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Abstract: Linear B-cell epitope prediction research has received a steadily growing interest ever since
the first method was developed in 1981. B-cell epitope identification with the help of an accurate
prediction method can lead to an overall faster and cheaper vaccine design process, a crucial necessity
in the COVID-19 era. Consequently, several B-cell epitope prediction methods have been developed
over the past few decades, but without significant success. In this study, we review the current
performance and methodology of some of the most widely used linear B-cell epitope predictors
which are available via a command-line interface, namely, BcePred, BepiPred, ABCpred, COBEpro,
SVMTriP, LBtope, and LBEEP. Additionally, we attempted to remedy performance issues of the
individual methods by developing a consensus classifier, which combines the separate predictions of
these methods into a single output, accelerating the epitope-based vaccine design. While the method
comparison was performed with some necessary caveats and individual methods might perform
much better for specialized datasets, we hope that this update in performance can aid researchers
towards the choice of a predictor, for the development of biomedical applications such as designed
vaccines, diagnostic kits, immunotherapeutics, immunodiagnostic tests, antibody production, and
disease diagnosis and therapy.

Keywords: B-cell epitope; linear epitope; consensus prediction method; immunotherapy; vaccine
design

1. Introduction

B-cell epitopes are regions on the surface of an antigen, to which specific antibodies
recognize and bind, triggering the immune response [1]. This interaction is at the core
of the adaptive immune system, which among others is responsible for immunological
memory and antigen-specific responses in vertebrates [2]. The ability to identify these
binding areas in the antigen’s sequence or structure is important for the development
of synthetic vaccines [3–5], diagnostic tests [6], and immunotherapeutics [7,8], especially
in the COVID-19 era. Focus on these applications through the lens of epitope discovery
has gained attention over the years, especially in regard to the safety benefits of synthetic
vaccine development [9].

Generally, B-cell epitopes are divided into two categories: linear (continuous) epitopes,
which consist of a linear sequence of residues; and conformational (discontinuous) epitopes,
which consist of residues that are not contiguous in the primary protein sequence but are
brought together by the folded protein structure [10]. Moreover, the vast majority of B-cell
epitopes have been estimated to be conformational, while only a fraction are linear [11].
Nonetheless, it has been shown that many discontinuous epitopes contain several groups
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of continuous residues that are also contiguous in the tertiary structure of the protein [12],
making the distinction between them unclear.

All aforementioned immunological applications share the need for the discovery of all
possible epitopes for any given antigen, a process called “Epitope mapping”. Although epi-
tope mapping can be carried out using several experimental techniques [13], computational
methods can complement the already existing methods and possibly speed up research [14].
To address this point and tap into the ever-growing data on epitopes deposited in biological
databases daily, several computational methods for predicting conformational or linear
B-cell epitopes have been published over the last decades [15–17]. Despite the relatively
small percentage of linear B-cell epitopes, most methods developed over the past few years
focus on their prediction. This is mainly attributed to the requirement of an antigen’s 3D
structure when predicting its conformational epitopes [18]. Thus, in this review, we will
discuss solely the performance of linear B-cell epitope (BCE) predictors.

In most cases, the algorithms that predict BCEs can either be sequence-based and/or
structure-based. Most predictors utilize only data derived from the protein sequence of
the antigen and thus are sequence-based, while structure-based predictors utilize only an
antigen’s 3D structure. Furthermore, some hybrid methods employ both approaches for
better predictive performance [19,20]. Historically, initial attempts at predicting epitopes
made use of a single amino acid propensity scale, assigning each amino acid a numerical
value, followed by a local averaging of these values along the peptide chain. The first
method, implementing this approach, was published by Hopp and Woods [21] in 1981, and
it utilized Levitt’s hydrophilicity scale [22]. Aside from hydrophilicity, which was utilized
again in another scale by Parker et al. [23], other amino acid properties were explored
in later methods, such as antigenicity [24], flexibility [25], surface accessibility [26], and
turns [27]. The next wave of predictors built upon this development, when methods
like PREDITOP [28], PEOPLE [29], BEPITOPE [30], and BcePred [31], combined multiple
physicochemical properties. Although these methods represented the best attempts yet at
predicting epitopes, Blythe and Flower [32] demonstrated that the performance of such
methods was overstated. They did a thorough assessment of 484 amino acid propensity
scales in combination with information on the location of epitopes for 50 known proteins
and found that even the best possible combination of scales performed only slightly
better than random [32]. In their work they also correctly suggested that more advanced
approaches for predicting linear B-cell epitopes needed to be developed, such as methods
that employ artificial intelligence technology.

As anticipated, given the booming of available biological data, the entire next gener-
ation of methods utilized some form of machine learning models. One of the first such
approaches was BepiPred [33], which combined a Hidden Markov Model (HMM) with
an amino acid propensity scale. Additionally, other machine learning models were used
in methods developed afterwards, including Neural Networks in ABCpred [34], a Naïve
Bayes classifier in Epitopia [35], and Support Vector Machines (SVMs) in most of the recent
predictors. SVM-based predictors dominated the machine learning approaches used in
BCE prediction, each one differing from the other on feature selection, data set curation and
SVM specific parameters (Table 1). The BCPred [36] and FBCPred [37] methods published
in 2008, predict fixed linear B-cell epitopes and flexible length linear B-cell epitopes respec-
tively, utilizing SVM models with the subsequence kernel. The AAPPred [38] method also
utilizes SVM models trained on the frequency of Amino Acid Pairs (AAP), a scale first
developed by Chen et al. [39]. Other notable approaches include: BayesB [40], LEPS [41],
and BEOracle [42]. A new machine learning approach that was developed in 2014, called
EPMLR [43], utilizes multiple linear regression for epitope classification. Another recent
novel approach is the DMN-LBE [44] method, which was developed using deep maxout
networks, a type of deep neural network with a different activation layer called maxout.
The DRREP [45] method was published in 2016, and it also utilizes deep neural network
technology to extrapolate structural features related to epitopes from protein sequences.
One of the latest additions is the second version of the BepiPred method, BepiPred-2.0 [20],
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which was developed in 2017. This method is based on a random forest algorithm and
differs from its predecessor in that it was trained only on epitope data derived from crystal
structures. Another promising algorithm is iBCE-EL [46], which is an ensemble learning
framework combining Extremely Randomized Tree (ERT) and Gradient Boosting (GB)
classifiers. An overview of all methods is presented in Table 1 below.

