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Abstract

A growing number of studies provide epidemiological evidence linking obstructive

sleep apnea (OSA) with a number of chronic disorders. Transcriptional analyses have

been conducted to analyze the gene expression data. However, the weighted gene

coexpression network analysis (WGCNA) method has not been applied to determine

the transcriptional consequence of continuous positive airway pressure (CPAP)

therapy in patients with severe OSA. The aim of this study was to identify key

pathways and genes in patients with OSA that are influenced by CPAP treatment

and uncover/unveil potential molecular mechanisms using WGCNA. We analyzed

the microarray data of OSA (GSE 49800) listed in the Gene Expression Omnibus

database. Coexpression modules were constructed using WGCNA. In addition, Gene

Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were

also conducted. After the initial data processing, 5101 expressed gene profiles were

identified. Next, a weighted gene coexpression network was established and 16

modules of coexpressed genes were identified. The interaction analysis demonstrated

a relative independence of gene expression in these modules. The black module, tan

module, midnightblue module, pink module, and greenyellow module were

significantly associated with the alterations in circulating leukocyte gene expression

at baseline and after exposure to CPAP. The five hub genes were considered to be

candidate OSA‐related genes after CPAP treatment. Functional enrichment analysis

revealed that steroid biosynthesis, amino sugar and nucleotide sugar metabolism,

protein processing in the endoplasmic reticulum, and the insulin signaling pathway

play critical roles in the development of OSA in circulating leukocyte gene expression

at baseline and after exposure to CPAP. Using this new systems biology approach, we

identified several genes and pathways that appear to be critical to OSA after CPAP

treatment, and these findings provide a better understanding of OSA pathogenesis.

KEYWORD S

continuous positive airway pressure (CPAP), obstructive sleep apnea (OSA), weighted gene

coexpression network analysis (WGCNA)

© 2019 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

J Cell Biochem. 2019;120:9277-9290. wileyonlinelibrary.com/journal/jcb | 9277

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Juxiang Peng and Jukun Song are contributed equally to this article.

http://orcid.org/0000-0003-2542-9340


1 | INTRODUCTION

Obstructive sleep apnea (OSA) is a common disease in
adults, and it is the most common form of sleep apnea
caused by the obstruction of the upper airway.1 Patients with
OSA are characterized by recurrent episodes of pharyngeal
obstruction during sleep. The prevalence of OSA in the
general population is approximately 3% to 7% for adult men
and 2% to 5% for adult women.2,3 OSA has been recognized
as an independent risk factor for cardiovascular events,4

metabolic dysregulation,5 cancer incidence,6,7 and all‐cause
mortality.8 Presently, continuous positive airway pressure
(CPAP) has been recognized to be an effective treatment,
because it improves sleep‐disordered breathing as well as
sleep quality.9,10 Application of CPAP to patients with OSA
leads to a reduction in blood pressure,11,12 improvement of
left ventricular function,13 endothelial cell dysfunction,14 and
dyslipidemia.15 However, the molecular and pathological
mechanisms of CPAP therapy in patients with OSA remain
unknown.

Weighted correlation network analysis (WGCNA), a
comprehensive collection of R functions, is a commonly
used method in the correlation network analysis, and in
the identification of disease‐related gene modules and
key genes that contribute to the phenotypic traits.16,17 In
system biology, the WGCNA approach has provided
functional interpretation tools, and it is widely used in
many diseases, such as cancer as well as diabetes.18-20

Unlike the conventional microarray‐based expression
profiling method, WGCA allows a global interpretation
of gene expression data by constructing gene networks
based on similarities in expression profiles among
samples. However, the analysis of microarray‐based gene
expression data by the WGCNA has so far not been
applied to the OSA‐related data. To better understand
and explore the intricate/complex mechanisms of OSA,
the WGCNA method would be a good choice for studying
the disease. In the present study, the WGCNA method
was applied to the OSA‐related gene expression dataset to
identify the biologically relevant modules associated with
OSA after CPAP treatment.

