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Advances in cancer immunity have promoted a major breakthrough in the field of

cancer therapy. This is mainly associated with the successful development of immune

checkpoint inhibitors (ICIs) for multiple types of human tumors. Blockade with different

ICIs, including programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1),

and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, may activate the

immune system of the host against malignant cells. However, only a subgroup of patients

with cancer would benefit from immune checkpoint blockade. Some patients experience

primary resistance to initial immunotherapy, and a majority eventually develop acquired

resistance to ICIs. However, the mechanisms involved in the development of drug

resistance to immune checkpoint blockade remain unclear. Recent studies supported

that combination of ICIs and anti-angiogenic agents could be a promising therapeutic

strategy for overcoming the low efficacy of ICIs. Moreover, through their direct anti-cancer

effect by inhibiting tumor growth and metastasis, anti-angiogenic drugs reprogram the

tumor milieu from an immunosuppressive to an immune permissive microenvironment.

Activated immunity by immune checkpoint blockade also facilitates anti-angiogenesis

by downregulating the expression of vascular endothelial growth factor and alleviating

hypoxia condition. Many clinical trials showed an improved anti-cancer efficacy and

prolonged survival following the addition of anti-angiogenic agents to ICIs. This review

summarizes the current understanding and clinical development of combination therapy

with immune checkpoint blockade and anti-angiogenic strategy.

Keywords: immune checkpoint inhibitor, PD-1, PD-L1, anti-angiogenesis, tumor microenvironment, combination

therapy

INTRODUCTION

Cancer immunotherapy has achieved great advances during the past several decades due to
improved understanding of tumor immunobiology, which boost durable tumor immune response,
lead to long-term tumor remission, and even cure a subgroup of patients (1). Prominent
immunotherapy involves the use of immune checkpoint inhibitors (ICIs) targeting negative
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regulators of specific CD8+ T cells or immune checkpoints,
such as programmed cell death 1 (PD-1), programmed cell
death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) (2). Ipilimumab is the first antagonistic
CTLA-4 antibody approved by the US Food and Drug
Administration in 2011, improving overall survival (OS) in
patients with advanced or metastatic melanoma. Monotherapy
with other antibodies targeting PD-1 or PD-L1 has been
shown to be effective against numerous types of human
tumors (3). Furthermore, promising results from clinical trials
inspired further investigations regarding the possible blockade of
alternative immune checkpoints. However, only a proportion of
patients are initially responsive to immune checkpoint blockade
and a majority are intrinsically resistant to these therapies, partly
because of the low number of infiltrating lymphocytes in the
tumor bed (4). In addition, most patients eventually develop
acquired resistance to ICIs, and the mechanisms involved in the
development of drug resistance remain unknown (2).

Anti-angiogenesis is another promising therapeutic strategy
designed to disrupt the vascular supply and starve tumor of
nutrients and oxygen. This is achieved mainly by blocking
the vascular endothelial growth factor (VEGF)/VEGF receptor
(VEGFR) signaling pathway that is active in the tumor
microenvironment with hypoxia condition. As a result, there is
a local balance between pro-angiogenic factors, anti-angiogenic
factors, and vessel normalization following anti-angiogenic
therapy (5). A total of 11 anti-angiogenic agents, including
anti-VEGF antibody, anti-VEGFR antibody, as well as VEGFR
tyrosine kinase inhibitors (TKIs), have been approved for
certain types of cancer. However, monotherapy with an
anti-angiogenic agent or combination with chemotherapy or
targeted therapies demonstrated limited clinical benefits for
most patients with cancer. Given that both anti-angiogenesis
and immune checkpoint blockade focus on targeting the tumor
microenvironment, the combination of ICIs and anti-angiogenic
agents presents a potential synergistic anti-tumor effect (6).
This review summarizes the current understanding and clinical
development of combination therapy of immune checkpoint
blockade and anti-angiogenesis.

