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Abstract: The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-,
1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond
acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-
di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds.
For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds
of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of
each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to
the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.

Keywords: cocrystal; crystal engineering; halogen bonding; photodimerization; cyclobutane

1. Introduction

Cyclobutane rings appended with n-pyridyl (n = 2, 3 or 4) (pyr) groups are useful
building blocks to construct metal-organic assemblies and materials [1–4]. Many such
molecules have been accessed via template-directed, topochemical [2+2] photodimeriza-
tions of alkenes within cocrystals. These transformations are conducted in the organic
solid state and consequently, due to the highly ordered environment characteristic of crys-
talline reaction media, often proceed stereospecifically and quantitatively. Of particular
and recent interest to our group have been cyclobutanes derived from photodimerization
of unsymmetrical alkenes. These photoproducts are appended with two pairs of differently
substituted pyr groups. Head-to-head (hh) and head-to-tail (ht) regioisomers are possible
from photodimerizations of unsymmetrical alkenes [5]. Given that covalent-bond-forming
reactions performed in the solid state are extremely sensitive to molecular packing, it is
imperative to identify diverse and robust classes of template molecules capable of directing
photodimerizations in crystals.

Herein, we report a series of binary cocrystals comprising components that self-
assemble via N···I X-bonds. We show that in two of these cocrystals, the ditopic X-bond
donor serves to support nearest-neighbor unsymmetrical alkenes (the X-bond acceptors)
in a geometry conducive to topochemical [2+2] photodimerization in the solid state. Evi-
dence is rapidly emerging that demonstrates X-bonds as useful supramolecular synthons
in cocrystals to support [2+2] photodimerizations of alkenes appended with pyr groups.
Whereas there are several examples of photodimerizations of symmetrical alkenes mediated
by X-bonds [6–11], we are aware of only one example – as reported by Groeneman [12]
– wherein an unsymmetrical alkene is assembled to react via X-bonds. We report on the
single-crystal X-ray structures of the binary cocrystals (1,n-di-I-tFb)·(2,4-bpe) (n = 2, 3 or 4),
2(1,2-di-I-tFb)·(ht-2,4-tpcb), and 2(1,3-di-I-tFb)·(hh-2,4-tpcb) (Scheme 1) with components
sustained by N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), we
show the unsymmetrical alkene to generate the regioisomers rctt-1,3-bis(2-pyridyl)-2,4-bis(4-
pyridyl)cyclobutane (ht-2,4-tpcb) and rctt-1,2-bis(2-pyridyl)-3,4-bis(4-pyridyl)cyclobutane
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(hh-2,4-tpcb), respectively, stereospecifically, regiospecifically, and in quantitative conver-
sion (Scheme 2).

Scheme 1. Ditopic components for cocrystals and photoproducts.

Scheme 2. UV-irradiation of (1,2-di-I-tFb)·(2,4-bpe) or (1,3-di-I-tFb)·(2,4-bpe) generates either ht- or
hh-2,4-tpcb, respectively.

2. Results and Discussion

Work by our group has demonstrated that the unsymmetrical cyclobutanes rctt-bis(n-
pyridyl)-bis(n′-pyridyl)cyclobutanes (n 6= n′, n = 2 or 4, n′ = 2 or 4) can be constructed in the
solid state by way of hydrogen-bond (H-bond) mediated self-assembly. The photoproducts
were generated using ditopic H-bond donor coformers in binary cocrystals. Cyclobutanes
with the pyr substituents in both ht- [13] and hh-regiochemistries [14] were obtained via in-
finite and discrete H-bonded assemblies, respectively. While H- and X- bonds often display
similar structural effects in the solid state (i.e., strength, directionality), the donor moieties
(e.g., hydroxyl versus halogen) exhibit very different chemical properties, which can impact
processes that follow the solid-state reactions (e.g., separations of photoproducts) [15].

2.1. X-ray Crystal Structure of (1,2-di-I-tFb)·(2,4-bpe)

The components of (1,2-di-I-tFb)·(2,4-bpe) crystallize in the triclinic space group
P1 (Figure 1, Table 1). The asymmetric unit consists of two unique molecules each of
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1,2-di-I-tFb and 2,4-bpe (Figure 1a). The pyr rings of the two molecules of 2,4-bpe lie
approximately coplanar and exhibit different twist angles (φ ~ 3.4◦ for pyrN1/N2, φ ~ 8.0◦

