders. This way, the compar-

ative effect is not due to unmeasured confounders. However,

this requires that the control group receives an alternative

therapy (e.g., placebo or standard of care). In many studies, it

is difficult or unethical to devise and assign placebos/treatments.

In these cases, observational studies can be used to study the

correlations between exposure (e.g., smoking) and an outcome

(e.g., cancer). However, these studies are typically subjected

to unmeasured confounding, since no randomization is
Patterns 2, October 8, 2021 19



Figure 11. Task illustrations for the theme ‘‘inferring causal effects’’
Left panel: Mendelian randomization relies on using a gene biomarker (e.g., CHRNA5) as an instrumental variable to measure the effect of exposure to the
outcome as it is not affected by confounders, and it serves as a proxy for exposure by directly comparing the effect of the gene on the outcome. Right panel:
patients are first grouped based on the CHRNA5 gene. One group contains variant alleles and another contains wild-type alleles. The mortality rate can then be
calculated within each group and compared with ascertained risks. If the risk is high, we conclude that the exposure causes the outcome (see ‘‘Mendelian
randomization’’).
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introduced. Recent methods in causal inference provide

alternative ways to conduct randomization through genomics

information.

Mendelian randomization

Mendelian randomization (MR) uses genes as a mediator for

robust causal inference.184 The key is that genetic information

is not modified by post-natal events and is thus not susceptible

to confounders. If a gene is associated with the exposure and

the outcome via the exposure (i.e., vertical pleiotropy), we can

use genes as an instrumental variable to simulate randomiza-

tion. For example, we know that CHRNA5 genes are associated

with smoking levels. Thus, we can use the CHRNA5 status to

group patients and estimate the comparative effect on outcome

(e.g., mortality). This process has a tremendous impact as it can

bypass clinical trials, add support for trials, and serve as valida-

tion for drug targets.185,186 Regression analysis is usually con-

ducted to calculate the effects. Despite the promise, challenges

remain for more advanced ML and causal inference methods.

One challenge is that in some cases, the assumption of vertical

pleiotropy does not hold. For example, the genes can associate

with the outcome through another pathway (i.e., horizontal plei-

otropy).187 This requires customized probabilistic models and

larger sample size for statistically significant estimation.188

The underlying causal pathways among exposures, genes,

and outcomes are usually not obvious in many cases due to

limited knowledge. A large-scale causal pathway could not

only help protect MR from horizontal pleiotropy by knowing

when it could be the case but also allows more accurate causal

inference with advanced methods by the inclusion of other

genes or selection of alternative genes as the instrument vari-

able. The main challenge in obtaining this putative causal map

is that different models can contradict conclusions given the

same dataset. Hemani et al.189 apply a mixture-of-experts

random forest framework to reduce the false discovery rate on
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a set of genome-wide association studies data to construct a

large-scale causal map of human genome and phenotype and

show its usefulness in MR.

Machine learning formulation. Given observation data of the

genomic factor, exposure, outcome, and other auxiliary informa-

tion, formulate or identify the causal relations among them and

compute the effect of the exposure to the outcome. The task is

illustrated in Figure 11.

MACHINELEARNINGFORGENOMICS INPOST-MARKET
STUDIES

After a therapeutic is evaluated in clinical trials and approved for

marketing, numerous studies monitor its efficacy and safety

when used in clinical practice. These studies contain important

and often unknown information about therapeutics that was

not evident before regulatory approval. This section reviews

how ML can mine through a large corpus of texts and identify

useful signals for post-market surveillance.

Mining real-world evidence
After therapeutics are approved and used to treat patients, vol-

uminous documentation is generated in the EHR system, insur-

ance billing system, and scientific literature. These are called

real-world data. The analyses of these data are called real-world

evidence. They contain important insights about therapeutics,

such as patients’ drug responses given different patient charac-

teristics. They can also shed light on disease mechanism of

action, the novel phenotype for a target gene, and so forth. How-

ever, free-form texts are notoriously difficult to process. Natural

language processing (NLP) technology can be helpful to mine in-

sights from these texts. Next, we describe two specific tasks

involving real-world evidence, namely, clinical notes and scienti-

fic literature.
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Figure 12. Task illustrations for the theme ‘‘mining real-world evidence’’
(A) A model predicts genomic biomarker status given a patient’s clinical notes (see ‘‘clinical text biomarker mining’’).
(B) A model recognizes entities in the literature and extracts relations among these entities (see ‘‘biomedical literature gene knowledge mining’’).
The text in panel (A) is from Huang et al.;193 the text in panel (B) is from Zhu et al.194
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Clinical text biomarker mining