Table 1. Linear B-cell epitope predictors in chronological order, alongside a short description of their methodology, their
current status and their web page. After researching the relevant publications, we gathered up all the linear B-cell epitopes
predictors we could find in this fairly complete, but not exhaustive catalogue. For every method we reference the source
material to determine their methodology, which we have summed up for each predictor in a short description. For every
predictor we also checked their availability status, as of writing this review, and categorized them regarding their general
and current availability online as tools, as well as their obtainability as standalone software packages. We also provide the
institution in which they were developed. In the last column, we provide the website links for each method, when available.

Predictor Description Status Institution Link

Antigenic [24]
Physico-chemical
propensity scales,

occurrence of residues

Not currently available
online

Department of Zoology,
University of Poona,

India

http://www.emboss.
bioinformatics.nl/cgi-
bin/emboss/antigenic

PEOPLE [29] Physico-chemical
propensity scales Not available online

Laboratoire de
Spectroscopies et

Structures
Biomoléculaire,

Université de Reims
Champagne Ardenne,

France

-

BEPITOPE [30] Physico-chemical
propensity scales Freely available online

Institute of
environmental biology

and biotechnology,
CEA, France

http://bepitope.ibs.fr/

BcePred [31] Physico-chemical
propensity scales

Freely available online
and downloadable

Institute of Microbial
Technology,

Chandigarh, India

http://crdd.osdd.net/
raghava/bcepred/

index.html

BepiPred-1.0 [33] HMM & Parker
hydrophilicity scale

Freely available online
and downloadable

Center for Biological
Sequence Analysis,

Technical University of
Denmark

http://www.cbs.dtu.
dk/services/BepiPred-

1.0/

Söllner [47]

Physicochemical
Properties, Molecular

Operating
Environment,

K-Nearest Neighbor,
Decision Tree

Not available online
emergentec

biodevelopment
GmbH, Vienna, Austria

-

Chen [39] SVM & AAP Not available online

Institute of Image
Processing and Pattern
Recognition, Shanghai

Jiaotong University,
Shanghai, China

-

ABCpred [34] Neural networks (feed
forward & reccurent)

Freely available online
and downloadable

Institute of Microbial
Technology,

Chandigarh, India

http://crdd.osdd.net/
raghava/abcpred/

index.html

BCPREDS [36,37] SVM Freely available online
and downloadable

Dep. of Computer
Science & Dep. of

Genetics, Development
and Cell Biology, Iowa
State University, USA

http://ailab.ist.psu.
edu/bcpred/

http://www.emboss.bioinformatics.nl/cgi-bin/emboss/antigenic
http://www.emboss.bioinformatics.nl/cgi-bin/emboss/antigenic
http://www.emboss.bioinformatics.nl/cgi-bin/emboss/antigenic
http://bepitope.ibs.fr/
http://crdd.osdd.net/raghava/bcepred/index.html
http://crdd.osdd.net/raghava/bcepred/index.html
http://crdd.osdd.net/raghava/bcepred/index.html
http://www.cbs.dtu.dk/services/BepiPred-1.0/
http://www.cbs.dtu.dk/services/BepiPred-1.0/
http://www.cbs.dtu.dk/services/BepiPred-1.0/
http://crdd.osdd.net/raghava/abcpred/index.html
http://crdd.osdd.net/raghava/abcpred/index.html
http://crdd.osdd.net/raghava/abcpred/index.html
http://ailab.ist.psu.edu/bcpred/
http://ailab.ist.psu.edu/bcpred/
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Table 1. Cont.

Predictor Description Status Institution Link

AAPPred [38] SVM & AAP Not currently available
online

Faculty of Biology,
Moscow

State University Russia

http://www.bioinf.ru/
aappred/predict

Epitopia [35]

Machine Learning
algorithm trained to

discern antigenic
features

Freely available online
and downloadable

Tel Aviv Uni. Israel &
Uni. of British

Columbia Canada &
Uni. of Massachusetts,

USA

http://epitopia.tau.ac.
il/index.html

COBEpro [19] SVM
Freely available online

and downloadable
upon request

Dep. of Computer
Science and Institute

for Genomics and
Bioinformatics,

University of California
USA

http:
//scratch.proteomics.

ics.uci.edu/

BayesB [40] SVM Not currently available
online

Singapore Immunology
Network & Dep. of

Biochemistry, National
Uni. of Singapore

http:
//immunopred.org/
bayesb/index.html

LEPS [41]

SVM &
Physicochemical

propensity scales &
Amino Acid Segments

Not currently available
online

National Taiwan Ocean
University Taiwan,

China Medical
University Taiwan

http:
//leps.cs.ntou.edu.tw/

BEOracle [42] SVM Not available online

Department of
Biostatistics and

Computational Biology,
Dana-Farber Cancer
Institute & Harvard

School of Public Health,
Boston, USA

-

BEST [48] SVM Not currently available
online

School of Mathematical
Sciences and LPMC,
Nankai University,
Tianjin, People’s

Republic of China

http://biomine.ece.
ualberta/

SVMTriP [49] SVM Freely available online
and downloadable

University of Nebraska
USA, Osaka Uni. Japan

http://sysbio.unl.edu/
SVMTriP/

BEEPro [50]

SVM &
Physicochemical

propensity scales &
Position Specific
Scoring Matrix

Not available online

School of Medicine,
Taipei Medical

University, Taipei,
Taiwan

-

LBtope [51]

SVM &
Physicochemical

propensity scales &
AAP

Freely available online
and downloadable

Institute of Microbial
Technology,

Chandigarh, India

http://crdd.osdd.net/
raghava/lbtope/

protein.php

Random Forest [52] Amino acid descriptors
& Random Forest

Not currently available
online

Research Center of
Modernization of

Traditional Chinese
Medicines, Central
South University,
Changsha, China

http://sysbio.yznu.cn/
Research/

Epitopesprediction.
aspx

http://www.bioinf.ru/aappred/predict
http://www.bioinf.ru/aappred/predict
http://epitopia.tau.ac.il/index.html
http://epitopia.tau.ac.il/index.html
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
http://immunopred.org/bayesb/index.html
http://immunopred.org/bayesb/index.html
http://immunopred.org/bayesb/index.html
http://leps.cs.ntou.edu.tw/
http://leps.cs.ntou.edu.tw/
http://biomine.ece.ualberta/
http://biomine.ece.ualberta/
http://sysbio.unl.edu/SVMTriP/
http://sysbio.unl.edu/SVMTriP/
http://crdd.osdd.net/raghava/lbtope/protein.php
http://crdd.osdd.net/raghava/lbtope/protein.php
http://crdd.osdd.net/raghava/lbtope/protein.php
http://sysbio.yznu.cn/Research/Epitopesprediction.aspx
http://sysbio.yznu.cn/Research/Epitopesprediction.aspx
http://sysbio.yznu.cn/Research/Epitopesprediction.aspx
http://sysbio.yznu.cn/Research/Epitopesprediction.aspx
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Table 1. Cont.