SYNERGISTIC ANTI-TUMOR
MECHANISMS ATTRIBUTABLE TO
ANTI-ANGIOGENIC AGENTS IN
COMBINATION WITH ICIs

It is well-established that tumor angiogenesis is deregulated
under the continuous stimulation of excessive release of pro-
angiogenic factors, such as VEGF, which can be induced by
hypoxia or specific genetic alterations. Junctional defects of
endothelial cells result in leaky tumor vasculature that is usually
tortuous, dilated, and poorly covered with pericytes. Anti-
angiogenic therapy can downregulate continuous angiogenic
signaling and result in vasculature normalization, such as
pruning, vasculature maturation, and increased perfusion (5). As
a result, the local concentration and efficacy of other anti-cancer

drugs, including cytotoxic drugs, targeted drugs, and ICIs, are
significantly improved (7).

The cancer immunity cycle described by Chen and Mellman
(8) includes seven important steps, which may control an
effective and systematic anti-tumor immune response: (a) release
of cancer cell antigens; (b) cancer antigen presentation; (c)
priming and activation of antigen-presenting cells and T cells;
(d) trafficking of T cells to tumors; (e) infiltration of T cells
into tumors; (f) recognition of cancer cells; and (g) killing of
cancer cells. In fact, VEGF signaling decreases the anti-tumor
response by influencing multiple steps of the cancer immunity
cycle (9), including the functional maturation of dendritic cells
(DCs), priming and activation of T cells, trafficking of T cells
from the lymph node to the tumor bed, and infiltration of T
cells into tumors. Thus, anti-angiogenic drugs could recover the
host’s potent anti-tumor immune response by interfering with the
multiple steps of the cancer immunity cycle.

Anti-angiogenic Agents Promote Antigen
Presentation and Activate Cytotoxic CD8+

T Cells
DCs are the main antigen-presenting cells and derived from
hematopoietic bone marrow prognostic cells. Immature DCs
fail to present cancer antigens to T cells because of the lack
of expression of surface MHC-I, MHC-II, and costimulatory
molecules. Mature DCs have been found to be inversely
correlated with increased VEGF levels in the circulation
(10); however, patients with immature DCs in the peripheral
blood had increased levels of plasma VEGF. VEGF affects
the differentiation and maturation of DCs by inhibiting the
transcriptional activation of nuclear factor-κB (11), resulting
in inactivation of cytotoxic T lymphocytes. It was found that
VEGF blockade results in a more mature DC phenotype in
mouse models of glioblastoma, demonstrated by the increasing
expression of the co-stimulatory molecules B7-1, B7-2, and
MHC-II (12). Specifically, anti-angiogenic agents alleviate the
restraining effects of VEGF on the migration capacity and
immune function of DCs (13). Thus, normalization of the tumor
vasculature promotes antitumor immunity by enhancing the
uptake of antigen presentation in DCs.

Under high concentrations, VEGF induces apoptotic
pathways in cytotoxic CD8+ T cells by increasing the expression
of PD-1 and activates regulatory T cells (Tregs) in a VEGFR2-
dependent manner (14). Activation of the PD-1/PD-L1
pathway regulates CD4+ T-cell differentiation into Tregs
expressing the forkhead box P3 (FOXP3), directly triggering
immune suppression. Mulligan et al. (15) have shown that,
in oral squamous carcinoma, VEGF induces the secretion
of prostaglandin E2 (PGE2) by endothelial cells. PGE2 is
an immune suppressant disrupting T-cell activation and
suppressing T-cell generation and cytotoxic functions (15).
In addition, there are results showing that memory CD4+
T cells can recognize neoantigens and may lead to cancer
remission after immunomodulation in the hepatocellular
carcinoma (HCC) microenvironment after treatment with
sorafenib (16). Meanwhile, other findings imply that stable
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vessels due to treatment with bevacizumab in pancreatic ductal
adenocarcinoma supply anti-cancer immune cells including
memory CD4+ T cells, which are at least partially responsible
for the better OS observed in patients with tumors expressing
high levels of CD31 (17).