An EHR has rich information about the patient and records a

wide range of patient’s vitals and disease courses after treat-

ments. This information is critical for post-market research,

from which an actionable hypothesis can be drawn. However,

the structured EHR data do not cover the entire picture of a pa-

tient. The majority of important variables can only be found in the

clinical notes,190 such as next-generation sequencing (NGS) sta-

tus, PDL1 (immunotherapy) status, treatment change, and so

forth. These variables can directly facilitate predictive model

building to support clinical decision making or increase the po-

wer of disease-gene-drug associations to better understand

the drug. However, conventional human annotations are costly

and time consuming, and are not scalable.

Automatic processing of clinical notes of patients using ML

can facilitate this process. For example, Guan et al.191 use bidi-

rectional LSTMs to extract NGS-related information in a patient’s

genetics report and classify documents to the treatment-change

and no-treatment-change groups. However, the clinical text is

very messy and filled with typos and jargon (e.g., acronyms).

Standard NLP techniques do not work. Also, clinical text often

requires clinical annotations. Specialized ML models are

required, such as transfer learning techniques that learn a suffi-

cient clinical note representation through large-scale self-super-

vised learning on clinical notes and fine-tuning on a task of inter-

est with a small number of annotations.14,192 Another challenge

is that clinical notes are long, especially for intensive care unit

patients. This length poses special constraint, even for the

advanced efficient transformer models. Huang et al.193 intro-

duced a hierarchical scheme to drastically improve efficiency.

They applied the model to classify PDL1 and NGS status and

used an attention mechanism to provide clues for which parts

of a text provide these variables.

Machine learning formulation. Given a clinical note document,

predict the genomic biomarker variable of interest. The task is

illustrated in Figure 12A.

Mining of biomedical literature gene knowledge

One key question in post-market research is to find evidence

about a therapeutic’s response to diseases given patient char-
acteristics such as genomic biomarkers. This has several

important applications such as validation of therapeutic effi-

cacy, identification of potential off-label genes/diseases for

drug repurposing, and detection of therapeutic candidates’

adverse events when treating patients, using some genomic

biomarkers. It also serves as important complementary infor-

mation for target discovery. This summarized information about

drug-gene and disease-gene relations is usually reported and

published in the scientific literature. Manual annotations are

infeasible due to the exponential number of new articles pub-

lished every day.

Conventional methods are rule-based210 and dictionary-

based.211 They both rely on hand-crafted rules/features to

construct query biomedical text templates and search through

the papers to find sentences that match these templates.212

However, these hand-crafted features require extensive

domain knowledge and are difficult to keep up to date with

new literature. The limited flexibility leads to the omission of po-

tential newly discovered drug-gene/drug-disease pairs. Recent

advances in name entity recognition and relation detection

through deep learning can automatically learn from a large

corpus to obtain an optimal set of features without human en-

gineering and have shown strong performances.213 This can be

formulated as a model to recognize drugs, genes, and disease

terms, and to detect drug-gene or drug-disease relation types

given a set of documents. Numerous ML methods have been

developed for biomedical named entity recognition/relation

extraction. For example, Limsopatham and Collier214 use bidi-

rectional LSTM to predict the name entity label for each word

with character-level embedding. Zhu et al.194 use an n-gram

based CNN to capture local context around each word for

improved prediction.

On relation extraction, in addition to the CNN215 and

RNN216 architecture, Zhang et al.217 propose a hybrid model

that integrates a CNN on a syntax dependency tree and an

RNN on the sentence encodings for improved biomedical

relation prediction. Zhang et al.218 apply a graph CNN on

the syntax dependency tree of a sentence and show improved

relation extraction. ML models require large amounts of label
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annotations as training data, which can be difficult to obtain.

Distant supervision borrows information from a large-

scale knowledge base to automatically create labels so that

it does not require labeled corpora, which reduces manual

annotation efforts. Lamurias et al.219 apply a distant-

learning-based pipeline that predicts microRNA-gene rela-

tions. Recently, BioBERT extended BERT14 to pre-train on a

large-scale biomedical scientific literature corpus and fine-

tune it on numerous downstream tasks and has shown sound

performance in benchmarking tasks such as biomedical

named entity recognition and relation extraction.