2 | MATERIALS AND METHODS

2.1 | Gene expression data and
preprocession

Gene expression profiles of OSA were accessed from the
Gene Expression Omnibus (GEO) database using the
accession number GSE 49800.21 Raw CEL files of 36
microarray‐based gene expression datasets were downloaded.
Gene expression profiles were calculated using the R
software statistical environment and Bioconductor. Raw data

from each microarray datasets were preprocessed identically
with the R package affy using robust multi-array average
(RMA) function for background correction and normal-
ization using the quantiles method.22 The probe data were
summarized in gene‐level information, and the mean value
was used to represent the expression level if one gene was
detected by multiple probes. Annotated files of microarray
platform (GPL 6244) were also downloaded from GEO. The
top 25% variance gene expression data was selected as the
study object in this work, and a matrix of pairwise
correlations among all pairs of genes in all selected samples
was constructed.

2.2 | Construction of gene coexpression
network analysis

The R package WGCNA was used to identify the highly
connected modules and genes. The process is summarized as
follows. First, cluster analysis was performed on the samples,
using the function hclust to eliminate the outliers. The
appropriate soft threshold power and the standard scale‐free
network were then established by condition of scale
independent as greater than 0.8. The matrix was then
transformed into a Topological Overlap Matrix (TOM) using
the WGCNA function TOM similarity. The weighted
adjacency matrix was constructed using the WGCNA
function adjacency function by imputing the Pearson
correlation between each gene pair to determine the
concordances of the gene expression. Module eigengenes
(ME) were the first principal components in the principal
component analysis for each module and summarized the
expression patterns of all genes into a single characteristic
expression profile within a specific module. Lastly, module
identification was carried out with the dynamic tree cut
method by hierarchically clustering the genes using 1‐TOM
as the distance measured with a deep split value of 2 and
minimum module size (minClusterSize) of 50 for the
resulting dendrogram. Highly similar modules were clus-
tered and merged with a height cut‐off of 0.25. The
calculation of network adjacencies and topological overlap
dissimilarities, scaling of topological overlap matrices, and
calculation of consensus topological overlap was performed.

2.3 | Interaction analysis of
coexpression modules

Interaction relationships among the different coexpres-
sion modules were imputed by WGCNA. Heatmap tool
package in the R software was used in the evaluation of
the strength of the relationship. The clustering coefficient
was correlated with connectivity by a module in the
unweighted network, and the heatmap gene expression
profiles in the individual module were also shown.
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2.4 | Functional enrichment analysis of
genes in the coexpression modules

The number of genes in the constructed modules was put in
an ascending order. Functional enrichment analysis was
then conducted on the genes in these modules. The Gene
Ontology (GO) Biological Process term and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway
analyses were conducted using the DAVID (database for
annotation, visualization, and integrated discovery, https://
david.ncifcrf.gov/).23,24 Functional enrichment analysis was
based on the cut‐off value of P less than 0.05.

2.5 | Identification of modules and hub
genes in coexpression networks

To evaluate the interaction of module genes and to identify
hub genes in tan, black, cyan, red, and greenyellow module,
the connectivity in the above modules to weighted coexpres-
sion network was established. The dynamic decision‐making
tree, node‐splitting method, and cluster analysis of the square
Euclidean distance were used to identify MEs related to these
clinical features. Spearman's correlation analysis was carried
out to determine the most relevant object module between
the MEs and clinical traits. The hub modulates the related

FIGURE 1 Gene hierarchical clustering plot in each sample with OSA. OSA, obstructive sleep apnea
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clinical characteristics to have the highest Spearman's
correlation coefficient. A subnetwork with module genes
was extracted from coexpression network using Cytoscape
plug‐in MCODE.25,26 The hub genes that had been chosen in
the intervention features were obtained in a subnetwork in
the critical module.

3 | RESULTS

3.1 | Microarray data collection and
gene expression analysis

To identify eligible studies, the keywords “obstructive sleep
apnea” and “OSA” were used to retrieve data from the
Pubmed GEO database. From the initial search, we
considered an independent GEO database (GSE 49800),
containing gene expression derived from 36 microarray
gene expression profiles of 18 patients with OSA at baseline
and after exposure to CPAP. The sequencing platform was
(HuGene‐1_0‐st) Affymetrix Human Gene 1.0 ST Array
(transcript [gene] version). The raw CEL files were
transformed into microarray gene expression profiles. The
mean value was used to represent the expression level if one
gene was detected by multiple probes. As a result, a total of

20 391 genes expression data were obtained. To select the
most varying genes, the top 25% variance expression
profiles were chosen for the WGCNA analysis.

