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Nondestructive detection of lead 
chrome green in tea by Raman 
spectroscopy
Xiao-Li Li, Chan-Jun Sun, Liu-Bin Luo & Yong He

Raman spectroscopy was first adopted for rapid detecting a hazardous substance of lead chrome 
green in tea, which was illegally added to tea to disguise as high-quality. 160 samples of tea infusion 
with different concentrations of lead chrome green were prepared for Raman spectra acquirement in 
the range of 2804 cm−1–230 cm−1 and the spectral intensities were calibrated with relative intensity 
standards. Then wavelet transformation (WT) was adopted to extract information in different time 
and frequency domains from Raman spectra, and the low-frequency approximation signal (ca4) was 
proved as the most important information for establishment of lead chrome green measurement 
model, and the corresponding partial least squares (PLS) regression model obtained good 
performance in prediction with Rp and RMSEP of 0.936 and 0.803, respectively. To further explore 
the important wavenumbers closely related to lead chrome green, successive projections algorithm 
(SPA) was proposed. Finally, 8 characteristic wavenumbers closely related to lead chrome green 
were obtained and a more convenient and fast model was also developed. These results proved the 
feasibility of Raman spectroscopy for nondestructive detection of lead chrome green in tea quality 
control.

Green tea is one of the six major teas in China with the longest history, the highest output and the widest 
sphere of consumption. Among all the sensory evaluation indexes of green tea, color plays a particularly 
important role. Color is not only the most intuitive impression but also closely related to liquor color, 
aroma, taste1 and even antioxidant activity of green tea2. In recent years, the media frequently exposed 
that some peddlers illegally added lead chrome green into tea to fake a wonderful color for economic 
exploitation3. The lead chrome green is a type of powder dye with a light green color, consisting of 
lead chrome yellow and phthalocyanine blue or prussian blue pigments4,5, which are harmful to human 
health. It has been banned to add any colorant in tea production in China. However, there is still no 
standard method for detection of lead chrome green in tea.

At present, the existence of lead chrome green in tea is arbitrarily inferred based on the existence 
of lead and chromium3,6,7. However, soil heavy metal pollution and vehicle exhaust emissions may also 
lead to the accumulations of lead and chromium in tea in tea production process. Therefore, the exist-
ence of lead or chromium cannot prove the existence of lead chrome green. In addition, the traditional 
method for detection of lead and chromium, depending on chemical process, is very labor-intensive 
and time-consuming including a series of complicated procedures such as extraction, digestion, heat-
ing, cooling and so on. Raman spectroscopy works on a molecular level, reflecting the information of 
molecular vibration and rotation8. Recently, Raman spectroscopy as a nondestructive and time-efficient 
method has been used for qualitative detection of mineral dyestuffs9, widely employed in mineralogy 
and archaeology10–12. Wang et al.13 characterized the chemical structures of late Permian coals with four 
types from Southern China by Raman spectroscopy. Holakooei et al.14 investigated the components of 
different colors in a pre-seventeenth century wall painting using micro-Raman spectroscopy. Besides, 
researches on quantitative detection of heavy metal ions, such as lead and chromium ions, by Raman 
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spectroscopy have also been carried out15,16. Wang et al.17 developed a surface enhanced Raman scatter-
ing (SERS) DNAzyme biosensor for the detection of Pb ion. Ji et al.18 provided a facile method for the 
detection of Cr (VI) in aqueous solutions based on semiconductor-enhanced Raman spectroscopy. These 
researches successfully proved the potential of Raman spectroscopy for detection of lead and chromium 
ions. However, these methods can only detect a particular ion (lead or chromium) and they cannot 
simultaneously detect all the components of lead chrome green, which consists of lead chrome yellow 
and phthalocyanine blue or prussian blue pigments, as well as other additives. Lead chrome green is a 
mixture and the detection of a particular chemical substance cannot be used as the detection criterion 
of lead chrome green, and there is still no national standard method for detection of lead chrome green. 
Furthermore, there is no report to rapid and nondestructive quantitative detection of lead chrome green 
in tea based on Raman spectroscopy. In this study, Raman spectroscopy was first applied to measure lead 
chrome green in tea quantitatively.

The main difficulties for Raman quantitative detection include the self-absorption of samples, the 
changes of refractive index caused by different concentrations of samples, the background noise from 
solvent and so on19. Therefore, it is difficult to determine the intrinsic Raman intensity which is pro-
portional to the concentration of test object with so many influencing factors20. So, standards should be 
first measured to obtain the quantitative information. In this research, two different relative intensity 
standards were adopted and compared to correct the Raman spectral data.