Machine learning formulation. Given a document from litera-

ture, extract the drug-gene and drug-disease terms, and predict

the interaction types from the text. The task is illustrated in

Figure 12B.

DISCUSSION: OPEN CHALLENGES AND
OPPORTUNITIES

This survey provides an overview of research in the intersection

of ML, genomics, and therapeutic developments. It is our view

that ML has the potential to revolutionize the use of genomics

in therapeutics development, as we have presented a diverse

set of such applications in preceding sections. However,

numerous challenges remain. Here, we discuss these challenges

and the associated opportunities.

Distribution shifts
ML models work well when the training and deployment data

follow the same data distribution. However, in real-world use in

genomics and therapeutics ML, many problems experience dis-

tribution shifts whereby the deployment environment and the

data generated from it are different from the training stage. As

ML models often tend to fit spurious correlations hidden in the

training data, when these correlations are unseen in the testing

data due to distribution shift, the model performance would

decrease significantly.220 For example, training happens given

the available batches of gene expression data in brain tissue.

The resulting model is required to predict a new experiment

with bone tissue. A robust model is required to pick up signals

that are invariant between brain and bone tissues during training

on the brain tissue. Another example is to train on animal model

transcriptomics and predict the phenotype of human models.

Similarly, the model should not learn to use signals that are

only present in animals for prediction, as these signals are un-

seen in the human models. Thus, a model must generalize to

out-of-distribution. Distribution shifts have been a long-standing

challenge in ML, and a large body of work in model robustness

and domain adaptation could be applied to genomics to improve

generalizability.221 For instance, Brbi�c et al.222 utilize the meta-

learning technique to generalize to novel single-cell experiments.

Learning from small datasets
Biological data are generated through expensive experiments.

This means that many tasks only have a minimal number of

labeled data points. For example, there are usually only a few

drug response data points for new therapeutics. However, stan-

dardMLmodels, especially deep learningmodels, are data-hun-

gry. Thus, how to make an ML model learn given only a few
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examples is crucial. Transfer learning can learn from a large

body of existing labeled data points and transfer it to the down-

stream task with limited data points.14 However, they usually still

require a reasonable number of training data points. Given only a

few data points, few-shot learning methods such as model-

agnostic meta-learning (MAML)130 and prototypical networks223

learning from other related tasks using a few examples have

shown strong promise. Recently, Ma et al.129 have successfully

applied MAML to improve few-shot drug response prediction.

Representation capacity
The key to successful MLmodels depends on the effective repre-

sentation of the genome and other related biomedical entities that

match biological motivation. For example, the current dominant

ML model for DNA sequence is through CNN models. However,

most successful usage only applies to short DNA sequences

generated from pre-defined pre-processing steps instead of a

large fraction of the whole-genome sequence, which could allow

a model to tap into crucial information of long-range gene regula-

tory dependencies.53,55 RNN and transformers are also only able

to take in medium-length inputs, in contrast to more than Oð106Þ
SNPs per genome. This also means that the number of input fea-

tures can be orders of magnitude larger than the number of data

points, a well-knownML challenge called the curse of dimension-

ality. Furthermore, the general MLmodels are often developed for

image and text data without any biological motivations. Thus, to

model the human genome and the complicated regulation among

genes, a domain-motivated model that captures interactions

among extremely long-range high-dimensional features is

needed. Initial attempts for domain-motivated representation

learning have been made. For instance, Romero et al.224 propose

a parameter prediction network that reduces the number of free

parameters for DNN to alleviate the aforementioned curse of

dimensionality issue and shows improved patient stratification

given 106 SNPs. Ma et al.121 modify the neural network structure

to simulate the hierarchical biological processes and explain path-

ways for phenotype prediction.

Model trustworthiness
For anMLmodel to be used by domain scientists, themodel pre-

diction has to be trustworthy. This can happen on two levels.