Predictor Description Status Institution Link

EPMLR [43] Multiple Linear
Regression

Not currently available
online

The Key Laboratory of
Bioinformatics,

Ministry of Education,
School of Life Sciences,

Tsinghua University,
Beijing, China

http://www.bioinfo.
tsinghua.edu.cn/
epitope/EPMLR/

DMN-LBE [44] Deep Maxout
Networks

Not currently available
online

The Key Laboratory of
Bioinformatics,

Ministry of Education,
School of Life Sciences,

Tsinghua University,
Beijing, China

http://bioinfo.
tsinghua.edu.cn/

epitope/DMNLBE/

LBEEP [53] Deviation from
Expected Mean—SVM

Freely available
download

Center for Advanced
Study in

Crystallography and
Biophysics, University

of Madras, Guindy
Campus, Chennai,
Tamil Nadu, India.

https://github.com/
brsaran/LBEEP

APCpred [54]
Amino acid Anchoring

Pair Composition &
SVM

Not currently available
online

Department of
Molecular Biology,
Hebei University

College of Life Sciences,
China

http://ccb.bmi.ac.cn/
APCpred/

DRREP [45] Deep Ridge Neural
Network

Not currently available
online

Department of
Computer Science,

University of Central
Florida, Orlando, FL,

USA

https://github.com/
gsher1/DRREP

BepiPred-2.0 [20]

Random forest
algorithm trained on

epitopes derived from
crystal structures

Freely available online
and downloadable

Department of Bio and
Health Informatics,

Technical University of
Denmark, Denmark

http:
//www.cbs.dtu.dk/
services/BepiPred/

iBCE-EL [46] Ensemble framework
combining ERT & GB Freely available online

Department of
Physiology, Ajou

University School of
Medicine, Suwon,

South Korea

http://thegleelab.org/
iBCE-EL/

HMM: Hidden Markov Model, SVM: Support Vector Machine, AAP: Amino Acid Pairs, ERT: Extremely Randomized Tree, GB: Gradient
Boosting, CEA: Commissariat à l’énergie atomique et aux énergies alternatives.

Here, we review the performance of some of the most widely used linear B-cell epitope
predictors currently available via a Command-Line Interface (CLI), namely BcePred [31],
BepiPred [33], ABCpred [34], COBEpro [19], SVMTriP [49], LBtope [51], and LBEEP [53].
We also examine the performance of a consensus classifier combining these methods, to
test whether a consensus approach can boost predictive performance. This was decided in
order to attempt to remedy performance issues of the individual methods, since consen-
sus classifiers have been previously shown to outperform constituent classifiers in some
cases [55–57]. Finally, we compare the performance of all these classifiers and the con-
sensus method we developed against one of the most recently published BCE predictors,
BepiPred-2.0 [20]. Aside from being one of the latest developed methods, Bepipred-2.0 was
also chosen because of its testing data set, which was used for our testing needs, giving us
the much-needed testing methodology overlap to adequately compare newer and older
methods. This review aims to give non-expert researchers an overview of available linear

http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/
http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/
http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/
http://bioinfo.tsinghua.edu.cn/epitope/DMNLBE/
http://bioinfo.tsinghua.edu.cn/epitope/DMNLBE/
http://bioinfo.tsinghua.edu.cn/epitope/DMNLBE/
https://github.com/brsaran/LBEEP
https://github.com/brsaran/LBEEP
http://ccb.bmi.ac.cn/APCpred/
http://ccb.bmi.ac.cn/APCpred/
https://github.com/gsher1/DRREP
https://github.com/gsher1/DRREP
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://thegleelab.org/iBCE-EL/
http://thegleelab.org/iBCE-EL/
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BCE predictors, as well as an update in their current performance and availability, which
they can use to quickly locate and choose the appropriate tools for their research work.
Moreover, we have created contemporary non-redundant datasets of linear BCEs that could
aid both experimental researchers as well as bioinformaticians actively working in the field
of algorithm development.

2. Materials and Methods
2.1. Selection of Suitable Linear B-Cell Epitope Predictors

The first priority of this work was to gather and test as many individual predictors
as possible. However, the scope of methods that were to be tested could not be limitless,
and thus some criteria for their selection were applied. At first, we decided to catalogue all
available BCE predictors (Table 1). Out of all the catalogued predictors, about 18% were
not available online, while the remaining 82% had corresponding website listed in the
respective manuscript. However, this is when we first noticed an alarming trend; where
many of the online tools of the predictors that we looked up were either offline for some
hours during the day or—even worse—completely unreachable. As of the writing of this
review, about 45% of the website reachable predictors are not currently available, most
of which have been so for some time. Furthermore, even when operational, nine out of
the eleven online servers have significant limitations on the number of sequences and the
general workload they can process at a time. Considering the present issues and the future
problems that might arise, we decided to resort only to methods that were available as
standalone software, which became our main selection criterion. The second criterion was
that methods should be usable via a CLI and not only through a Graphical User Interface
(GUI) and the third criterion was that each method’s way of operation should be somewhat
comparable and in tune with the rest of the available predictors. The main reason we
limited ourselves to CLI tools was the technical limitation of the sheer volume of test
sequences that had to be submitted to each predictor for our testing needs. Given that our
test datasets contain tens of thousands of sequences, manual submission of those through
a Graphical User Interface (GUI) becomes impossible. Out of the many methods that have
been developed through the years (Table 1), seven were selected for testing: BcePred [31],
BepiPred [33], ABCpred [34], COBEpro [19], SVMTriP [49], LBtope [51] and LBEEP [53].
Apart from the tools that were selected as part of our testing Epitopia was also available
via CLI. Despite our efforts, Epitopia could not be locally installed because of dependency
issues and thus has not been tested in this study. During our study, the second version of
BepiPred was released, and its comparison with the rest of the methods and our decision
not to utilize it in the development of the consensus method is discussed later in this article.