for pyrN3/N4, Table 2). The components of the cocrystal interact primarily via N···I X-bonds
(d(N1···I1) = 2.808(2) Å; d(N2···I4) = 3.147(2) Å; d(N3···I3) = 2.814(2) Å); d(N4···I2) = 3.054(2)
Å, Table 3), as well as secondary C-H···F forces (d(H18···I2) ~ 2.98 Å; d(H6···I4) ~ 2.98 Å).
Because of the arrangement, the components form 1D tapes (λ ~ 2.52 nm) along a diagonal
within the crystallographic bc-plane (Figure 1b, Table 4). Adjacent chains run parallel and
exhibit a tongue-in-groove fit manifested approximately along the crystallographic b-axis
to give a corrugated, 2D, layered structure (Figure 1c, Table 4). Chains within adjacent
layers run antiparallel. Alkenes between layers stack face-to-face and antiparallel (ht) with
nearest-neighbor C=C bonds of 2,4’-bpe separated by 3.80 Å [N1/N2] and 3.72 Å [N3/N4]
(Figure 1d). Both arrangements conform to the criteria of Schmidt [16] for topochemical
[2+2] photodimerization.

Figure 1. Cont.
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Figure 1. Perspectives of (1,2-di-I-tFb)·(2,4-bpe): (a) asymmetric unit (anisotropic displacement
ellipsoids at 50% probability; view along a); (b) 1D tapes illustrating ABA’B’ repeat motif (view along
a); (c) corrugated layered structure (space-filling); and (d) reactive arrangement of nearest-neighbor
alkene pairs.

Table 1. Crystallographic data and structure refinement statistics *.

Cocrystal (1,2-di-I-tFb)·(2,4-bpe) 2(1,2-di-I-tFb)·(ht-2,4-tpcb)

CCDC deposition number 2104746 2114529
Empirical formula C18H10F4I2N2 C36H20F8I4N4

Formula weight/g·mol−1 584.08 1168.16
Temperature/K 150(2) 150(2)
Crystal system Triclinic Triclinic

Space group P-1 P-1
a/Å 7.5879(8) 9.1499(10)
b/Å 13.1862(13) 10.6011(11)
c/Å 19.2918(19) 10.9421(12)
α/◦ 80.092(5) 62.054(5)
β/◦ 89.530(5) 77.014(5)
γ/◦ 74.125(5) 76.828(5)

Volume/Å3 1827.4(3) 904.32(17)
Z 4 1

ρcalc/g·cm−3 2.12 2.15
µ/mm−1 3.484 3.521

F(000) 1096 548
Crystal size/mm3 0.11 × 0.06 × 0.03 0.10 × 0.09 × 0.06

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)
2Θ range for data collection/◦ 4.21 to 50.25 4.25 –to 50.25

Index ranges −9 ≤ h ≤ 9, −15 ≤ k ≤ 15, −23 ≤ l ≤ 21 −10 ≤ h ≤ 10, −12 ≤ k ≤ 12, −13 ≤ l ≤ 13
Reflections collected 43105 40307

Independent reflections 6502 [Rint = 0.0349, Rsigma = 0.0229] 3220 [Rint = 0.0830, Rsigma = 0.0312]
Data/restraints/parameters 6502/0/549 3220/0/235

Goodness-of-fit on F2 1.066 1.060
Final R indices [I ≥ 2σ (I)] R1 = 0.0170 R1 = 0.0358

wR2 = 0.0363 wR2 = 0.0781
R indices (all data) R1 = 0.0211 R1 = 0.0377

wR2 = 0.0379 wR2 = 0.0790
Largest diff. peak/hole/e·Å−3 0.66/−0.36 2.44/−0.94

* R1 = ∑||Fo| – |Fc||/ ∑|Fo|, wR2 =
[
∑ w

(
F2

o – F2
c
)2
]
/ ∑

[
w
(

F2
o
)2
]1/2

. Goodness-of-fit on F2 =
[
∑ w(|Fo| − |Fc|)2

/
(

Nobs − Nparameter
)1/2.
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Table 2. Twist angles (φ) of pyr rings of 2,4-bpe in binary cocrystals.

Crystal 2,4-bpe Molecule Twist Angle φ/◦

(1,2-di-I-tFb)·(2,4-bpe) N1/N2 3.4
N3/N4 8.0

(1,3-di-I-tFb)·(2,4-bpe) N1/N2 3.8
(1,4-di-I-tFb)·(2,4-bpe) N1/N2 9.9

Table 3. X-bond metrics for cocrystals.