Spectra obtained from Raman spectrometer often contain hundreds or thousands of spectral infor-
mation, among which, parts of the information may correlate with the noise and background, and parts 
of the information may appear to be non-specific to the target component. These interfered information 
should be eliminated and the target information should be excavated to improve the predictive ability of 
the detection model. Therefore, chemometrics methods, which play a very important role in spectral data 
analysis, were applied for establishment of detection model and selection of characteristic wavenumbers.

The objectives of this study were: (1) to establish a reliable model for measurement of lead chrome 
green in tea based on Raman spectroscopy; (2) to select characteristic Raman wavenumbers for a con-
venient and fast measurement.

Results and Discussion
Detection of color. The main purpose of adding lead chrome green into tea was to fake high-grade 
tea with attractive color, however, the effect of adding amount for color change had no quantitative 
analysis. Therefore, the color of tea infusion with different concentrations of lead chrome green should 
be first investigated before the quantitative detection. Table 1 shows the color differences among differ-
ent concentrations of lead chrome green detected by a spectrocolorimeter. The first row and column in 
Table  1 represent the concentrations of lead chrome green in tea, and the contents reflect the Δ E*ab 
values between two concentrations.

Generally speaking, color difference can be distinguished by naked eye when ∆ ⁎E ab value is more 
than 1.521. As seen in Table 1, the values in the second column are all beyond 1.5, which means that it 
will lead to an obvious color difference when the adding amount is greater than 2 mg/g. The obvious 
color difference caused by small amount of lead chrome green addition indicated a strong dyeing ability 
of lead chrome green and that was one of the main reasons why lead chrome green was chosen to fake 
tea color. Therefore, Raman spectroscopy was further used to detect the concentration of lead chrome 
green in tea.

Qualitative identification of lead chrome green based on Raman spectra. Lead chrome green 
is a mixed colorant, mainly consist of lead chrome yellow and phthalocyanine blue or prussian blue. It 
is essential to first identify the components of lead chrome green. Figure 1 shows Raman spectra of tea 
infusion with or without lead chrome green from 1700 cm−1 to 400 cm−1.

As seen in Fig. 1, comparing with the spectrum of tea infusion without lead chrome green, there are 
many obvious peaks in the spectrum of tea infusion with lead chrome green, which can be inferred that 
these Raman peaks are caused by lead chrome green. Since these Raman peaks does not belong to the 
characteristic bands of prussian blue22, it can be concluded that the lead chrome green does not contain 

Δ E*ab 0 2 mg/g 4 mg/g 6 mg/g 8 mg/g

2 mg/g 1.681

4 mg/g 2.431 0.854

6 mg/g 2.495 1.236 0.632

8 mg/g 3.112 1.782 0.998 0.618

10 mg/g 3.283 2.180 1.499 0.951 0.603

Table 1.  Color differences among different concentrations.
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prussian blue. It is obvious to see that a peak at the wavenumber of 520 cm−1 is presented in both tea 
infusions with or without lead chrome green, this peak belongs to silicon, since the sample was placed 
on a silicon wafer. The peak at 841 cm−1 can be referred as the fingerprint of PbCrO4, as reported by 
Desnica22. The chemical structural formula of phthalocyanine blue contains plenty of chemical bonds of 
C-N, C-C, C-H and C =  C. Both the characteristic peaks of C-N symmetric stretching and C-N symmet-
ric bending (1200–1130 cm−1)23 are appeared in the spectrum in Fig. 1, which locate at the wavenumbers 
of 1145 cm−1 and 1201 cm−1. The peaks around 1300 cm−1 are associated with C-C stretching vibra-
tion24. Bands between the wavenumbers of 1290 cm−1 and 1370 cm−1 can be inferred as the vibrations 
of aromatic ring24, which is consistent with the structural formula of phthalocyanine blue. The peak at 
1451 cm−1 can be attributed to C-H vibration25. The spectral feature at the wavenumber of 1527 cm−1 is 
considered to be the representation of C =  C vibration in porphyrin ring26. The attribution analysis of 
these Raman peaks proved that the lead chrome green used in this research consisted of lead chrome 
yellow and phthalocyanine blue. Furthermore, it can be concluded that there is obvious difference of 
Raman spectral response between tea infusion with and without lead chrome green, and Raman spectra 
can probe the inherent vibrations of lead chrome green, these vibrations can be regarded as specific fin-
gerprints for qualitative classification of tea infusion with or without lead chrome green.