3.2 | Coexpression network
construction

A total of 5101 genes from 36 samples containing 18 patients
with OSA at baseline and after exposure to CPAP was used.
The gene hierarchical clustering plot in each sample was
divided into two clusters, on the whole, using the flashClust
tool package of WGCNA algorithm method (Figure 1). The
connections between the genes in the gene network were in
accordance with a scale‐free network distribution with a
higher mean connectivity when the soft threshold power β
was set at nine (Figure 2). After highly similar modules were
merged, a total of 16 coexpression modules were identified
(Figure 3). Fifty‐three genes in the gray module did not
belong to other modules, accounting for 0.10% in all total
genes. The number of genes included in these modules was
181 (black module), 721 (blue module), 559 (brown
module),83 (cyan module), 408 (green module), 114 (green-
yellow module), 55 (midnightblue module), 170 (pink
module), 154 (magenta module), 149 (purple module), 334

FIGURE 2 To choose a cut‐off value
of soft threshold power using the
Scale‐Free Topology Criterion
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(red module), 108 (tan module), 1443 (turquoise module),
and 484 (yellow module). The average number of genes in
these 16 modules was 319 and the median was 162.

3.3 | Interaction analysis of
coexpression module

The interactions among 16 coexpression modules were
further analyzed, and the dynamic tree cut method identified

modules with similar expression profiles (Figure 4). No
significant difference among the different modules was
observed, suggesting a relative independence of gene
expression in these modules. Further, a higher scale
independence among these modules was also detected.

Connectivity of eigengenes analysis was performed to
evaluate the interactions among the constructed coexpres-
sion modules (Figure 5). A cluster analysis was first
conducted on these eigengenes. These modules were then

FIGURE 3 Sixteen significant
coexpression gene modules shared in the
nine random sampling set were observed
with WGCNA. WGCNA, weighted gene
coexpression network analysis

FIGURE 4 Heatmap view of
topological overlap of coexpressed genes
in different modules in top 1500 genes
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divided into two clusters, including seven modules (green
module, yellow module, cyan module, greenyellow module,
red module, brown module, and tan module) and eight
modules (midnightblue module, pink module, black module,
blue module, turquoise module, magenta module, purple
module, and salmon module). An obvious difference in
connectivity effect among the different modules was
observed. Several pairs of modules were found to have a
higher interaction connectivity, such as pink module,
midnightblue module, red module, tan module, greenyellow
module, and black module. The relationship between gene
significance (GS) and the individual module was also
analyzed (Figure 5). It was found that the black module,
tan module, midninghtblue module, pink module, and
greenyellow module had a high mean value of gene
significance (Figure 6). The samples (arrays) along the
module eigengenes (Figure 7) are represented using a scatter
plot. The results indicated that the module eigengenes (first
PC) of different modules could be highly correlated.

3.4 | Functional enrichment analysis of
included genes among the general
modules

GO and KEGG functional enrichment analysis of included
genes among individual modules was constructed.

A significant difference was realized in the results of
functional enrichment analysis among different modules.
The GO terms of an individual module are exhibited in Table
1. Among these modules, genes in the black module were
mainly enriched in GO:0006641—triglyceride metabolic
process, GO:0034447—very low‐density lipoprotein particle
clearance, GO:0005977—glycogen metabolic process,
GO:0004616—phosphogluconate dehydrogenase (decarbox-
ylating) activity, and GO:0042593—glucose homeostasis.
Genes in the cyan module were largely enriched in

FIGURE 5 Analysis of connectivity
of eigengenes in different modules

FIGURE 6 Module significance in different modules
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the biological process, such as GO:0005149—interleukin‐1
receptor binding, GO:0042127—regulation of cell prolifera-
tion, GO:0005109—frizzled binding, GO:1990405—protein
antigen binding, and GO:0030246—carbohydrate binding.
Genes in the greenyellow module were mainly enriched in
GO:0019740—nitrogen utilization, GO:0008519—ammo-
nium transmembrane transporter activity, GO:0072488—
ammonium transmembrane transport, GO:0016485—protein
processing, and GO:0015695—organic cation transport.
Genes in the red module were largely enriched in
GO:0019787—ubiquitin‐like protein transferase activity,
GO:0030141—secretory granule, GO:0016567—protein ubi-
quitination, GO:0000281—mitotic cytokinesis, and
GO:0004842—ubiquitin‐protein transferase activity. Genes
in the tan module were mainly enriched in GO:0033344—
cholesterol efflux, GO:0000062—fatty‐acyl‐CoA binding,

GO:0034736—cholesterol O‐acyltransferase activity,
GO:0016567—protein ubiquitination, and GO:0034435—
cholesterol esterification.