Cocrystal X-Bond Pyridyl
Substitution d(N···I)/Å Θ(C-I···N)/◦ X-Bond Type prs *

(1,2-di-I-tFb)·(2,4-bpe) I1···N1 4 2.808(2) 176.6 I 20
I2···N4 2 3.054(2) 174.0 I 13
I3···N3 4 2.814(2) 176.8 I 20
I4···N2 2 3.147(2) 171.9 I 11

2(1,2-di-I-tFb)·(ht-2,4-tpcb) I1···N1 4 2.946(4) 172.6 I 17
I2···N2 2 3.022(4) 172.1 I 14

(1,3-di-I-tFb)·(2,4-bpe) I1···N1 4 2.795(4) 177.2 I 21
I2···N2 2 2.926(4) 171.8 I 17

2(1,3-di-I-tFb)·(hh-2,4-tpcb) I1···N1 4 2.826(2) 174.4 I 20
I2···N2 4 2.892(2) 177.9 I 18
I3···N3 2 2.826(2) 169.0 I 20

(1,4-di-I-tFb)·(2,4-bpe) I2···N1 4 2.802(4) 177.5 I 21
I1···N2 2 2.884(3) 175.6 I 18

* prs ≡ percent relative shortening = {1 − d(N···I)/[rvdW(I) + rvdW(N)]}·100, where rvdW(N) and rvdW(I) are the
van der Waals radii for nitrogen and iodine, respectively, with rvdW(N) = 1.55 Å and rvdW(I) = 1.98 Å.

Table 4. Struc ural features of cocrystals.

Cocrystal Primary Assembly Secondary Assembly Photoreactivity

(1,2-di-I-tFb)·(2,4-bpe) (2104746) infinite 1D tape based on N···I infinite 2D corrugated layers active
2(1,2-di-I-tFb)·(rctt-ht-2,4-tpcb)
(2114529) infinite 1D chain based on N···I infinite sheets based on C-H···F -

(1,3-di-I-tFb)·(2,4-bpe) (2104747) discrete, four-component assembly
based on N···I infinite sheets based on C-H···F active

2(1,3-di-I-tFb)·(rctt-hh-2,4-tpcb)
(2114285)

discrete, six-component assembly
based on N···I and C-H···F 3D network based on Type II I···I -

(1,4-di-I-tFb)·(2,4-bpe) (2104748) infinite zig-zag chains
based on N···I

infinite columns based on
Type II I···I inert

The alkene C=C bonds of (1,2-di-I-tFb)·(2,4-bpe) are photoactive. UV-irradiation
(broadband Hg lamp, 100 h) of the cocrystal (1,2-di-I-tFb)·(2,4-bpe) resulted in stereospe-
cific, regiospecific, and quantitative photodimerization of 2,4-bpe to generate ht-2,4-tpcb
(Scheme 2, Table 4) [17]. The formation of the cyclobutane photoproduct was evidenced by
the complete disappearance of the pair of olefinic doublets (δH = 7.65, 7.59 ppm) with con-
comitant emergence of a pair of cyclobutane resonances (δH = 4.87−4.82, 4.79−4.74 ppm)
in the 1H NMR spectrum (Figure S1 of the ESI).

2.2. X-ray Crystal Structure of 2(1,2-di-I-tFb)·(ht-2,4-tpcb)

A single-crystal X-ray structure determination confirmed the ht-regiochemistry of
ht-2,4-tpcb (Figure 2). The components of 2(1,2-di-I-tFb)·(ht-2,4-tpcb) crystallize in the
triclinic space group P1 (Table 1). The asymmetric unit consists of one full molecule of
1,2-di-I-tFb and one half-molecule of ht-2,4-tpcb, with the cyclobutane located around
a crystallographic center of inversion (Figure 2a). The 2-pyr rings of hh-2,4-tpcb adopt
an anti-conformation (Figure 2b). The components assemble primarily via N···I X-bonds
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(d(N1···I1) = 2.946(4) Å; d(N2···I2) = 3.022(4) Å, Table 3) to form 1D assemblies that prop-
agate along the crystallographic c-axis with 1,2-di-I-tFb bridging ht-2,4-tpcb (Figure 2b,
Table 4). Adjacent assemblies interact primarily via edge-to-edge C-H···F forces (d(H16···F1)
~ 2.52 Å) to form 2D sheets (Figure 2c,d, Table 4).

Figure 2. Perspectives of 2(1,2-di-I-tFb)·(ht-2,4-tpcb): (a) asymmetric unit (anisotropic displacement
ellipsoids at 50% probability); (b) 1D assemblies; and (c) sheets based on C-H···F forces.
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2.3. X-ray Crystal Structure of (1,3-di-I-tFb)·(2,4-bpe)