First, in addition to accurate prediction, the model prediction

also needs to generate justification in terms of biomedical knowl-

edge (‘‘explanation’’). However, current ML models focus on

improving model prediction accuracy. Toward the goal of expla-

nation, ML models need to encode biomedical knowledge. This

can be potentially achieved by integrating biological knowledge

graphs225 and applying the graph explainability method.226

The second level is on the quality of model prediction. Since

ML models are not error free, it is important to alert the users

or abstain from making predictions when the model is not confi-

dent. Uncertainty quantification or model abstention around the

model prediction can alleviate this problem. Recently, Hie

et al.102 used Gaussian processes to generate uncertainty

scores of compound bioactivity, protein fluorescence, and sin-

gle-cell transcriptomic imputation, which were shown to guide

the experimental and validation loop. Integrating the explanation

into human workflows and promoting human trust in AI also re-

quires special attention, as recent works show that directly
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providing AI explanation to humans can confuse the human

observer and degrade the performance.227

Fairness
ML models can manifest bias in the training data. It has been

shown that ML models do not work equally well on all subpopu-

lations. These algorithmic biases could have significant social

and ethical consequences. For example, Martin et al.228 find

that 79% of genomic data are from patients of European

descent, even though they constitute only 16% of the world’s

population. Due to differences in allele frequencies and effect

sizes across populations, ML models that perform well on the

discovery population generally have much lower accuracy and

are worse predictors in other populations. As most discovery

to date is performed with European-ancestry cohorts, predictive

models may exacerbate health disparities, since they will not be

available for or have lower utility in African and Hispanic ancestry

populations. Similarly, most studies focus on common diseases,

whereas experimental data on rare diseases are often limited.

These imbalances against minorities require specialized ML

techniques. The fairness in ML is defined to make the prediction

independent of protected variables such as race, gender, and

sexual orientation.229 Recent works have been proposed to

ensure this criterion in the clinical ML domain.230 However, fair-

ness research of ML for the genomic domain is still lacking.

Data linking and integration
An individual has a diverse set of data modalities, such as geno-

mics, transcriptomics, proteomics, EHRs, and social-economic

data. Current ML approaches focus on developing methods for

a single data modality, whereas to fully capture the comprehen-

sive data types around individuals could potentially unlock new

biological insights and actionable hypotheses. One of the reasons

for the limited integration is the lack of data access that connects

these heterogeneous data types. As large-scale efforts such as

UK Biobank,231 which connects in-depth genetic and EHR infor-

mation about a patient, become available, new ML methods de-

signed to consider this heterogeneity are needed. Indeed, recent

studies have discovered novel insights by applying ML to linked

genomics and EHR data.232–234 Another challenge in data linking

is that the availability of data also varies across data modalities.

For example, plasma samples are abundant, whereas there are

only a few cerebrospinal fluid samples. This leads to a high per-

centage of missing data for a large cohort of patients. Thus,

how to handle missing data is a common challenge in this setting.

Classic techniques include heuristic imputations based on similar

samples.175 However, they often rely heavily on the assumption

that similar samples must have similar values for all features.

Recently, ML methods that explicitly model the variety of missing

data through masking235 or non-linear imputation236 when build-

ing architectures have also shown initial promise.

Genomics data privacy
Abundant genomics data and annotations are generated every

day. Aggregation of these data and annotations can tremen-

dously benefit ML models. However, these are usually consid-

ered private assets for individuals and contain sensitive private

information, and thus are not shareable directly. Techniques to

anonymize and de-identify these data using differential privacy
can potentially enable genomics data sharing.237 In addition,

recent advances in federated learning techniques allow ML

model training on aggregated data without sharing data.238

CONCLUSION

We have conducted a comprehensive review of the literature on

ML applications for genomics in therapeutics development. We

systematically identify diverse ML applications in genomics

and provide pointers to the latest methods and resources. For

ML researchers, we show that most of these applications have

problems that remain unsolved, thus providing many technical

challenges for ML method innovations. We also provide concise

ML problem formulation to help ML researchers to approach

these tasks. For biomedical researchers, we pinpoint a large

set of diverse use cases of ML applications, which they can

extend to novel use cases. We also introduce the popular ML

models and their corresponding use cases in genomics data.

In conclusion, this survey provides an in-depth research

summary of the intersection of ML, genomics, and therapeutic

developments. We hope that this survey can lead to a deeper un-

derstanding of this interdisciplinary domain between ML and ge-

nomics and broaden the collaboration across these two commu-

nities. As a common belief that the future of medicine is

personalized, understanding the therapeutic tasks with ML

methods on genomics data is the key that will lead to ultimate

breakthroughs in drug discovery and development. We hope

that this survey will help to bridge the gap between genomics

and ML domains.
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