The results of KEGG analysis are exhibited in Table 2.
Among these modules, genes in the black module were
mainly enriched in biological processes as hsa00520: amino
sugar and nucleotide sugar metabolism and hsa04390: Hippo
signaling pathway. Genes in the cyan module were mainly
enriched in hsa04390: Hippo signaling pathway, hsa04916:
melanogenesis, hsa05205: proteoglycans in cancer, hsa04310:
Wnt signaling pathway, and hsa04550: signaling pathways
regulating pluripotency of stem cells. Genes in the red
module were largely enriched in hsa04668: TNF signaling
pathway, hsa05168: herpes simplex infection, hsa00600:
sphingolipid metabolism, and hsa04141: protein processing
in the endoplasmic reticulum. Genes in the greenyellow

FIGURE 7 The relation between
module eigengenes
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TABLE 1 The top five Gene Ontology of genes in each module

Module GO term
Gene
count Percentage P value

Black module GO:0006641—triglyceride metabolic process 4 0.016838 0.003504
GO:0034447—very low‐density lipoprotein particle clearance 2 0.008419 0.026035
GO:0005977—glycogen metabolic process 3 0.012628 0.02648
GO:0004616—phosphogluconate dehydrogenase (decarboxylating)

activity
2 0.008419 0.026597

GO:0042593—glucose homeostasis 4 0.016838 0.036994

Blue module GO:0000045—autophagosome assembly 8 0.008831 3.91E−04
GO:0031225—anchored component of membrane 13 0.014351 4.15E−04
GO:0000422—mitophagy 7 0.007727 9.98E−04
GO:0035615—clathrin adaptor activity 4 0.004416 0.00366
GO:0048333—mesodermal cell differentiation 4 0.004416 0.005108

Brown module GO:0005149—interleukin‐1 receptor binding 5 0.006932 2.72E−04
GO:0009822—alkaloid catabolic process 3 0.004159 0.002084
GO:0005694—chromosome 9 0.012478 0.006028
GO:0016339—calcium‐dependent cell‐cell adhesion via plasma

membrane cell adhesion molecules
5 0.006932 0.006113

GO:0046688—response to copper ion 4 0.005546 0.006717

Cyan module GO:0005149—interleukin‐1 receptor binding 5 0.006932 2.72E−04
GO:0042127—regulation of cell proliferation 12 0.016638 0.010821
GO:0005109—frizzled binding 7 0.068001 7.87E−09
GO:1990405—protein antigen binding 4 0.038858 7.09E−07
GO:0030246—carbohydrate binding 9 0.08743 1.63E−06

Green module GO:0004693—cyclin‐dependent protein serine/threonine kinase
activity

7 0.013092 4.08E−05

GO:0000502—proteasome complex 6 0.011221 0.006056
GO:0005737—cytoplasm 124 0.23191 0.006231
GO:0008565—protein transporter activity 6 0.011221 0.012393
GO:0002544—chronic inflammatory response 3 0.005611 0.013021

Greenyellow module GO:0019740—nitrogen utilization 4 0.031204 1.07E−06
GO:0008519—ammonium transmembrane transporter activity 4 0.031204 3.81E−06
GO:0072488—ammonium transmembrane transport 4 0.031204 8.90E−06
GO:0016485—protein processing 6 0.046806 2.50E−05
GO:0015695—organic cation transport 4 0.031204 4.72E−05

Magenta module GO:0005525—GTP binding 9 0.046536 0.010217
GO:0008236—serine‐type peptidase activity 4 0.020683 0.012926
GO:0043198—dendritic shaft 3 0.015512 0.021781
GO:0050859—negative regulation of B cell receptor signaling pathway 2 0.010341 0.028982
GO:0005911—cell‐cell junction 5 0.025853 0.034829