The components of (1,3-di-I-tFb)·(2,4-bpe) crystallize in the monoclinic space group
P21/n (Figure 3, Table 5). The asymmetric unit consists of one full molecule each of 1,3-
di-I-tFb and 2,4-bpe (Figure 3a). The alkene C=C bond of 2,4-bpe lies disordered over
two sites (occupancies: 0.75/0.25). The pyr rings of 2,4-bpe lie approximately copla-
nar (φ ~ 3.9◦, Table 2). The components assemble via a combination of N···I X-bonds
(d(N1···I1) = 2.795(4) Å); d(N2···I2) = 2.926(4) Å, Table 3) and offset, edge-to-edge C-H···F
forces (d(H7A···I2) ~ 2.99 Å) to form discrete, four-component rhomboids (θ1 ~ 62.6◦;
θ2 ~117.4◦; l1 ~ 14.3 Å; l2 ~ 7.8 Å) (Figure 3b,c, Table 4). Adjacent assemblies interact
primarily via edge-to-edge C-H···F forces between an alkenyl H-atom of 2,4-bpe and 1,3-
di-I-tFb (d(H6A···F2) ~2.54 Å; d(H11···F4) ~ 2.53 Å) to form sheets (Figure 3d, Table 4).
Adjacent sheets interact via offset, face-to-face π-stacks between the 2-pyr and 4-pyr
rings of neighboring molecules of 2,4-bpe (d(pyrN1···pyrN2) ~ 5.10 Å). Nearest-neighbor
molecules of 2,4-bpe stack head-to-head (hh) with alkene C=C bonds separated by 4.22 Å
and with closest alkene C=C bonds stacked in a combination of parallel and crisscrossed
geometries (Figure 3d) [18,19].

The alkene C=C bonds of (1,3-di-I-tFb)·(2,4-bpe) are photoactive. When (1,3-di-I-
tFb)·(2,4-bpe) was subjected to UV-irradiation (broadband Hg lamp, 80 h), 2,4’-bpe under-
went a photodimerization to generate hh-2,4-tpcb stereospecifically, regiospecifically, and
in quantitative conversion [20] (Scheme 2, Table 4). The formation of the photoproduct was
evidenced by the complete disappearance of the pair of olefinic doublets (δH = 7.65, 7.59
ppm) with concomitant emergence of a pair of cyclobutane resonances (δH = 4.89, 4.69 ppm)
in the 1H NMR spectrum (Figure S3 of the ESI). The reactivity was presumably supported
by the pedal-like motion of the disordered alkene C=C bonds upon irradiation [19,21–30].

Figure 3. Cont.
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Figure 3. Perspectives of (1,3-di-I-tFb)·(2,4-bpe) (minor fraction of alkene disorder omitted for
clarity): (a) asymmetric unit (anisotropic displacement ellipsoids at 50% probability); (b) four-
component assembly; (c) rhomboidal repeat highlighted (C-H···I contacts omitted for clarity); (d)
sheets with two assemblies shown as space filling; and (e) nearest-neighbor alkenes between adjacent
sheets highlighting closest alkene separation (green dashed arrow).

2.4. X-ray Crystal Structure of 2(1,3-di-I-tFb)·(hh-2,4-tpcb)

A single-crystal X-ray structure determination confirmed the hh-regiochemistry of
hh-2,4-tpcb (Figure 4). The components of 2(1,3-di-I-tFb)·(hh-2,4-tpcb) crystallize in the
triclinic space group P1 (Table 5). The asymmetric unit consists of one full molecule
of hh-2,4-tpcb and two full molecules of 1,3-di-I-tFb (Figure 4a). The 2-pyr rings of hh-
2,4-tpcb adopt an anti-conformation. The components assemble primarily via N···I X-
bonds (d(N1···I1) = 2.826(2) Å; d(N2···I2) = 2.892(2) Å; d(N3···I3) = 2.826(2) Å; Table 3) and
secondary edge-to-edge C-H···F forces (d(H1···F8) ~ 2.55 Å) to form discrete, six-component
assemblies (Figure 4b, Table 4). In contrast to 2(1,2-di-I-tFb)·(ht-2,4-tpcb), wherein all four
pyr N-atoms participate in N···I X-bonds, only three N-atoms of 2(1,3-di-I-tFb)·(hh-2,4-
tpcb) participate in N···I X-bonds (Figure 4b). Adjacent assemblies interact primarily via
Type II [22] I···I X-bonds (d(I2···I4) = 3.6970(4) Å) to form an extended X-bonded network
(Figure 4c, Table 4).

The alkene C=C bonds of (1,3-di-I-tFb)·(2,4-bpe) are photoactive. When (1,3-di-I-
tFb)·(2,4-bpe) was subjected to UV-irradiation (broadband Hg lamp, 80 h), 2,4’-bpe under-
went a photodimerization to generate hh-2,4-tpcb stereospecifically, regiospecifically, and in
quantitative conversion [20] (Scheme 2, Table 4). The formation of the photoproduct was ev-
idenced by the complete disappearance of the pair of olefinic doublets (δH = 7.65, 7.59 ppm)
with concomitant emergence of a pair of cyclobutane resonances (δH = 4.89, 4.69 ppm) in
the 1H NMR spectrum (Figure S3 of the ESI). The reactivity was presumably supported by
the pedal-like motion of the disordered alkene C=C bonds upon irradiation [19,21–30].