Quantitative detection of lead chrome green based on Raman spectra. Relative intensity 
correction. Since the difficulties of quantitative detection by Raman spectroscopy mentioned in the 
introduction, relative intensity standards were proposed to correct the data to obtain the quantitative 
information. The integrated intensity from 2804 cm−1 to 230 cm−1 and the intensity at the wavenumber 
of 520 cm−1 were respectively selected as the standards, and the spectral intensity ratios between the 
intensities of samples and that of the standards were used for quantitative analysis in this research. PLS 
was proposed to evaluate the results of corrections based on different relative intensity standards. The 
PLS model of the data without any correction was first built as a reference, successively, PLS models 
based on the data calibrated with the integrated intensity from 2804 cm−1 to 230 cm−1 and the intensity 
at the wavenumber of 520 cm−1 were respectively built. In general, an evaluation of a PLS model mainly 
depends on the values of R and RMSE. R represents the fitting degree of the model and RMSE reflects the 
deviation between the true values and the predicted values. The higher R (closer to 1) and lower RMSE 
the model obtains, the better results the model acquires. In addition, a small difference of R values in 

Figure 1. Raman spectra of samples. 

Model
Relative intensity 

standard

Calibration set Validation set Prediction set

Rc RMSEC Rv RMSECV Rp RMSEP

Model 1 No 0.945 0.904 0.927 1.036 0.932 0.817

Model 2
Integrated intensity 
from 2804 cm−1 to 

230 cm−1
0.950 0.865 0.937 0.966 0.950 0.715

Model 3
Intensity at the 
wavenumber of 

520 cm−1
0.948 0.876 0.933 0.993 0.946 0.752

Table 2.  Results of PLS models based on the data calibrated with different relative intensity standards.
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different sets (calibration, validation and prediction sets) means high stability of the model. The results 
of the models are represented in Table 2.

As shown in Table 2, Rp and RMSEP of model 1 were 0.932 and 0.817, respectively. In comparison 
with model 1, model 2 obtained a better result. On one hand, Rp rised from 0.932 to 0.950 and RMSEP 
reduced to 0.715 in the prediction set, on the other hand, the differences of performance among calibra-
tion, validation and prediction sets reduced. The outstanding performance of model 2 may attribute to 
the wonderful correction ability of full Raman spectral range of 2804 cm−1 to 230 cm−1. Model 3 obtained 
lower R and higher RMSEs comparing with model 2. The reason for the poor performance of model 3 
may refer to the uncertain distance existed between the focal plane of the sample and the silicon wafer, 
leading a biased ratio of the spectral intensity between sample and silicon. Therefore, the data corrected 
by the integrated intensity was used in the following process.

Extraction of key information of Raman spectra based on wavelet transform (WT). To further explore 
the detailed information of Raman spectra relating to lead chrome green in tea infusion, wavelet decom-
position was used to build the detection model. In this study the spectra (S) were decomposed into five 
parts (cd1, cd2, cd3, cd4 and ca4) on four levels. On the first level, the spectra (S) were departed into two 
parts of wavelet coefficients through low-pass filter and high-pass filter, obtaining the approximate part 
(ca1) and the detailed part (cd1), respectively. In the next turn of decomposition, the approximate part 
was once again divided into two parts and that cycle repeated. After the decomposition, each sample was 
represented by five groups of wavelet coefficients as shown in Fig. 2(b–f). It can be found that the general 

Figure 2. Wavelet decomposition coefficients. (a) normalized spectra, (b) approximate coefficient on level 
4, detailed coefficient on (c) level 1, (d) level 2, (e) level 3, (f) level 4.
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trend of ca4 was similar to the original Raman spectra shown in Fig. 2(a). Figure 3(c–f) show the wavelet 
coefficients of the detailed parts on four levels and much high-frequency information could be found. 
After being processed by wavelet transform, the key information is mainly concentrated on approximate 
part27,28, so the wavelet approximate coefficients of ca4 were taken as the characteristic information of 
lead chrome green for further analysis.

To evaluate the impact of WT on the data in detail, the 63-dimensional wavelet coefficients of ca4 was 
set as independent variables to develop determination model based on PLS and the results were listed in 
Table 3. As shown in Table 3, model 4 obtained satisfactory performance with Rp and RMSEP values of 
0.936 and 0.803, respectively. Furthermore, comparing with the results of model 2, the differences of R 
values among calibration, validation and prediction sets in model 4 decreased, which indicated that the 
stability of the model was improved. In general, comparing with model 2, model 4 obtained comparable 
accuracy and better stability, which demonstrated that WT was a useful tool in excavating the charac-
teristic information and removing the irrelevant information of noise signal.