Midnightblue module GO:0048208—COPII vesicle coating 3 0.068666 0.00369
GO:0097461—ferric iron import into cell 2 0.045777 0.007423
GO:0008823—cupric reductase activity 2 0.045777 0.007678
GO:0052851—ferric‐chelate reductase (NADPH) activity 2 0.045777 0.007678
GO:0031013—troponin I binding 2 0.045777 0.009207

Pink module GO:0004013—adenosylhomocysteinase activity 3 0.01313 1.81E−04
GO:0019510—S‐adenosylhomocysteine catabolic process 3 0.01313 1.89E−04
GO:0033353—S‐adenosylmethionine cycle 3 0.01313 3.75E−04
GO:0033857—diphosphoinositol‐pentakisphosphate kinase activity 2 0.008753 0.015578
GO:0019838—growth factor binding 3 0.01313 0.018746

Purple module GO:0017134—fibroblast growth factor binding 3 0.016672 0.011684
GO:0007155—cell adhesion 9 0.050017 0.012356
GO:0008305—integrin complex 3 0.016672 0.013554
GO:0004871—signal transducer activity 6 0.033344 0.015787
GO:0004888—transmembrane signaling receptor activity 6 0.033344 0.01901

Red module GO:0019787—ubiquitin‐like protein transferase activity 3 0.006797 0.006085
GO:0030141—secretory granule 6 0.013594 0.006222
GO:0016567—protein ubiquitination 13 0.029453 0.009057
GO:0000281—mitotic cytokinesis 4 0.009062 0.009449
GO:0004842—ubiquitin‐protein transferase activity 12 0.027187 0.012324

(Continues)
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module were largely enriched in hsa04910: insulin signaling
pathway. Genes in the tan module were mainly enriched in
hsa04144: endocytosis and hsa00100: steroid biosynthesis.

Genes in tan, black, cyan, red, and greenyellow
module played critical roles in the energy‐related
processes pathway involved in process of sugar and
amino, steroid biosynthesis and insulin signaling path-
way. Therefore, hsa00100: steroid biosynthesis, hsa00520:
amino sugar and nucleotide sugar metabolism, hsa04141:
protein processing in the endoplasmic reticulum, and
hsa04910: insulin signaling pathway play critical roles in
the development of OSA in circulating leukocyte gene
expression at baseline and after exposure to CPAP.

3.5 | Identification of hub genes in the
critical modules

For each identified module, a coexpression network was
constructed using Cytoscape. The subnetwork was also
identified via Cytoscape plug‐in MCODE. A focus was made
on the modules that played critical roles in process of OSA,
such as black, cyan, red, tan, and greenyellow modules. The
coexpression network and sub‐coexpression network in the
rank 1 cluster in the tan module are shown in Figure 8. The
genes in the rank 1 cluster in the tan module were SOX18,
SOX14, SOWAHB, SOD2, SON, SOCS7, SOCS6, TRAPPC3,
STH, TNIP2, and ORC6. Among these genes, SOD2 was the
hub gene in the subnetwork. The coexpression network and
sub‐coexpression network in rank 1 in the black module are
shown in Figure 9. The genes in the rank 1 cluster of the tan

module were SH3BP5L, GNG7, and NUAK2. Among these
genes, SH3BP5L was the hub gene in the subnetwork. The
coexpression network and sub‐coexpression network in rank
1 cluster of the cyan module is shown in Figures 10 and 11.
The genes in the rank 1 cluster of the tan module were
WNT7A, WSB2, WNT6, WRAP73, WNT5B, WRAP53,
WNT9A, WNT8B, WNT8A, and WNT7B. The hub gene
was WSB2. The coexpression network and sub‐coexpression
network in the rank 1 cluster in the red module are shown in
Figure 11. The genes in the rank 1 cluster in the tan module
were MUL1, IL10RB, MTHFD2L, ALDH8A1, MIR153‐2,
MIR153‐1, SLC27A6, HERC2P4, SLA2, DNAL1, TMEM50A,
GSS, LMAN1, C19orf48, LRRC26, DBT, UBQLN2,
LOC105370792, CYSRT1, KSR2, UBA1, ZC3H12C, LSM12,
UGT8, GPR83, TSPYL2, LDHAL6A, ATP6V0A4, DST,
UBQLN4, KRTAP13‐1, ST3GAL4, TPTE, TAGLN3, and
RNF169. Among these genes, MTHFD2L was the hub gene
in the subnetwork. The coexpression network and sub‐
coexpression network in the rank 1 cluster in the green-
yellow module are shown in Figure 12. The genes in the
rank 1 cluster in the tan module were WSB2, WNT6,
WRAP73, WNT5B, WRAP53, WNT9A, WNT8B, WNT8A,
WNT7B, and WNT7A. Among which, WSB2 was the hub
gene in the subnetwork.