2.5. X-ray Crystal Structure of 2(1,3-di-I-tFb)·(hh-2,4-tpcb)

A single-crystal X-ray structure determination confirmed the hh-regiochemistry of
hh-2,4-tpcb (Figure 4). The components of 2(1,3-di-I-tFb)·(hh-2,4-tpcb) crystallize in the
triclinic space group P1 (Table 5). The asymmetric unit consists of one full molecule
of hh-2,4-tpcb and two full molecules of 1,3-di-I-tFb (Figure 4a). The 2-pyr rings of hh-



Molecules 2022, 27, 1048 9 of 17

2,4-tpcb adopt an anti-conformation. The components assemble primarily via N···I X-
bonds (d(N1···I1) = 2.826(2) Å; d(N2···I2) = 2.892(2) Å; d(N3···I3) = 2.826(2) Å; Table 3) and
secondary edge-to-edge C-H···F forces (d(H1···F8) ~ 2.55 Å) to form discrete, six-component
assemblies (Figure 4b, Table 4). In contrast to 2(1,2-di-I-tFb)·(ht-2,4-tpcb), wherein all four
pyr N-atoms participate in N···I X-bonds, only three N-atoms of 2(1,3-di-I-tFb)·(hh-2,4-
tpcb) participate in N···I X-bonds (Figure 4b). Adjacent assemblies interact primarily via
Type II [22] I···I X-bonds (d(I2···I4) = 3.6970(4) Å) to form an extended X-bonded network
(Figure 4c, Table 4).

Table 5. Crystallographic data and structure refinement statistics *.

Cocrystal (1,3-di-I-tFb)·(2,4-bpe) 2(1,3-di-I-tFb)·(hh-2,4-tpcb) (1,4-di-I-tFb)·(2,4-bpe)

CCDC deposition number 2104747 2114285 2104748
Empirical formula C18H10F4I2N2 C36H20F8I4N4 C18H10F4I2N2

Formula weight/g·mol−1 584.08 1168.16 584.08
Temperature/K 150(2) 150(2) 150(2)
Crystal system Monoclinic Triclinic Monoclinic

Space group P21/n P-1 P21/c
a/Å 4.2177(4) 8.1884(6) 17.7168(18)
b/Å 27.254(3) 14.2749(14) 5.2208(5)
c/Å 16.1797(16) 16.3737(16) 20.159(2)
α/◦ 90 82.111(5) 90
β/◦ 90.940(5) 87.336(5) 103.519(5)
γ/◦ 90 73.759(5) 90

Volume/Å3 1859.6(3) 1820.1(3) 1813.0(3)
Z 4 2 4

ρcalc/g·cm−3 2.09 2.13 2.14
µ/mm−1 3.424 3.498 3.512

F(000) 1096 1096 1096
Crystal size/mm3 0.15 × 0.15 × 0.05 0.07 × 0.06 × 0.05 0.27 × 0.09 × 0.02

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)
2Θ range for data collection/◦ 5.036 to 50.244 4.152 to 50.246 4.156 to 50.246

Index ranges −5 ≤ h ≤ 5, −32 ≤ k ≤ 32,
−18 ≤ l ≤ 19

−9 ≤ h ≤ 9, −17 ≤ k ≤ 17,
−18 ≤ l ≤ 19

−21 ≤ h ≤ 21, −24 ≤ k ≤ 24,
−23 ≤ l ≤ 23

Reflections collected 38879 34954 46454

Independent reflections 3283 [Rint = 0.0379,
Rsigma = 0.0213]

6475 [Rint = 0.0264,
Rsigma = 0.0184]

3233 [Rint = 0.0362,
Rsigma = 0.0153]

Data/restraints/parameters 3234/18/253 6475/0/469 3233/0/235
Goodness-of-fit on F2 1.082 1.033 1.049

Final R indices [I ≥ 2σ (I)] R1 = 0.0299 R1 = 0.0174 R1 = 0.0248
wR2 = 0.0802 wR2 = 0.0365 wR2 = 0.0538

R indices (all data) R1 = 0.0306 R1 = 0.0222 R1 = 0.0271
wR2 = 0.0807 wR2 = 0.0387 wR2 = 0.0551

Largest diff.
peak/hole/e·Å−3 0.79/−0.63 1.20/−1.00 0.71/−0.60

* R1 = ∑||Fo| − |Fc||/ ∑|Fo|, wR2 =
[
∑ w

(
F2

o − F2
c
)2
]
/ ∑

[
w
(

F2
o
)2
]1/2

. Goodness-of-fit on F2 =
[
∑ w(|Fo| − |Fc|)2

/
(

Nobs − Nparameter
)1/2.