Selection of characteristic wavenumbers of Raman spectra. The key information of lead chrome green, 
represented by 63-dimensional wavelet low-frequency coefficients, had been extracted by WT. However, 
the wavelet coefficient of ca4 was dimensionless, since it was derived from the original spectral data by 
mathematic method. Although the linear relationship between wavelet coefficient and the concentration 
of lead chrome green in tea had been established by PLS model, the characteristic Raman peaks of 
chemical bonds in the samples were obscure. Therefore, the chosen wavelet coefficient of ca4 was used 
to reconstruction. By inserting the wavelet coefficient of ca4 into its initial position in the transformed 
vector and then setting the other coefficients to zero, following an inverse wavelet transformation, A4 
was reconstructed based on ca4. To evaluate the performance of signal reconstruction, PLS model 5 was 
built based on the reconstructed spectra of A4 and the results were listed in Table 3. As seen in Table 3, 
model 5 obtained comparable results as model 4, besides, the dimension of the independent variables was 
resized to 1005. On the whole, it can be concluded that the signal reconstruction based on ca4 not only 
obtained the outstanding performance in PLS modeling, but also made a convenience for the following 
characteristic wavenumbers selection.

For a rapid online detection system of lead chrome green in tea, the variables used in the detection 
model need to be simplified. Therefore, successive projections algorithm (SPA) was proposed to select the 
characteristic wavenumbers based on the low-frequency reconstructed spectra of A4 of the calibration 
set. Figure 3 shows the distribution of the selected 8 wavenumbers by SPA, and the corresponding char-
acteristic wavenumbers were 2775, 2176, 1666, 1541, 1297, 988, 547 and 262 cm−1. On the basis of the 
8 characteristic wavenumbers selected from the calibration set, detection model was built by PLS. Then 
the validation set was used to validate the model by full cross validation method and the prediction set 
was used to verify the prediction ability of the model. The results of PLS models based on the 8 charac-
teristic wavenumbers are shown in Fig. 4. As seen in Fig. 4, the R values of validation and prediction sets 

Figure 3. Distribution of the characteristic wavenumbers. 

Model 
Independent 

variable Dimension

Calibration set Validation set Prediction set

Rc RMSEC Rv RMSECV Rp RMSEP

Model 4 ca4 63 0.948 0.883 0.934 0.991 0.936 0.803

Model 5 A4 1005 0.947 0.886 0.933 0.994 0.935 0.809

Table 3.  Results of PLS models based on WT.
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were close and this phenomenon indicated that the performance of the model based on 8 characteristic 
wavenumbers was relatively stable. Furthermore, the number of variables reduced from 1005 to 8, which 
significantly improved the detection efficiency. The limit of detection (LOD) of lead chrome green was 
assessed by using the three times of standard deviation of the lowest lead chrome green concentration 
and the corresponding LOD of this method was 0.651mg/g.

Analysis of the characteristic wavenumbers. Raman spectroscopy works on a molecular level, 
the spectral intensity at each wavenumber reflects the information of vibration and rotation of a certain 
molecular. The assignments of the 8 characteristic wavenumbers are listed in Table 4. As seen in Table 4, 
λ2775 and λ2176 are associated with H2PO4

−, which exists in metal salt29. λ1666, λ1541 and λ1297 are assigned 
to phthalocyanine blue24,26,30, meanwhile, λ988 and λ547 are ascribed to lead chromate yellow31,32. λ262 is 
the characteristic Raman peak of calcite33. It is obvious to see that parts of the wavenumbers analyzed in 
section 2.2 were selected to be the characteristic wavenumbers by chemometrics methods, such as λ1541 
and λ1297. Meanwhile, several new appeared wavenumbers were selected in the process of characteristic 
wavenumbers selection, the assignments of these wavenumbers were some trace components in lead 
chrome green, as shown in Table 4. However, these newly selected wavenumbers were not significant in 
the spectral curve (Fig. 1) and this phenomenon may be due to the strong interference from fluorescence, 
which covered these closely related information. However, the combination of WT and SPA could solve 
this problem well and the availability of the corresponding detection model was also verified.