4 | DISCUSSION

It has been recognized that OSA is a complex disorder
that exerts profound pathophysiologic and molecular

TABLE 1 (Continued)

Module GO term
Gene
count Percentage P value

Salmon module GO:0032228—regulation of synaptic transmission, GABAergic 3 0.024876 8.10E‐04
GO:0003682—chromatin binding 6 0.049751 0.017248
GO:0001841—neural tube formation 2 0.016584 0.028236
GO:0032403—protein complex binding 4 0.033167 0.045062
GO:0004065—arylsulfatase activity 2 0.016584 0.045254

Tan module GO:0033344—cholesterol efflux 4 0.025066 3.04E−04
GO:0000062—fatty‐acyl‐CoA binding 3 0.018799 0.009724
GO:0034736—cholesterol O‐acyltransferase activity 2 0.012533 0.009928
GO:0016567—protein ubiquitination 7 0.043865 0.012043
GO:0034435—cholesterol esterification 2 0.012533 0.015817

Turquoise module GO:0046943—carboxylic acid transmembrane transporter activity 22 22/1068 2.75E−05
GO:0005342—organic acid transmembrane transporter activity 22 22/1068 8.51E−05
GO:0000990—transcription factor activity, core RNA polymerase

binding
5 5/1068 9.92E−05

GO:0015171—amino acid transmembrane transporter activity 15 15/1068 0.00012
GO:0008514—organic anion transmembrane transporter activity 26 26/1068 0.000126

Yellow module GO:0008168—methyltransferase activity 12 0.019774 7.26E−06
GO:0032259—methylation 8 0.013183 0.001149
GO:0051006—positive regulation of lipoprotein lipase activity 4 0.006591 0.001153
GO:0008016—regulation of heart contraction 5 0.008239 0.004648
GO:0070469—respiratory chain 4 0.006591 0.009315

Abbreviation: GO, gene ontology.
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disturbances across multiple organs.27 OSA is associated with
an increased risk of obesity‐related diseases, such as
diabetes,28 hypertension,29 and dyslipidemia.30 CPAP is the
primary treatment of OSA and has been proven to improve

the outcomes such as daytime sleepiness, cognitive perfor-
mance, blood pressure, glucose control, cardiovascular status,
quality of life, and mortality.31-33 Treatment efficacy is
however limited by variable adherence. OSA is affected by

TABLE 2 The KEGG pathway of genes in each module

Module Pathway ID Name
Gene
Count Percentage P value

Black module hsa00520 Amino sugar and nucleotide sugar metabolism 3 0.012628 0.045186
hsa04390 Hippo signaling pathway 4 0.016838 0.047069

Blue module hsa04144 Endocytosis 18 0.019871 0.004138
hsa04721 Synaptic vesicle cycle 6 0.006624 0.006681
hsa00330 Arginine and proline metabolism 5 0.00552 0.029789

Brown module hsa04120 Ubiquitin mediated proteolysis 10 0.013865 0.002843
hsa05140 Leishmaniasis 6 0.008319 0.018629
hsa05166 HTLV‐I infection 11 0.015251 0.03135
hsa04380 Osteoclast differentiation 7 0.009705 0.045