2.6. Structural Considerations

The unsymmetrical nature of 2,4-bpe provides two different pyr N-atoms (i.e., 2-pyr
versus 4-pyr) to participate in X-bonding. We note that in virtually all cases, the N···I
X-bond lengths involving I-atoms of the X-bond donors 1,n-di-I-tFb to N-atoms of the
X-bond acceptors 2,4-bpe, ht-2,4-tpcb, and hh-2,4-tpcb are shorter for 4-pyr versus 2-pyr
(Table 3). The average percent relative shortening (prs) values for N···I X-bonds to 2-pyr
versus 4-pyr N atoms were 15.7% and 19.5%, respectively (Table 3). Given that pKa values
for similar 4-pyr and 2-pyr analogs are comparable [31], we attribute the observation to
greater steric crowding between the lone pair on the N-atom of 2-pyr versus 4-pyr rings.
Crowding would presumably preclude maximal orbital overlap (i.e., strongest X-bond
formation) between the N-atom lone pair and the σ-hole of the relatively large I-atoms
relative to an appreciably less congested 4-pyr N-atom.
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Figure 4. Perspectives of 2(1,3-di-I-tFb)·(hh-2,4-tpcb): (a) asymmetric unit (thermal ellipsoids shown
at 50% probability); (b) discrete, six-component assembly; and (c) adjacent assemblies illustrating
Type II I···I X-bonds.



Molecules 2022, 27, 1048 11 of 17

Figure 5. Perspectives of (1,4-di-I-tFb)·(2,4-bpe): (a) ORTEP (thermal ellipsoids shown at 50%
probability; view along b); (b) zig-zag chains illustrating ABA’B repeat; (c) columns highlighting
Type II π···I X-bonds (red dashed lines) (C-H···I contacts omitted for clarity; view along c); and (d)
herringbone packing of columns.

3. Materials and Methods
3.1. General Experimental

All reagents and solvents (synthesis grade) were purchased from commercial sources
and used as received unless otherwise stated. 1,2-diiodotetrafluorobenzene (1,2-di-I-tFb;
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99%), trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe; 97%), and 1,4-diiodotetrafluorobenzene
(1,4-di-I-tFb, 98%) were purchased from Aldrich©. 1,3-diiodotetrafluorobenzene (1,3-di-
I-tFb; 97%) was purchased from Apollo Scientific© (Bredbury, UK). Chloroform (CHCl3;
certified ACS grade, ≥99.8%, approximately 0.75% EtOH as preservative) was purchased
from Fisher Chemical© (Hampton, NH, USA). All cocrystal syntheses were conducted in
screw-cap glass scintillation vials. For cocrystal syntheses, “thermal dissolution” refers to
the process of: (1) combining both cocrystal components in the same screw-cap glass vial;
(2) adding solvent portion-wise while maintaining a saturated mixture at rt; and (3) tightly
capping the vial and heating the mixture on a hotplate until all solids dissolve to afford
a homogeneous solution in the minimum necessary volume of solvent. Compositions
of all single crystals were shown to be representative of the bulk material by matching
experimental pXRD patterns with those simulated from scXRD data. Photoreactions were
conducted in an ACE® photo cabinet equipped with a water-cooled ACE® quartz, 450 W,
broadband (λ = 1367.3–222.4 nm), medium pressure, Hg-vapor lamp (of the total energy
emitted by the broadband lamp, approximately 40–48% is in the ultraviolet portion of the
spectrum, 40–43% in the visible, and the balance in the infrared). Photoreactions were
conducted by: (1) grinding single crystals of the cocrystal to a fine powder with an agate
mortar and pestle; (2) smearing the powder between two UV-transparent Pyrex® plates to
create the thinnest layer possible; and (3) irradiating the powder in 10 h intervals, taking
care to ensure uniform irradiation. Uniform irradiation of the powdered cocrystals was
accomplished by: (1) occasionally (between every other irradiation interval) scraping (razor
blade) the irradiated powder from both plates of the plate assembly; (2) combining the pow-
der from both plates; (3) homogenizing the combined, bulk powder via thorough grinding
(agate mortar and pestle); and (4) redistributing the homogenized powder between both
plates. The plate assembly was also flipped between irradiation intervals to ensure equal
irradiation of both faces of the plate assembly.

3.2. Synthetic Procedures

(1,2-di-I-tFb)·(2,4-bpe). Cocrystals of (1,2-di-I-tFb)·(2,4-bpe) were obtained by ther-
mal dissolution of 2,4-bpe (192.9 mg, 1.03 mmol) and 1,2-di-I-tFb (418.7 mg, 1.03 mmol,
1.0 equiv) in CHCl3 (7.0 mL). Upon cooling to rt, single crystals of (1,2-di-I-tFb)·(2,4-bpe)—
colorless laths, suitable for scXRD—formed within 15 d.