BcePred was published in 2004 by Raghava et al. [31], and is based on a plethora of
physicochemical propensity scales utilizing amino acid properties, such as hydrophilicity
and antigenicity, either individually or in combination. Moreover, it achieved a reported
56% sensitivity, 61% specificity and its highest accuracy of 58.70%, on a data set obtained
from the database Bcipep [58], using a combination of flexibility, hydrophilicity, polarity
and surface accessibility propensity scales.

BepiPred was developed in 2006 by Lund et al. [33], and it is the first ever method
that utilizes an HMM. The HMM was trained using a data set derived from the database
Antijen [59] and the Pellequer data set [27], and was then combined with Parker’s hy-
drophilicity scale, resulting in the BepiPred method. This method managed to achieve
an Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of
0.671 ± 0.013 on the Pellequer data set.

ABCpred was created in 2006 [34], again by the Raghava group and it was the first
test case of a more sophisticated machine learning model. It is based on a Recurrent Neural
Network (RNN) that was trained using a variety of different window sizes and hidden
units. The window sizes that were tested, were 10, 12, 14, 16, 18, and 20. Thus six models
were developed in total, with the window size of 16 amino acid residues achieving the
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highest accuracy of 65.93% and a Matthews Correlation Coefficient (MCC) of 0.3187, after
fivefold cross-validation on a data set derived from Bcipep [58].

COBEpro was published in 2009 by Baldi et al. [19] at the University of California. This
method utilizes a novel two-step system for the prediction of both linear and discontinuous
B-cell epitopes. Firstly, it utilizes an SVM model to assign an epitopic propensity score to
fragments within the given peptide sequence. Additionally, COBEpro is able to incorporate
into the SVM model the provided or predicted secondary structure and solvent accessibility
of the given sequence that are predicted by SSpro [60] and ACCpro [61], respectively.
During the second stage, the method calculates an epitopic propensity score for each amino
acid, based on the previous scores assigned by the model in the first stage. Among others,
this predictor was tested on the fragmented version of Chen’s [39] data set, achieving an
AUC of 0.829 and an accuracy of 78%.

SVMTriP was developed in 2012 [49] and it is an application of an SVM model that
employs tri-peptide similarity calculated through the Blosum62 matrix in combination
with amino acid propensity scales. Its prediction suite comes with six different models
corresponding to window sizes of 10, 12, 14, 16, 18, and 20 of which the 20 amino acid
residue model performed the best with a reported 80.10% sensitivity and 55.20% precision
on a data set gathered from the Immune Epitope Data Base (IEDB) [62].

LBtope was the most recent effort, out of our selected predictors, on epitope prediction
published by Raghava’s lab in 2013. This method uses, among other previously used types
of features, a modified AAP profile from Chen’s method [39]. These profiles are used to
convert the input sequence into numerical features that are then used as input for an SVM
model that predicts epitopes. LBtope was trained and tested on a data set collected from
IEDB, which comprised of experimentally verified epitopes and non-epitopes, in contrast
to previous methods that used random peptides as non-epitopes. Its reported performance
on different data sets varied significantly, with an accuracy ranging from 51.57% to 85.74%.

LBEEP was developed in 2015 by Saravan et al. [53] from the University of Madras in
India. In this work, a novel amino acid feature descriptor called Dipeptide Deviation from
Expected Mean (DDE) was developed, in an attempt to distinguish linear epitopes from
non-epitopes. This new descriptor was then implemented with both SVM and AdaBoost-
Random Forest machine learning techniques. The data set used to train this method was
constructed by using only exact epitopes, instead of epitope containing regions, which have
been used as training material in the past, making LBEEP a pioneer method in that respect.
The exact epitopes used for training were isolated from IEDB [63] and are 5 to 15 amino
acid residues long and thus LBEEP is better suited for predictions in that range. During
testing, LBEEP achieved an accuracy between 61% and 73%, after fivefold cross-validation,
on a data set derived also from IEDB.

Once all methods were installed in a local Unix-based machine, their output was
validated by comparing example sequences of the local versions of software with the
corresponding online tools. Additionally, all methods used in this analysis had their
threshold set on its default value except for BcePred and COBEpro (Table 2). The default
threshold values are set by the tools for a standard prediction but can also be found in their
respective online tools when available, as well as the downloadable tool documentation. In
the case of BcePred the default threshold value of the method used, which combines the
results of four different propensity scales, was decreased from 2.38 to 2. This decrease was
decided after extensive testing because the default threshold value proved to be extremely
high. In essence, the higher threshold value of 2.38 reduced the method’s accuracy, while
increasing its specificity, meaning the classifier was too selective when predicting for B-
cell epitopes which led to a lot of potential epitopes being missed without an associated
performance boost. Nevertheless, it should be noted that the new value used agreed with
the default threshold currently used by both the online and the local version of the method,
in contrast with the one reported in the initial publication. COBEpro on the other hand did
not have a default threshold value since its results are printed out in a chart where epitopic
propensity is given a relative positive or negative score for each position of the query
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protein. The threshold value that was chosen for this method was that of four positive
votes above the baseline score of zero because it yielded the best results during testing.

Table 2. A summary of methods, threshold values, and modifications applied to each predictor. Each
predictor first had its best performing mode selected and its threshold value set to a specific value
shown in the table, using the criteria described in the manuscript.