Conclusions
This research proposed a novel method for determination of lead chrome green in tea based on Raman 
spectroscopy. First, the lead chrome green could be qualitatively identified based on the fingerprint 
Raman peaks of its compositions (lead chrome yellow and phthalocyanine blue). And the relative inten-
sity standard method based on the integrated intensity of full range (2804 cm−1–230 cm−1) was proved as 
an effective way for quantitative detection of lead chrome green in tea. Additionally, the WT was proved 
to be a useful tool in extraction of key information of Raman spectra, and the model based on the wave-
let approximate coefficients (ca4) achieved satisfactory prediction results with R and RMSE of 0.936 and 
0.803, respectively. Finally, SPA was used to select the characteristic wavenumbers and 8 wavenumbers 
were obtained. In general, Raman spectroscopy was proved to be a useful technique for detection of lead 

Figure 4. Scatter plot of true vs. predicted concentrations of lead chrome green by PLS model based on 
8 characteristic wavenumbers. 

Wavenumber (cm−1) Functional group/Chemical bond Material

λ2775, λ2176 H2PO4
− Metal salt29

λ1666 C= N phthalocyanine blue30

λ1541 C= C phthalocyanine blue26

λ1297 C-C phthalocyanine blue24

λ988 SO4
2− lead chromate yellow31

λ547 Al-OH lead chromate yellow32

λ262 CO3
2− Calcite33

Table 4.  Assignment of the characteristic wavenumbers.
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chrome green and the 8 characteristic wavenumbers made a convenience and rapid detection of lead 
chrome green in tea quality monitoring.

Materials and Methods
Sample preparation. LongJing tea (purchased from Hang Zhou Yi Jiang Nan Tea co., LTD, Hangzhou, 
China) with 1 g was respectively mixed with 0, 2, 4, 6, 8 and 10 mg lead chrome green (purchased from 
Guang Zhou Hu An Pigment co., LTD, Guangzhou, China) in a beaker. Successively, 50 ml boiling water 
was poured into the beaker, soaking for 5 minutes. Then, the tea infusion was poured into a glass con-
tainer for color measurement.

As for the acquisition of Raman spectra, tea with 9 dosages of lead chrome green (2, 3, 4, 5, 6, 7, 8, 9 
and 10 mg/g) were prepared and soaked according to the above steps, 20 duplications were made for each 
dosage of 2, 4, 6, 8 and 10 mg/g, and 15 duplications were made for each dosage of 3, 5, 7 and 9 mg/g. 
Then, 45 ml tea infusion was taken into a centrifuge tube, centrifuging for 5 minutes at the rotational 
speed of 5000 rpm. Successively, 43.5 ml supernatant was discarded by a pipette and the remaining was 
oscillated for 20 s by an ultrasonic cleaner (KQ-500B, Kun Shan ultrasonic instrument co., LTD, Suzhou, 
China). Thus, sample was obtained for Raman spectroscopy scanning.

Color measurement. A spectrocolorimeter (CM-600d, Konica Minolta, Japan) with detection mode 
of SCI (specular component include), was used to measure the color of sample. CIEL*a*b* (CIELAB), 
which is considered as the most complete color model7, was used to describe the colors. In this study, 
∆ ⁎E ab was used as the index to detect the relative perception difference between two colors. The com-
putational formula of Δ E*ab is shown as equation (1). There are three parameters in the model: ∆ ⁎L  
represents the brightness of color (negative value favors black, while positive value favors bright), ∆ ⁎a  
represents the color between red and green (negative value favors green, while positive value favors red), 
∆ ⁎b  represents the color between yellow and bule (negative value favors blue, while positive value favors 
yellow)34.

∆ = ∆ + ∆ + ∆ ( )⁎ ⁎ ⁎ ⁎E L a bab 12 2 2

Raman spectra acquisition. Sample with volume of 20 μl was placed to a silicon wafer by a pipette, 
following they were placed on a glass slide, and fixed under the 20x microscope objectives. Then, Raman 
spectra were collected with a Renishaw microscopic confocal Raman spectrometer (inVia-Reflex 532/
XYZ, UK) equipped with a 532 nm laser source, 25 mv laser power. The exposure time and the number of 
accumulation were set as 1s and twice, respectively. The spectral range was from 2804 cm−1 to 230 cm−1 
with a resolution of 2 cm−1. For each sample, the spectra of 15 uniformly distributed sampling points on 
the diagonal line in the field of vision were collected and averaged as a Raman spectrum of the sample.

Sample division. Before establishing a detection model, all the samples were divided into three cate-
gories: calibration set, validation set and prediction set to further evaluate the model. The samples with 
concentrations of 2, 4, 6, 8 and 10 mg/g were chosen as the calibration samples and the left samples with 
concentrations of 3, 5, 7 and 9 mg/g were subsumed into the prediction set, meanwhile, the calibration set 
was validated by full cross validation method. Then calibration, validation and prediction sets obtained 
100, 100 and 60 samples respectively in the end.