2(1,2-di-I-tFb)·(ht-2,4-tpcb). Single crystals of (1,2-di-I-tFb)·(2,4-bpe) were ground to
a fine powder using an agate mortar and pestle and smeared between two Pyrex® plates.
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The plate assembly was placed in an ACE® photo cabinet. After 100 h, 1H NMR assay
revealed quantitative, stereospecific, and regiospecific conversion to 2(1,2-di-I-tFb)·(ht-2,4-
tpcb). The product powder was scraped from the plates, dissolved in the minimum volume
of boiling CHCl3, and allowed to slowly cool to rt: single crystals of 2(1,2-di-I-tFb)·(ht-2,4-
tpcb)—colorless, irregular prisms, suitable for scXRD—formed within 6 d. Analytical data:
1H NMR (400 MHz, DMSO-d6): δ 8.40 (dd, J = 4.8 0.8 Hz, 2Ha), 8.27 (dd, J = 4.6, 1.4 Hz,
4Hb), 7.55 (app td, J = 7.6, 1.8 Hz, 2Hc), 7.19 (d, J = 7.8 Hz, 2Hd), 7.16 (d, J = 6.0 Hz, 4He),
7.06 (ddd, J = 7.5, 4.9, 0.9 Hz, 2Hf), 4.87-4.82 (m, 2Hg), 4.79-4.74 (m, 2Hh). Spectral data
were consistent with those previously reported [17] for the same compound.

(1,3-di-I-tFb)·(2,4-bpe). Cocrystals of (1,3-di-I-tFb)·(2,4-bpe) were obtained by ther-
mal dissolution of 2,4-bpe (191.1 mg, 1.02 mmol) and 1,3-di-I-tFb (430.5 mg, 1.02 mmol,
1.0 equiv) in CHCl3 (7.0 mL). Upon cooling to rt, single crystals of (1,3-di-I-tFb)·(2,4-bpe)—
colorless plates, suitable for scXRD—formed within 15 d.

2(1,3-di-I-tFb)·(hh-2,4-tpcb). Single crystals of (1,3-di-I-tFb)·(2,4-bpe) were ground to
a fine powder using an agate mortar and pestle and smeared between two Pyrex® plates.
The plate assembly was placed in an ACE® photo cabinet. After 80 h, 1H NMR assay
revealed quantitative, stereospecific, and regiospecific conversion to 2(1,3-di-I-tFb)·(hh-
2,4-tpcb). The product powder was scraped from the plates, dissolved in the minimum
volume of boiling CHCl3, and allowed to slowly cool to rt: single crystals of 2(1,3-di-I-
tFb)·(hh-2,4-tpcb)—colorless prisms, suitable for scXRD—formed within 6 d. Note: When
preparing a sample of these crystals for pXRD assay (dry-grinding with an agate mortar
and pestle), the solid initially assumed a moist, paste-like consistency, but eventually dried
upon sitting exposed to air for several hours at rt. Analytical data: 1H NMR (400 MHz,
DMSO-d6): δ 8.33 (ddd, J = 4.8, 1.7, 0.9 Hz, 2Ha), 8.31 (dd, J = 4.5, 1.5 Hz, 4Hb), 7.50 (app
td, J = 7.7, 1.8 Hz, 2Hc), 7.21 (dd, J = 4.5, 1.6 Hz, 4Hd), 7.12 (d, J = 7.8 Hz, 2He), 7.02 (ddd,
J = 7.5, 4.9, 1.0 Hz, 2Hf), 4.89 (d, J = 6.4 Hz, 2Hg), 4.69 (d, J = 6.3 Hz, 2Hh). Spectral data
were consistent with those previously reported [20] for the same compound.
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(1,4-di-I-tFb)·(2,4-bpe). Cocrystals of (1,4-di-I-tFb)·(2,4-bpe) were obtained by ther-
mal dissolution of 2,4-bpe (194.0 mg, 1.03 mmol) and 1,4-di-I-tFb (428.8 mg, 1.05 mmol,
1.0 equiv) in CHCl3 (7.0 mL). Upon cooling to rt, single crystals of (1,4-di-I-tFb)·(2,4-bpe)—
colorless blades, suitable for scXRD—formed within 11 d.

3.3. H NMR Spectroscopy

Proton nuclear magnetic resonance (1H NMR) spectra were recorded at room temper-
ature on a Bruker® AVANCE NEO-400 spectrometer (Bruker Corp., Billerica, MA, USA)
operating at 400 MHz using a liquid-N2-cooled double-resonance broadband ProdigyTM

cryoprobe. 1H NMR data are reported as follows: chemical shift (δ, ppm), multiplic-
ity (d = doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets, app
td = apparent triplet of doublets, m = multiplet), coupling constant(s) (J, Hz), and integra-
tion. Chemical shift values were calibrated relative to residual solvent resonance (central
peak of DMSO: δH = 2.50 ppm) as the internal standard. All 1H NMR data were collected
and plotted within the Bruker® TopSpinTM v3.6.1 software suite.