Predictor Threshold Mode Threshold Type

BcePred 2 Combined Not Default
BepiPred-1.0 0.35 BepiPred Default

ABCpred 0.51 20 Default
COBEpro 4 - Not Default
SVMTriP 0.2 20 Default
LBtope 0.6 LBtop_Confirm Default
LBEEP 0.6 Balanced Default

2.2. Development of the Consensus Method

A consensus method was developed to incorporate all available methods that were se-
lected in the first stage, and it is available upon request, due to free distribution limitations,
at http://thalis.biol.uoa.gr/BCEconsensus/ (accessed on 21 March 2021) as a standalone
application along with the source codes used for the testing and execution of our consensus
classifier. The method was created using the PERL (Practical Extract Report Language)
scripting language. All sequence-based methods can be divided into two categories based
on their classification approach. The first category comprises of the methods that assign
an epitopic propensity score to each residue of the provided sequence. Four methods are
included in it: BcePred, BepiPred, COBEpro, and LBtope. The second category comprises
of the methods that classify peptides within certain length sizes as epitopes or non-epitopes,
such as ABCpred, SVMTriP, and LBEEP. The two categories are summarized in Table 3.

Table 3. Input window sizes and prediction approach of each method. The classification of query
proteins as epitopes can generally be performed in either a “per residue” or a “per peptide” basis. In
the “per residue” methods each separate residue of a protein is assigned an antigenicity score, while
in the “per peptide” methods, a prediction is limited within fixed windows sizes.

Predictor Prediction Window Size

ABCpred Per peptide 10, 12, 14, 16, 18, 20
SVMTriP Per peptide 10, 12, 14, 16, 18, 20
LBEEP Per peptide 5–15

BcePred Per residue -
BepiPred-1.0 Per residue -

COBEpro Per residue -
LBtope Per residue -

The methods that predict per peptide, ABCpred and SVMTriP, use predetermined
fixed window sizes. Thus, it was necessary to choose a window size where these methods
would operate sufficiently well, both in individual testing and as part of the consensus
classifier. The window size chosen for these methods after initial testing was that of 20
residues. The main reasons were the better reported performance of SVMTriP at that
window size and the lack of any default threshold values for the rest of the models in the
documentation. As far as ABCpred is concerned, the performance penalty of selecting a
window size of 20 instead of the reported best of 16 residues was minor. It should also
be noted that initial testing for LBEEP at a window size of 20 was experimental, since the
method was trained using only epitopes of lengths between 5 and 15, and thus any results
outside that range were unreliable. Moreover, using the "confirmed model", as suggested
by the creators of the method in the GitHub repository of LBEEP, returned worse results

http://thalis.biol.uoa.gr/BCEconsensus/
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than the default "balanced" model, and so we opted to use the latter (Supplementary File
S1/Table S1B).

Once a window size of 20 was selected for the “per peptide” methods, an effective
strategy had to be formulated where the two different categories of output would produce a
single consensus result. The solution was a consensus voting system that classifies a residue
as belonging to an epitope when a predetermined threshold of votes has been achieved.
When a “per residue” method classifies a residue of the query sequence as “epitopic” it
counts as one positive vote, while when a “per peptide” method classifies a fragment
of a protein as an epitope each amino acid of that peptide is classified as “epitopic”. So,
when the sum of positive votes for a given position of a query sequence surpasses the
threshold of the consensus classifier, the residue is marked as part of an epitope. The
consensus threshold chosen, after testing, is defined as the hit overlap of at least half out of
“n” selected methods, where “n” is the number of methods embedded in the algorithm [64].
The consensus method accepts protein sequences, of a length of 20 amino acid residues
or higher, in FASTA format as input. The workflow of the consensus method is shown in
(Supplementary File S1/Figure S2).

For testing purposes, a slightly different architecture of the consensus method was
implemented, which specialized in rapid consensus output on our fixed length data sets.
All methods—including the consensus—were mainly tested on a data set consisting of
peptides with a length of 20. To resolve this issue, two parallel approaches were explored.
In the first approach, all methods were included, and each method predicted whether
an entire peptide is an epitope or not. However, in order for the results between the
“per peptide” and “per residue” methods to be comparable, since only “per peptide”
methods classify protein fragments, it was accepted that when “per residue” methods have
predicted half or more of a peptide’s fragments as “epitopic”, then the whole peptide too
is a predicted epitope. Such caveats are generally found in other forms of predictors of
biological nature [65,66], and thus were chosen in our evaluation approach, as well. In the
second approach, only “per residue” methods were included, and the consensus result was
simply, a combination of only those predictions.

2.3. Data Sets

Typically, the development of machine learning classifiers requires both a training
data set and a test data set, but since all the predictors tested in this work were previously
developed, only the latter was necessary. However, due to the fact that the individual train-
ing data sets for each predictor contained a significant number of overlapping sequences,
gathered from a select few databases (like IEDB [62] and Bcipep [58]), their inclusion in
our test data set would introduce bias in the results. So, in order to test all the different
methods in an unbiased manner, the positive and negative training data sets for each
method were gathered from their respective publications and webpages. As shown in
Table 4, the positive training data set for the majority of predictors comprises of all available
BCEs from a given database, while the negative set contains random amino acid sequences
from Swiss-Prot [67]. The way the negative set of control data is constructed, changed in
algorithms developed after 2012 to include only sequences from confirmed non-epitopes,
as is the case for SVMTriP, LBtope, and LBEEP. This change was introduced in order to
improve the ability of prediction algorithms to effectively distinguish “epitopic” from
random sequences, as it had been previously proposed [68].
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Table 4. A summary of the source of positive and negative data sets for each predictor. For every
predictor, a database had to be used to construct its training data sets, which comprise of a positive
and a negative subset of data. In this table, we outline the database or curated data set from which
each method sourced its training data set, along with the date that the data was obtained. The
date could be used to determine the snapshot of the data, which could have been obtained for each
predictor’s training, allowing us to determine possible overlaps of our testing data set with the
relevant training data.

Predictor Positive Negative

BcePred BCIPEP (2004) 1029 random sequences
BepiPred-1.0 HIV/PELLEQUER/ANTIJEN Not described in the original publication

ABCpred BCIPEP (2006) 700 random sequences
COBEpro HIV/PELLEQUER HIV/Pellequer non-Epitopes
SVMTriP IEDB (2012) 4925 IEDB non-epitopes
LBtope IEDB (2012) IEDB (2012) non-epitopes
LBEEP IEDB (2015) IEDB (2015) non-epitopes

While developing the consensus algorithm, a new version of BepiPred was published
called BepiPred-2.0 [20]. Even though the method itself was not utilized in the development
of the consensus method, its curated publicly available data set of linear epitopes was
used as the source for this work’s data sets. This data set represents the biggest collection
of linear epitope and non-epitope data used for the development of a prediction method
to date, as IEDB is the largest and most frequently updated epitope database [63]. The
BepiPred-2.0 data set was created by procuring from this database, all available epitopes
(positive assay results) and non-epitopes (negative assay results), which were confirmed as
such from two or more separate experiments. Afterwards, all peptides with a length smaller
than 5 and longer than 25 residues were removed from the data set, because epitopes are
rarely found outside this range [11]. Any epitopes that were found both in the positive and
negative subsets were also removed. The resulting data set contains 11,834 epitopes in the
positive subset and 18,722 non-epitopes in the negative subset. Aside from its curation, a
useful feature of this data set was the mapping of all epitopes and non-epitopes on their
respective parent protein sequence. This made extending each epitope to a desired length
much easier.