Data analysis. Wavelet transform (WT) is the local analysis of time and space frequency, by the oper-
ations of stretch and translation, multiscale analysis of signals (functions) is achieved35,36. In the high fre-
quency, time is subdivided, while in the low frequency, frequency is subdivided37. WT can automatically 
adapt to the requirements of time-frequency signal analysis, thus can focus on any detailed signal38,39. 
Due to the excellent function of local analysis, WT was applied to remove the background and noises 
for modeling. The computations were conducted in the Matlab 2010b.

Partial least squares (PLS) algorithm is a multivariate statistical analysis method, which can realize 
regression modeling, data structure simplification and correlation analysis simultaneously in an algo-
rithm40,41. PLS not only maximizes the variance of the main components for more comprehensive infor-
mation, but also makes the largest degree of correlation between independent and dependent variables 
for a sufficient use of the linear relation42. In this study, PLS algorithm was used to build the detec-
tion model of lead chrome green. The computations were operated with the “The Unscrambler V10.1” 
(CAMO PROCESS AS, Oslo, Norway).

Successive projections algorithm (SPA) is a selection method for sensitive wavenumbers. The variable 
set with the minimum redundancy could be selected from the spectral information, eliminating the 
collinearity between variables effectively with the least number of variables43. SPA was proposed here 
to reduce the complexity of model, making a convenience and rapid detection of lead chrome green. 
The detailed description of SPA can be found in the literature44,45. The computations of SPA were imple-
mented in the Matlab 2010b.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:15729 | DOi: 10.1038/srep15729

References
1. Lee, J., Hwang, Y. S., Kang, I. K. & Choung, M. G. Lipophilic pigments differentially respond to drying methods in tea (Camellia 

sinensis L.) leaves. Lwt-Food Sci. Technol. 61, 201–208 (2015).
2. Li, N., Taylor, L. S., Ferruzzi, M. G. & Mauer, L. J. Color and chemical stability of tea polyphenol (− )-epigallocatechin-3-gallate 

in solution and solid states. Food. Res. Int. 53, 909–921 (2013).
3. Chen, L. Y., Lu, C. Y. & Liu, X. Determination technique for chrome green in tea. Trop. Agric. Eng. 32, 38–44 (2008).
4. Sander, H. Colored inorganic pigments in Technological Applications of Dispersions (ed. McKay, R. B.) 137–138 (Marcel Dekker 

Inc, 2013).
5. Burgio, L., Clark R. J. H. & Hark, R. R. Spectroscopic investigation of modern pigments on purportedly medieval miniatures by 

the ‘Spanish Forger’. J. Raman Spectrosc. 40, 2031–2036 (2009).
6. Wang, Q. T., Zhou, L., Zhang, Q. P., Li, J. & Du, S. W. Determination of lead chrome green in tea by flame atomic absorption 

spectrometry based on microwave digestion method. Chin. J. Health Lab. Technol. 19, 1925 (2009).
7. Wu, D. & Sun, D. W. Colour measurements by computer vision for food quality control-A review. Trends Food Sci. Tech. 29, 5–20 

(2013).
8. Mikla, V. I. & Mikla, V. V. Raman spectroscopy in medicine in Medical Imaging Technology (ed. Haidekker, M. A.) 129–141 

(Springer, 2014).
9. Simone, E., Saleemi, A. N. & Nagy, Z. K. Application of quantitative Raman spectroscopy for the monitoring of polymorphic 

transformation in crystallization processes using a good calibration practice procedure. Chem. Eng. Res. Des. 92, 594–611 (2014).
10. Gutiérrez-Neira, P. C., Agulló-Rueda, F., Climent-Font, A. & Garrido, C. Raman spectroscopy analysis of pigments on Diego 

Velázquez paintings. Vib. Spectrosc. 69, 13–20 (2013).
11. Frausto-Reyes, C., Ortiz-Morales, M., Bujdud-Pérez, J. M., Magaña-Cota, G. E. & Mejía-Falcón, R. Raman spectroscopy for the 

identification of pigments and color measurement in Dugès watercolors. Spectrochim. Acta A. 74, 1275–1279 (2009).
12. Halac, E. B., Reinoso, M., Luda, M. & Marte, F. Raman mapping analysis of pigments from Proas Iluminadas by Quinquela 

Martín. J. Cult. Herit. 13, 469–473 (2012).
13. Wang, S. Q. et al. Raman spectroscopy of coal component of Late Permian coals from Southern China. Spectrochim. Acta A. 132, 

767–770 (2014).
14. Holakooei, P. & Karimy, A. H. Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the 

Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jame of Abarqu, central Iran. Spectrochim. Acta 
A. 134, 419–427 (2015).