3.4. Powder X-ray Diffraction (pXRD)

Powder X-ray diffraction (pXRD) data were collected at room temperature on a
Bruker® D8 Advance X-ray diffractometer (Bruker Corp., Billerica, MA, USA) on samples
mounted on glass slides. Each sample was finely ground using an agate mortar and pestle
prior to mounting. Instrument parameters: radiation wavelength, CuKα (λ = 1.5418 Å);
scan type, coupled TwoTheta/Theta; scan mode, continuous PSD fast; scan range, 5–40◦

two-theta; step size, 0.02◦; voltage, 40 kV; current, 30 mA. Background subtractions were ap-
plied to all experimentally collected data within the Bruker® DIFFRAC.EVA v3.1 software
suite. All data were plotted in the Microsoft® Excel 2016 software suite. Simulated pXRD
patterns were calculated from scXRD data within the CCDC Mercury [32] software suite.

3.5. Single-Crystal X-ray Diffraction (scXRD)

Single-crystal X-ray diffraction data were collected on a Bruker® D8 VENTURE®

(DUO) CCD diffractometer (Bruker Corp., Billerica, MA, USA) equipped with a Bruker®

PHOTON III® photon counting detector and an Oxford Cryostream® 800 series cold N2
gas stream cooling system (Oxford Cryosystems, Oxford, UK). Data were collected at a low
temperature (150(2) K) using graphite-monochromated MoKα radiation (λ = 0.71073 Å).
Crystals were mounted in Paratone® oil on a MiTeGen© magnetic mount. Data collection
strategies for ensuring maximum data redundancy and completeness were calculated using
the Bruker® Apex IITM software suite. Data collection, initial indexing, frame integra-
tion, Lorentz-polarization corrections and final cell parameter calculations were likewise
accomplished using the Apex II software suite. Multi-scan absorption corrections were
performed using SADABS [33]. Structure solution and refinement were accomplished
using SHELXT [34] and SHELXL [35], respectively, within the Olex2 [36] v1.2 graphical
user interface. Space groups were unambiguously verified using the PLATON© [37] exe-
cutable. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were
attached via a riding model at calculated positions using suitable HFIX commands. The
occupancies of the major and minor positions for the disordered alkene C=C core within
(1,3-di-I-tFb)·(2,4-bpe) converged to their respective ratios after each was identified in the



Molecules 2022, 27, 1048 15 of 17

difference map and freely refined. Figures of all structures were rendered in the CCDC
Mercury [32] software suite.

4. Conclusions

N···I X-bonds have been used to support topochemical [2+2] photodimerizations of an
unsymmetrical alkene to generate either of two regioisomeric cyclobutane photoproducts in
the organic solid state. The transformations proceeded stereospecifically, regiospecifically,
and quantitatively to generate ht- or hh-2,4-tpcb. Our contribution, thus, can be considered
to afford à la carte access to either regioisomer. The formation of each product is achieved
from the same alkene substrate, 2,4’-bpe, using commercially available X-bond donor
cocrystal formers. Our future efforts will aim to expand the scope of the supramolecular
methodology described herein to other unsymmetrical alkenes to afford access to additional
unsymmetrical cyclobutane photoproducts.

Supplementary Materials: The following are available online. Figure S1: Stacked 1H NMR spectra
of (1,2-di-I-tFb)·(2,4-bpe) and 2(1,2-di-I-tFb)·(ht-2,4-tpcb); Figure S2: 1H NMR spectrum of 2(1,2-
di-I-tFb)·(ht-2,4-tpcb); Figure S3: Stacked 1H NMR spectra of (1,3-di-I-tFb)·(2,4-bpe) and 2(1,3-
di-I-tFb)·(hh-2,4-tpcb); Figure S4: 1H NMR spectrum of 2(1,3-di-I-tFb)·(hh-2,4-tpcb); Figure S5:
pXRD pattern of (1,2-di-I-tFb)·(2,4-bpe); Figure S6: pXRD pattern of 2(1,2-di-I-tFb)·(ht-2,4-tpcb)
(as-synthesized); Figure S7: pXRD pattern of 2(1,2-di-I-tFb)·(ht-2,4-tpcb); Figure S8: pXRD pattern of
(1,3-di-I-tFb)·(2,4-bpe); Figure S9: pXRD pattern of 2(1,3-di-I-tFb)·(hh-2,4-tpcb); Figure S10: pXRD
pattern of (1,4-di-I-tFb)·(2,4-bpe).
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