The predictors that used IEDB as their source of epitope data are SVMTriP, LBtope, and
LBEEP (Table 4). In order to produce an unbiased data set, their data sets were compared
with BepiPred-2.0′s data set and all the matching peptides were removed. This resulted in
our first data set, named Consensus_Redundant (Consensus_R) which comprises of 7675
epitopes and 15,617 non-epitopes. Using this data set as the source, a second non-redundant
data set was constructed, by clustering peptides with the online tool CD-HIT [69]. All
parameters were set to default and the sequence identity cut-off was set to 0.6 or 60%,
as previously done in LBEEP’s data set creation [53]. The resulting data set was named
Consensus_Non_Redundant (Consensus_NR) and it includes 4286 epitopes and 5266 non-
epitopes. By creating the Consensus_NR data set in this manner, we essentially made the
largest non-redundant data set possible, which contained known sequences that none of
the predictors had previously “seen”. Additionally, from the Consensus_NR data set a
subset was extracted, containing 552 epitopes and 480 non-epitopes with a peptide length
of exactly 20 amino acids, which was named Consensus_NR_exact. This subset was used
to test the performance of predictors using only true epitopes and not epitope containing
regions that result from the extension-truncation technique. A summary of all data sets
used in this study is presented in Table 5, while the complete data sets are provided in
Supplementary Table S2.
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Table 5. A summary of test data sets utilized in this study. The counts of positive and negative
subsets of data used in each of the three data sets developed for method testing is shown.

Data Set Epitopes Non-Epitopes

BepiPred-2.0 * 11,814 18,689
Consensus_R 7675 15,617

Consensus_NR 4286 5266
* A slightly modified version of BepiPred-2.0′s data set was used, which had a few epitopes removed because
their sequence of origin was shorter than 20 amino acid residues, and thus the epitope could not be extended to
the desired length.

Each data set used for testing contained peptides modified beforehand into fixed-
length patterns using the technique of sequence extension and truncation, employed
in previous methods [15,19,34,44]. This was done to accommodate the fixed-size input
methods and thus included only their corresponding input lengths, namely 10, 12, 14, 16,
18, and 20 residues. For example, for a window size of 20, any epitopes or non-epitopes
that were longer than 20 amino acids were shortened from both sides to have the desired
length. Moreover, peptides with a length shorter than 20 residues were extended sideways
on their parent sequence up to the desired length. The primary input size that was tested in
this study was that of 20 residues for performance reasons as described in the development
of the consensus algorithm. However, preliminary testing was also performed on a length
of 16 residues, after analyzing the distribution of epitope lengths in the BepiPred-2.0 data
set (Supplementary File S1/Figure S1). The mean peptide length of the data set was about
14 and the median value 15, which coincides with previous research on the characteristics
of epitopes [11].

The workflow used to create the non-redundant data sets is shown in Supplementary
File 1 (Supplementary File S1/Figure S3) and all data sets referenced in this section can be
downloaded from this web page http://thalis.biol.uoa.gr/BCEconsensus/ (accessed on 21
March 2021).

2.4. Performance Measures

To evaluate a classifier’s performance both threshold dependent and independent
metrics are used. The main threshold independent metric used in such cases is the AUC
of the ROC curve. This metric was suggested as the preferred metric for benchmarking
epitope prediction performance at a workshop by Greenbaum et al. [68], and thus it grew
to become a standard in the BCE prediction field. However, because all the predictors that
we examined were already fully developed and their optimal thresholds set, it did not
make sense to use such a metric in our testing, since no model training was performed. For
that reason, only threshold dependent metrics were employed, namely Sensitivity (SN),
Specificity (SP), Accuracy (ACC), and Matthew’s Correlation Coefficient (MCC). Out of
these metrics, significant attention was given to MCC, since it is generally regarded as the
best performance metric for binary classifiers [70,71]. The coefficient’s value can range from
−1 to +1, where the maximum value represents a perfect prediction and the minimum a
total disagreement between predictions and observations. When the coefficient’s value is
zero it indicates a prediction that is no better than random. Aside from the known value in
accessing performance utilizing the MCC and accuracy metrics, regarding the other metrics,
more importance was attached to sensitivity rather than specificity. Sensitivity indicates
how effectively a predictive method manages to successfully locate areas that are actual
epitopes, in contrast to specificity, which measures how effectively a predictive method
manages to locate the sites that are not epitopes. In this study, the correctly predicted
epitopes or “epitopic” residues were considered True Positive (TP), whereas the correctly
predicted non-epitopes or “non-epitopic” residues were characterized as True Negative
(TN). Conversely, the respective false predictions were defined as False Positive (FP) and
False Negative (FN), respectively.

http://thalis.biol.uoa.gr/BCEconsensus/
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3. Results and Discussion

As mentioned in the Section 2, two approaches are followed to evaluate all predictions
made by the consensus algorithm. In the first approach results from all methods are
incorporated in the consensus method—both those predicting in a “per residue” and in a
“per peptide” manner—while in the second approach the consensus prediction only utilizes
the “per residue” methods. Two different versions of the consensus algorithm were created
in the “per peptide” mode, as seen in Table 6; one which includes all predictors and one
which utilizes all of them except LBEEP. This was done after noticing that LBEEP performs
much worse, compared to the rest of the predictors. This performance issue can be mainly
attributed to the fact that the optimal prediction window of 5–15 residues for LBEEP is
different than the 20-residue length that was used for our testing purposes (Table 3).

Table 6. Performance of all predictors in “per peptide” mode. The methods are tested against the
Consensus_NR (Non_Redundant) data set.