15. Zeng, S. W. et al. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 6, 491–506 (2011).
16. Ly, N. H., Oh, C. H. & Joo, S. W. A submicromolar Cr (III) sensor with a complex of methionine using gold nanoparticles. Sensor. 

Actuat. B-Chem. 219, 276–282 (2015).
17. Wang, Y. l. & Irudayaraj, J. A SERS DNAzyme biosensor for lead ion detection. Chem. Commun. 47, 4394–4396 (2011).
18. Ji, W. et al. Semiconductor-driven 'turn-off ” surface-enhanced Raman scattering spectroscopy: application in selective 

determination of chromium (VI) in water. Chem. Sci. 6, 342–348 (2015).
19. Liu, W. H., Yang, W., Wu, X. Q. & Lin, Z. X. Direct determination of ethanol by laser Raman spectra with internal standard 

method. Chinese. J. Anal. Chem. 35, 416–418 (2007).
20. Wu, Z. L., Zhang, C. & Stair, P. C. Influence of absorption on quantitative analysis in Raman spectroscopy. Catal. Today. 113, 

40–47 (2006).
21. Sun, X. R., Lin, Z. D., Zhang, J. Y., Lin, Z. X. & Jing, Q. C. Discrimination of color difference of surface. Acta Psychol. Sinica. 28, 

9–15 (1996).
22. Desnica, V., Furic, K., Hochleitner, B. & Mantler, M. A comparative analysis of five chrome green pigments based on different 

spectroscopic techniques. Spectrochim. Acta B. 58, 681–687 (2003).
23. Vandenabeele, P., Moens, L. & Edwards, H. G. M. in Proceedings of the Society of Photo-Optical Instrumentation Engineers. Vol. 

4098 (eds. Andrews, D. L. et al..) 301–310 (SPIE, 2000).
24. Vandenabeele, P., Moens, L., Edwards, H. G. M. & Dams, R. Raman spectroscopic database of azo pigments and application to 

modern art studies. J. Raman Spectrosc. 31, 509–517 (2000).
25. Xu, C. Q., Yao, X. M., Walker, M. P. & Wang, Y. Chemical/molecular structure of the dentin-enamel junction is dependent on 

the intratooth location. Calcified Tissue Int. 84, 221–228 (2009).
26. Edwards, H. G. M. Overview: Biological materials and degradation in Raman Spectroscopy in Archaeology and Art History (eds. 

Edwards, H. G. M. et al..) 254 (The Royal Society of Chemistry, 2005).
27. Leung, A. K. M., Chau, F. T., Gao, J. B. & Shih, T. M. Application of wavelet transform in infrared spectrometry: Spectral 

compression and library search. Chemometr. Intell. Lab. Syst. 43, 69–88 (1998).
28. Wu, D. et al. Determination of α -linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy improved by 

wavelet transform and uninformative variable elimination. Anal. Chim. Acta. 634, 166–171 (2009).
29. Syed, K. A., Pang, S. F., Zhang, Y. & Zhang, Y. H. Micro-Raman observation on the H2PO4

− association structures in a 
supersaturated droplet of potassium dihydrogen phosphate (KH2PO4). J. Chem. Phys. 138, 024901 (2013).

30. Larkin, P. General outline and strategies for IR and Raman spectral interpretation in IR and Raman Spectroscopy: Principles and 
Spectral Interpretation (ed. Larkin, P.) 127 (Elsevier, 2011).

31. Brewer, P. G., Malby, G. & Pasteris, J. D. Development of a laser Raman spectrometer for deep-ocean science. Deep-Sea Res. Pt. 
I. 51, 739–753 (2004).

32. Lu, B. Mei., Jin, X. Y., Tang, J. & Bi, S. P. DFT studies of Al–O Raman vibrational frequencies for aquated aluminium species. J. 
Mol. Struct. 982, 9–15 (2010).

33. Castro, K., Knuutinen, U., Vallejuelo, S. F. O., Irazola, M. & Madariaga, J. M. Finnish wallpaper pigments in the 18th-19th century: 
Presence of KFe3(CrO4)2(OH)6 and odd pigment mixtures. Spectrochim. Acta A. 106, 104–109 (2013).

34. Yi, W. Z., Feng, G., Jia, H. L. & Lu, L. Analysis on factors affecting colorimeter measurement accuracy in meat color determination. 
Meat Ind. 8, 36–39 (2012).