Anti-angiogenic Agents Promote the
Infiltration and Migration of Lymphocytes
The migration of lymphocytes from blood to the tumor
stroma is affected by the integrity of the tumor vasculature.
Anti-angiogenic antibodies, such as VEGF inhibitors (e.g.,
bevacizumab), can promote T-cell infiltration into solid tumors
and enhance the efficacy of immunotherapy (18). Additionally,
a mouse model using a BRAF inhibitor in combination with
adoptive transfer of T cells revealed that the downregulation
of VEGF was responsible for the increase in T-cell infiltration
(19). Anti-angiogenic agents suppress tumor growth and
restore microvessel density, as well as upregulate endothelial
adhesion molecules in tumor vessels which lead to enhanced
T-cell infiltration. Dirkx et al. (20) discovered that in two
mouse models (i.e., colon carcinoma LS174T/nude mice
and B16F10 melanoma/C57bl/6), treatment with angiogenesis
inhibitors (i.e., anginex, endostatin, angiostatin, and paclitaxel)
improved the leucocyte-vessel wall interaction by upregulation of
adhesion molecules.

The angiopoietins affect inflammation and immune
trafficking by increasing the expression of platelet endothelial cell
adhesion molecule-1 (PECAM-1) and vascular endothelial-
cadherin, and decreasing that of vascular-cell adhesion
molecule-1 (VCAM-1), intracellular adhesion molecule-1
(ICAM-1), and endothelial leukocyte adhesion molecule 1
(ELAM-1) (21). Consequently, inhibition of angiopoietins or
other angiogenic activators may restore normal immune cells
trafficking and promote lymphocyte infiltration into the tumor
(22). Pro-angiogenic factors in the tumor microenvironment
suppress the expression of adhesion molecules and chemokines,
such as CXC chemokine ligands 10 (CXCL10) and CXCL11, that
attract cytolytic T cells and natural killer cells (23). Nitric oxide
and epidermal growth factor-like domain 7 (EGFL7) can also
regulate the expression of adhesion molecules in tumors (24, 25).
Bevacizumab in combination with atezolizumab increases
the number of intra-tumor CD8+ T cells, and increases the
expression of intra-tumor chemokine CX3C-ligand1 (CX3CL1)
and the CX3CL1 receptor (CX3CR1) on CD8+ T cells (26)
and trafficking lymphocytes in metastatic renal cell carcinoma
(mRCC) models. These findings suggest that this combination
treatment improves antigen-specific T-cell migration.

Anti-angiogenic Agents Reduce
Immunosuppression
Immunosuppression acts as a survival mechanism of cancer
cells to escape elimination by the human immune defense
system. Cancer cells can inhibit the generation of anti-
tumor response through a variety of immunosuppression-
related mechanisms, such as downregulating the expression
of antigens and MHC-I, altering the immunosuppressive

signal, secreting inhibitory factors that dampen the activity of
immune cells, and recruiting inhibitory immune cells (27, 28).
Moreover, endothelial cells in the tumor vasculature also control
immunosuppression by modulating the activity and variability of
immune cells. Firstly, the Fas ligand is upregulated in response
to tumor-derived VEGF, interleukin 10 (IL-10), and PGE3.
Secondly, some inhibitory molecules, including PD-L1, T cells
immunoglobulin, and domain-containing protein 3 (TIM3),
tumor necrosis factor-related apoptosis-inducing ligand, and
transforming growth factor-β (TGF-β) are found in endothelial
cells. This suggests a possible regulatory effect of endothelial
cells on angiogenesis (29). Thus, anti-angiogenic therapy also
regulates immunosuppression by changing the function of tumor
vasculature endothelial cells. Compelling evidence indicates
that myeloid-derived suppressor cells (MDSCs), Tregs, tumor-
associated macrophages (TAMs), regulatory DCs, neutrophils,
T helper 17 (Th17) cells, and regulatory B cells are key
immunosuppressive cells that promote tumor progression
(30, 31). The immunosuppressive tumor microenvironment is
established by recruiting immunosuppressive cells and tumor
cell-derived immunosuppressive cytokines, such as VEGF, TGF-
β, galectin, or indoleamine 2-3-dioxygenase (32). MDSCs, TAMs,
and Tregs are the major effector cells in this immunosuppressive
microenvironment. MDSCs can diminish the antitumor immune
response in such a microenvironment by: (a) inducing Tregs;
(b) producing immunosuppressive cytokines, such as TGF-β; (c)
depleting or sequestering the amino acids arginine, tryptophan,
or cysteine required for the function of T cells; or (d) nitrating
the T-cell receptor or chemokine receptors on tumor-specific T
cells (33). Meanwhile, tumor-derived granulocyte-macrophage
colony-stimulating factor, IL-1β, VEGF, and PGE2 lead to the
accumulation of MDSCs in the tumor microenvironment (33).