Predictor SN% SP% ACC% MCC

Consensus_noLBEEP 48.39 58.81 54.14 0.0721
Consensus_ALL 27.15 78.73 55.59 0.0687

BcePred 22.21 79.85 53.99 0.0251
ABCpred 66.44 36.9 50.16 0.0348
LBtope 45.91 58.94 53.1 0.0488

BepiPred-1.0 49.95 57.84 54.3 0.0778
COBEpro 58.63 45.67 51.49 0.0431
SVMTriP 16.21 85.87 54.62 0.0290
LBEEP 19.06 80.12 52.72 −0.0103

SN: Sensitivity, SP: Specificity, ACC: Accuracy, MCC: Matthew’s Correlation Coefficient.

The evaluation of the predictors’ performance was done primarily by measuring their
MCC values, while secondary importance was assigned to achieving higher accuracy, and
sensitivity. Sensitivity was considered more important than specificity for this particular
application since a BCE predictor’s primary goal is to find possible BCEs in unknown
sequences. Naturally, sensitivity and specificity are not mutually exclusive entities, yet in
this study optimal sensitivity is preferred to optimal specificity. For further testing results
please refer to Supplementary File S1.

3.1. Performance of All Predictors on Consensus_NR

The results regarding the “per peptide” approach (Table 6) show that the highest
MCC value was achieved by the BepiPred method with 0.0778, followed by our Con-
sensus_NoLBEEP algorithm—the one without LBEEP—that achieved an MCC of 0.0721.
Moreover, LBEEP had the lowest MCC (-0.0103), while BcePred and SVMTriP also scored
low (0.0251 and 0.0290, respectively). The highest accuracy was achieved by our Consen-
sus_ALL method with 55.59%, which was marginally better than those of SVMTriP and
BcePred. SVMTriP had the best specificity out of all the methods (85.87%), followed by
LBEEP and BcePred. Additionally, the ABCpred method achieved the greatest sensitiv-
ity with 66.44%, and COBEpro achieved the second highest with 58.63%. The Consen-
sus_NoLBEEP algorithm achieved values close to the best for both MCC and accuracy, and
also had a relatively improved MCC and a significantly increased sensitivity compared to
its first version.

In the case of the “per residue” approach (Table 7), the consensus method (Consen-
sus_RES) achieved the best MCC with 0.489, while BepiPred scored marginally worse
with 0.0488. The same pattern was also observed for accuracy, where the Consensus_RES
method scored 53.04% and BepiPred 52.88%. The greatest sensitivity was achieved by
COBEpro with 49.27%, while BepiPred was again second best with 48.12%. The worst
performance regarding MCC was attained by BcePred and COBEpro with scores of 0.0154
and 0.0175, respectively. Overall, despite the slight improvement in MCC and accuracy, the
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performance of the consensus algorithm was not significantly better in any of the statistical
measures examined in the second part of the results.

Table 7. Performance of “per residue” predictors. The methods are tested against the Consensus_NR
data set.

Predictor SN% SP% ACC% MCC

Consensus_RES 46.64 58.24 53.04 0.0489
BcePred 29.18 72.21 52.9 0.0154
LBtope 45.56 57.47 52.13 0.0304

BepiPred-1.0 48.12 56.76 52.88 0.0488
COBEpro 49.27 52.49 51.05 0.0175

SN: Sensitivity, SP: Specificity, ACC: Accuracy, MCC: Matthew’s Correlation Coefficient.

When comparing the results of the two approaches only minor differences in per-
formance are observed between the two modes of prediction for the four “per residue”
methods. Generally, we notice a slight decrease in MCC from a maximum of 0.0778 in
the first approach to a maximum of 0.0489 in the second, while accuracy is comparatively
worse on average. Out of the “per residue” methods, BepiPred comes on top in both ap-
proaches in MCC and accuracy. The Bcepred method appears to perform relatively worse
than the rest in both groups with the lowest MCC in both cases, whereas the COBEpro
method performs relatively better in its “per peptide” iteration, with an average MCC
score in the first part but a poor score in the second segment of the results. Moreover, in
both approaches, our consensus algorithm does not significantly outperform the rest of the
predictors and only achieves a performance that is quite similar to that of BepiPred.

In summary, we observe that in all cases: MCC values are less than 0.1, accuracy is
ranging from 50% to 55%, there are relatively high specificity values in certain cases such as
SVMTriP and BcePred, and sensitivity values are low. Aside from our consensus methods,
the best performers were LBtope and BepiPred and the worst ABCpred and LBEEP, which
also displayed the lowest MCC scores.

Using the Consensus_NR data set we implemented many iterations of the consensus
method utilizing many different method combinations, in order to find the optimum.
As expected, LBEEP’s presence undermined the consensus predictor’s performance, and
it was therefore omitted from the final version (Consensus_NoLBEEP) and any further
testing in the 20-residue window size. It was also observed that ABCpred overestimated
the presence of epitopes in their respective peptides, which led to reduced accuracy and
increased sensitivity. Nevertheless, it remained part of the final consensus algorithm to
improve its overall sensitivity.

At this point, it should be noted that LBEEP was also tested on a peptide length
of 14-residues since the method was reported to perform optimally when a window
size between 5 and 15 residues is used for prediction. Results showed that the method
indeed performs better at this window size, but it is still marginally better than a random
prediction according to its MCC (Supplementary File S1/Table S1A). Even though, the
results were better for LBEEP the rest of the methods either cannot be used at that window
size or perform way worse than what we had already seen and so we opted to not use the
14-residue window any further.

3.2. Overall Method Performance and Comparison with BepiPred-2.0

The performance of the linear B-cell epitope predictors examined was found to be
poor in the data sets and window sizes used during testing (Figure 1).
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Additionally, despite our optimization, our consensus method performed only
marginally better than the rest of the methods, thus nullifying its usefulness. We be-
lieve that the problems which may explain these results can be divided into two categories:
those concerning the individual methods and those of the consensus approach.