Cyan module hsa04390 Hippo signaling pathway 8 0.077715 1.23E−05
hsa04916 Melanogenesis 7 0.068001 1.28E−05
hsa05205 Proteoglycans in cancer 8 0.077715 7.54E−05
hsa04310 Wnt signaling pathway 7 0.068001 7.95E−05
hsa04550 Signaling pathways regulating pluripotency of stem

cells
7 0.068001 8.61E−05

Greenyellow module hsa04910 Insulin signaling pathway 3 0.023403 0.048142

Midnightblue module hsa05321 Inflammatory bowel disease (IBD) 2 0.045777 0.04432

Pink module hsa04110 Cell cycle 5 0.021883 0.015659
hsa00270 Cysteine and methionine metabolism 3 0.01313 0.035222
hsa00071 Fatty acid degradation 3 0.01313 0.046016
hsa04360 Axon guidance 4 0.017506 0.049474
hsa05210 Colorectal cancer 3 0.01313 0.05423

Purple module hsa04620 Toll‐like receptor signaling pathway 4 0.02223 0.022536
hsa05134 Legionellosis 3 0.016672 0.038277
hsa04810 Regulation of actin cytoskeleton 5 0.027787 0.041896
hsa04514 Cell adhesion molecules (CAMs) 4 0.02223 0.048926

Red module hsa04668 TNF signaling pathway 6 0.013594 0.034553
hsa05168 Herpes simplex infection 8 0.018125 0.036667
hsa00600 Sphingolipid metabolism 4 0.009062 0.045715
hsa04141 Protein processing in endoplasmic reticulum 7 0.015859 0.048733
hsa04668 TNF signaling pathway 6 0.013594 0.034553

Salmon module hsa05034 Alcoholism 4 0.033167 0.015651
hsa04550 Signaling pathways regulating pluripotency of stem

cells
3 0.024876 0.036596

hsa04151 PI3K‐Akt signaling pathway 4 0.033167 0.044344
hsa05034 Alcoholism 4 0.033167 0.015651

Tan module hsa04144 Endocytosis 5 0.031332 0.0332
hsa00100 Steroid biosynthesis 2 0.012533 0.041422

Turquoise module hsa05134 Legionellosis 9 0.005112 0.01348
hsa00330 Arginine and proline metabolism 8 0.004544 0.026941
hsa04512 ECM‐receptor interaction 10 0.00568 0.03171
hsa05321 Inflammatory bowel disease (IBD) 8 0.004544 0.043367
hsa03018 RNA degradation 9 0.005112 0.044812

Yellow module hsa04622 RIG‐I‐like receptor signaling pathway 6 0.009887 0.010586
hsa04932 Nonalcoholic fatty liver disease (NAFLD) 8 0.013183 0.025204
hsa05010 Alzheimer's disease 8 0.013183 0.04148
hsa00190 Oxidative phosphorylation 7 0.011535 0.041518
hsa05203 Viral carcinogenesis 9 0.01483 0.042105
hsa05012 Parkinson's disease 7 0.011535 0.05405

Abbreviation: Akt, Akt/Protein Kinase B; ECM, extracellular matrix; HTLV, human T‐lymphotropic virus 1; KEGG, Kyoto Encyclopedia of Genes and
Genomes; PI3K, phosphatidylinositol 3‐kinase; TNF, tumor necrosis factor.
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a complex network of gene interactions. Presently, CPAP is
the standard treatment of OSA, but owing to the limited data
about the molecular and pathological mechanisms, the
interactions of target genes induced by CPAP therapy in
patients with OSA are unknown. In this study, GSE 49800
which included the gene expression derived from 36
circulating leukocyte microarray gene expression profiles in
18 patients with OSA at baseline and after exposure to CPAP
from GEO databases were comprehensively profiled for
circulating leukocyte transcriptome.

The WGCNA method was used to reconstruct robust
gene coexpression networks (modules). These modules
were established in terms of large‐scale gene expression
profiles and the distinction of centrally located genes
(hub genes), which drive key cellular signaling path-
ways.34 The WGCNA approach has provided functional
interpretation tools in systems biology and led to new
insights into the molecular and pathological mechanisms
in several diseases, such as breast cancer and endometrial
cancer.18,35 There are no reports applying WGCNA to
systematically identify gene coexpression networks asso-
ciated with the circulating leukocyte transcriptome in

subjects with OSA at baseline and after effective CPAP
therapy. To fill this gap, we conducted a WGCNA and
calculated the module‐trait correlations based on one
public microarray datasets (GSE78000), which included
36 samples and 22 615 genes.