35. Mallat, S. Wavelet bases in A Wavelet Tour of Signal Processing 3rd edn, (ed. Mallat, S.) 263–376 (Academic Press, 2009).
36. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE. T. Inform. Theory. 36, 961–1005 

(1990).
37. Li, X. L., Xie, C. Q., He, Y., Qiu, Z. J. & Zhang, Y. C. Characterizing the moisture content of tea with diffuse reflectance 

spectroscopy using wavelet transform and multivariate analysis. Sensors-Basel. 12, 9847–9861 (2012).
38. Zhang, M., Cai, W. S. & Shao, X. G. Wavelet unfolded partial least squares for near-infrared spectral quantitative analysis of blood 

and tobacco powder samples. Analyst. 136, 4217–4221 (2011).
39. Jing, M., Cai, W. S. & Shao, X. G. Multiblock partial least squares regression based on wavelet transform for quantitative analysis 

of near infrared spectra. Chemometr. Intell. Lab. 100, 22–27 (2010).
40. Wold, S., Ruhe, A., Wold, H. & Dunn, W. J. The collinearity problem in linear regression. The partial least squares (PLS) approach 

to generalized inverses. SIAM J. Sci. Stat. Comput. 5, 735–743 (1984).
41. Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta. 185, 1–17 (1986).



www.nature.com/scientificreports/

9Scientific RepoRts | 5:15729 | DOi: 10.1038/srep15729

42. Chi, Q. H., Fei, Z. S., Zhao, Z., Zhao, L. & Liang, J. A model predictive control approach with relevant identification in dynamic 
PLS framework. Control Eng. Pract. 22, 181–193 (2014).

43. Liu, Y. D., Zhang, G. W. & Cai, L. J. Analysis of chlorophyll in Gannan navel orange with algorithm of GA and SPA based on 
hyperspectral. Spectrosc. Spect. Anal. 32, 3377–3380 (2012).

44. Araújo, M. C. U. et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. 
Chemometr. Intell. Lab. 57, 65–73 (2001).

45. Wu, D. et al. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. 
Acta. 726, 57–66 (2012).

Acknowledgements
This research was supported by the National Natural Science Foundation of China (61201073), the 
Fundamental Research Funds for the Central Universities and Zhejiang province public technology 
research program (2014C32091), the Sub-project under National Science and Technology Support 
Program (2014BAD06B06).

Author Contributions
X.L. collected the background information about the current study on lead chrome green and developed 
the experiment design, she conducted the Raman spectral experiments and wrote the manuscript. C.S. 
managed the chemical experiments, data handing and analysis and the writing of the manuscript. L.L. 
contributed in the preparation of lead chrome green and took part in the experiments. Y.H. reviewed 
the initial design of the experiments and made a guidance for the writing of the manuscript. All authors 
reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, X.-L. et al. Nondestructive detection of lead chrome green in tea by 
Raman spectroscopy. Sci. Rep. 5, 15729; doi: 10.1038/srep15729 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Nondestructive detection of lead chrome green in tea by Raman spectroscopy
	Results and Discussion
	Detection of color. 
	Qualitative identification of lead chrome green based on Raman spectra. 
	Quantitative detection of lead chrome green based on Raman spectra. 
	Relative intensity correction. 
	Extraction of key information of Raman spectra based on wavelet transform (WT). 
	Selection of characteristic wavenumbers of Raman spectra. 

	Analysis of the characteristic wavenumbers. 

	Conclusions
	Materials and Methods
	Sample preparation. 
	Color measurement. 
	Raman spectra acquisition. 
	Sample division. 
	Data analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  Raman spectra of samples.
	Figure 2.  Wavelet decomposition coefficients.
	Figure 3.  Distribution of the characteristic wavenumbers.
	Figure 4.  Scatter plot of true vs.
	Table 1.   Color differences among different concentrations.
	Table 2.   Results of PLS models based on the data calibrated with different relative intensity standards.
	Table 3.   Results of PLS models based on WT.
	Table 4.   Assignment of the characteristic wavenumbers.



 
    
       
          application/pdf
          
             
                Nondestructive detection of lead chrome green in tea by Raman spectroscopy
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15729
            
         
          
             
                Xiao-Li Li
                Chan-Jun Sun
                Liu-Bin Luo
                Yong He
            
         
          doi:10.1038/srep15729
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep15729
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep15729
            
         
      
       
          
          
          
             
                doi:10.1038/srep15729
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15729
            
         
          
          
      
       
       
          True
      
   