The first problem regarding the prediction methods is that the epitope data used to
train and test them, and as a result, the methods themselves are outdated. This probably is
what caused their significantly reduced performance in our contemporary and considerably
larger set of data. Furthermore, the general difficulty of creating a relatively reliable
sequence-based predictor is well known, in contrast with those available for example in the
prognosis of T-cell epitopes [72]. This is mainly due to the 3D nature of all B-cell epitopes,
which consist of seemingly unrelated residue patterns of the antigen. Their emergence is
also subject to multiple factors, such as antigen concentration and the type of chemical
test [68].

In our attempt to create a consensus predictor, the first problem we encountered
was the different modes of operation of the individual prediction methods, namely their
distinction into “per peptide” and “per residue” predictors. To effectively compare the
two modes, “per residue” predictor outputs were converted to “per peptide”, by using
a percentage cut-off to classify peptides as epitopes and non-epitopes. This, however, is
not their intended operation mode, which certainly influences the performance of these
methods and thus the performance of the consensus method.
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Another obstacle in this effort was time and complexity. The prediction and evaluation
process for all possible windows (10, 12, 14, 16, 18, and 20) is very time-consuming. This
also had to be performed for as many predictors as possible to make the consensus classifier
more effective, leading to a significant increase in software development complexity as the
number of incorporated predictors grew. In addition, accurate assessment of the viability of
such an effort is very difficult, due to the inability to accurately compare them beforehand
using the results presented in the corresponding publications, as there is no single set of
evaluation data or metrics [15]. Finally, there was a lack of variety in the methods utilized
in our selected predictors, where most of them were based on SVM models, which may
have negatively affected the performance of our consensus predictor [73].

When comparing all of the methods we tested, with some of the newer methods
such as BepiPred-2.0 and iBCE-EL, which were tested on large non-redundant data sets
much like the ones we used, their reported superiority is apparent. Out of the two,
BepiPred-2.0 was released during the initial part of testing in our research, and as such,
it was a likely candidate for our consensus method. However, after observing the poor
performance of all the different methods tested against its data set, we decided to not
include it in our consensus approach, but simply to use it as a reference for what a modern
predictor can achieve versus the older ones. Unlike its predecessor, BepiPred-1.0, and
most other sequence-based predictors, BepiPred-2.0 is trained exclusively on epitope data
derived from antigen–antibody crystal structure complexes obtained from the Protein Data
Bank [74]. This was done in order to combat the generally poor performance of predictors,
which can be partly attributed to poorly annotated and noisy training data, in comparison
with data derived from crystal structures which is presumed to be of higher quality and
indeed resulted in a significantly improved predictive power [20]. From these complexes,
all antigenic residues close enough to their respective antibody were gathered. These
residues became the positive subset of the training data set, while the negative subset was
constructed from randomly selected non-epitope residues.

While BepiPred-2.0 was trained using epitope data derived only from 3D structures,
its performance on linear BCEs was also benchmarked on one such data set. We compared
the performance of BepiPred-2.0 against our Consensus_noLBEEP predictor using the
Consensus_NR dataset at a window size of 20 amino acid residues. When compared to
our consensus method, BepiPred-2.0 has a similar performance in accuracy and MCC, but
exhibits higher sensitivity and lower specificity, as shown in the comparison performed in
Table 8. However, the results for both methods are far from optimal, and a lot of work still
remains to be done in order to create a predictor that will perform optimally during linear
BCE detection.

Table 8. Comparison of the performance of our consensus predictor and BepiPred-2.0 against the
Consensus_NR data set.

Predictor SN% SP% ACC% MCC

Consensus_noLBEEP 50.18 58.54 54.07 0.0873
BepiPred-2.0 63.35 42.63 51.93 0.0607

SN: Sensitivity, SP: Specificity, ACC: Accuracy, MCC: Matthew’s Correlation Coefficient.

4. Conclusions

In summary, in this paper, we independently evaluated the performance of seven of
the most popular linear B-cell epitope predictors on the largest unbiased data set possible.
In the process, we also presented the course of design, development, and evaluation
of a consensus prediction algorithm for linear B-cell epitopes. The performance of all
predictors, except for LBEEP on whom testing was exploratory, was found marginally better
than random classification. Additionally, our Consensus classifier failed to significantly
outperform its constituent methods. While the method comparison was performed with
some necessary compromises, we believe that this update in performance can help to better
inform researchers that wish to consult some of these tools to facilitate and direct their
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research. Instead, we should also like to suggest that researchers opt for some of the newer
predictors referenced in this work, like BepiPred-2.0.

An excellent and timely example of the significance of using well-performing systems
for the prediction of BCEs—in the context of the ongoing global pandemic—are studies
aiming at the in silico multi-epitope vaccine design for SARS-CoV-2 and other antigenic
systems [75–77]. For the studies that have been performed up to now, a holistic approach is
adopted where not only linear BCEs are predicted for the antigenic system of interest but
several other characteristics leading to suitable vaccine candidate such as: the presence of
conformational BCEs, T-cell epitopes, and the antigenicity of the predicted peptides. This
is a more realistic approach for predicting a vaccine candidate since the presence of linear
BCEs alone can hardly elicit the immune response necessary for successful vaccination.
However, most studies employ some of the same problematic linear BCE predictors that
have been reviewed herein, which could result in unsatisfactory results as far as linear
BCEs are concerned. In a recent study, researchers developed DeepVacPred [76], which is a
deep learning framework and as part of their framework included BepiPred-2.0, SVMtrip,
ABCPred, and BCPREDS for linear BCE prediction. Instead of using them all together
they first used BepiPred-2.0 to find epitopes on the SARS-CoV-2 spike protein and then
used the other three predictors to validate the results of BepiPred-2.0, in essence using
multiple predictors to “sift” their results. Perhaps, such an approach is appropriate for the
current state of B-cell epitope predictors until further progress has occurred, however it
only goes to show that more work needs to be done on the field, and benchmarking of
available methods, like the one we have done in this work, can only aid towards the choice
of appropriate methods for ensemble classifiers.

Finally, due to the apparent difficulty of constructing an accurate general-purpose
linear BCE predictor, we would like to stress the importance of focusing software develop-
ment on the creation of more specialized predictors for specific antigenic systems, such
as known viruses or viral families of high interest. These methods could be employed
when new viruses of the same family arise, like SARS-CoV-2 arose out of the family of
Coronaviridae. In turn, this could lead to optimization in the feature selection process dur-
ing classifier training and better predictive performance within that limited scope, which
would prove very important towards the development of better vaccines in the future.
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