To our best knowledge, this is the first time that the
genome‐based profile dataset in patients with OSA after
CPAP therapy is explored through the construction of
coexpression modules of genes using WGCNA method. A
total of 16 distinct modules from 5101 gene expression
profiles were identified by the WGCNA package. Among
these identified modules, the tan, black, cyan, red, and
greenyellow modules were related to the interactions of
target genes induced by CPAP therapy in patients with OSA.
Further, functional enrichment analysis was also performed
on these modules and a subnetwork was constructed via
Cytoscape plug‐in MCODE. The results suggested that
SOD2, SH3BP5L, WSB2, MTHFD2L, and YPEL4 were the
hub genes in these modules. However, further studies are
needed to explore and validate these hub genes.

In this study, the critical modules and key genes were
determined by GO and KEGG functional modules. The
tan, black, cyan, red, and greenyellow modules were
considered as the most critical modules in the circulating
leukocyte genetic alteration in patients with OSA after
CPAP treatment. GO analysis demonstrated that
GO:0006641—triglyceride metabolic process, GO:0034447
—very low‐density lipoprotein particle clearance,
GO:0005977—glycogen metabolic process, GO:0042593—
glucose homeostasis, GO:1990405—protein antigen bind-
ing, GO:0030246—carbohydrate binding, GO:0016485—
protein processing, GO:0019787—ubiquitin‐like protein
transferase activity, GO:0030141—secretory granule,
GO:0016567—protein ubiquitination, GO:0004842—ubiqui-
tin‐protein transferase activity, GO:0033344—cholesterol
efflux, GO:0000062—fatty‐acyl‐CoA binding, GO:0034736

FIGURE 8 Visualization of the network connections among
the most connected genes in the tan module

FIGURE 9 Visualization of the network connections among
the most connected genes in the black module

FIGURE 10 Visualization of the network connections among
the most connected genes in the cyan module
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—cholesterol O‐acyltransferase activity, and GO:0034435—
cholesterol esterification played an important role in the
pathogenesis of OSA. KEGG analysis indicated that
hsa00100: steroid biosynthesis, hsa00520: amino sugar and
nucleotide sugar metabolism, hsa04141: protein processing
in the endoplasmic reticulum, and hsa04910: insulin
signaling pathway play critical roles in the development
of OSA after CPAP treatment of samples. The insulin

signaling regulates glucose homeostasis and plays an
essential role in metabolism, organ growth, development,
fertility, and lifespan.36 A previous study indicated that
insulin resistance played an important role in obesity.37,38

Insulin resistance is common among obese adolescents.39

The pathogenesis of obesity‐associated insulin resistance
involves increased free fatty acids and several hormones
released by adipose tissue. Adipose tissue constitutes an
important site for steroid hormone synthesis and metabo-
lism. Steroid biosynthesis is involved in the adipose tissue,
and the presence of the entire steroidogenic apparatus plays
the potential roles of local steroid products in modulating the
adipose tissue activity and other metabolic parameters.
Classical steroidogenic tissues, such as the gonads, adrenals,
and placenta, synthesize steroid hormones de novo from
cholesterol. Adipose tissue, one of the largest endocrine
tissues in the human body, has been established as an
important site for steroid storage and metabolism.40 Protein
processing and sugar metabolism also play an important role
in the development of obesity. Obesity has been recognized
as the most risk factor in the development of OSA.41

Therefore, hsa00100: steroid biosynthesis, hsa00520: amino
sugar and nucleotide sugar metabolism, hsa04141: protein
processing in endoplasmic reticulum, and hsa04910: insulin

FIGURE 11 Visualization of the
network connections among the most
connected genes in the red module

FIGURE 12 Visualization of the network connections among
the most connected genes in the greenyellow module
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signaling pathway play critical roles in the development of
OSA in circulating leukocyte gene expression at baseline and
after exposure to CPAP.

In summary, 16 gene coexpression modules from the
GSE 49800 database were identified using WGCNA. The
black module, tan module, midninghtblue module, pink
module, and greenyellow module were related to
interactions of the target genes induced by CPAP therapy
in the patient with OSA. Several pathways and hub genes
were identified using Cytoscape plug‐in MCODE. Never-
theless, further in vivo and in vitro experiments are still
needed to validate these hub genes and to explore
additional potential molecular mechanisms.
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