Normalization of the tumor vasculature can reduce the
immunosuppression exerted by Tregs, TAMs, and MDSCs (34).
Increases in intratumoral CD8+ T cells and macrophages were
observed after monotherapy with bevacizumab in mRCC. These
effects resulted in an upregulation of MHC-I on tumor cells, and
increased the expression of Th1 and T effector gene signatures in
post-dose biopsies (35).

Tregs can secrete the immunosuppressive cytokine IL-10,
TGF-β, and express immune checkpointmolecules (e.g., PD-1) to
inhibit the activity of antigen-presenting cells and effector cells.
However, the reduced induction of T-cell differentiation into
Tregs and promoting effector Th cells, which generate interferon-
γ (IFN-γ), can be implemented by blocking the signal transducer
and activator of transcription 3 (STAT3) signaling pathway,
thereby suppressing tumor growth (36). CXC chemokines
are potent angiogenic factors promoting the migration and
generation of endothelial cells (37). Anti-angiogenic therapy
targeting VEGF/VEGFR may restrain the expression of CXCL1,
IL-1β, and IL-6 to inhibit Tregs chemotaxis and accumulation in
tumors (38).

Alleviated hypoxia, owing to normalization of the tumor
vasculature, preferentially induces polarization of TAMs to the
M1-like phenotype (39). Tumor cells secrete VEGF-A and
VEGFR2 to improve the formation and effectiveness of MDSCs
(40), which can be reduced by some anti-angiogenic drugs. This
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indicates the potential for utilization, with an indirect impact of
MDSCs on alterations in Tregs. Overall, anti-angiogenic therapy
reprograms the tumor vasculature by normalization and leads to
improved anti-tumor immune response.

ICIs Can Enhance the Anti-cancer Effects
of Anti-angiogenic Agents by Relieving
Immunosuppression
In addition to eliciting immune-mediated elimination of tumor
cells, ICIs were also demonstrated to promote normalization
of the tumor vasculature in orthotopic breast and ectopic
colon tumor models (34, 41). In both studies, blockade of
CTLA-4 or PD-1 reduced tumor vascular density, improved
vessel perfusion, and alleviated tumor tissue hypoxia, all of
which were marks of the vascular normalization effect. In
mouse models lacking CD4+ T lymphocytes (CD4–/–) or
CD8T lymphocytes (CD8–/–) through genetic knockout, it was
found that blockade of CTLA-4 and PD-1 facilitated tumor
vessel normalization by the activation of CD4+ Th1 cells (34).
Furthermore, the exhaustion of Tregs led to aggregation of
CD8+ effector T cells and increased the production of IFN-
γ, along with increased tumor vessel perfusion detectable by
Doppler ultrasonography prior to tumor shrinkage (41). Thus,
it is suggested that the vasculature-normalizing effect of ICIs
is mainly mediated by the activation of CD8+ T cells via
the IFN-γ signaling pathway. IFN-γ elevated the expression of
endothelial adhesion molecules ICAM1 and e-selectin, which
mediate immunocyte infiltration, decreased that of endothelial
VEGFA and increased the expression of CXCL9, CXCL10, and
CXCL1, which recruit Th1 cells (41). In addition, Th1 type
chemokines (e.g., CXCL9 and CXCL10) can engender angiostatic
effects (42) by stimulating the recruitment of pericytes (41),
apart from acting as chemoattractants for effector T cells (43).
Interestingly, the decrease of Tregs also stimulates the infiltration
of eosinophils in tumors (44). In addition, anti-CTLA-4 therapy
has been reported to increase the infiltration of eosinophils via
the activation of memory CD4+ and CD8+ T lymphocytes
in breast tumor models (45). Meanwhile, IFN-γ is secreted to
promote tumor vessel normalization, enhancing the infiltration
of effector T cells.

Immune checkpoints PD-1/PD-L1 play an important role
in immunosuppression in various types of cancer. Some
inhibitory cells, including MDSCs, Tregs, and M2-macrophages,
as well as secretory immunomodulatory factors are pivotal
for immunosuppression (46). In fact, these inhibitory cells
also stimulate angiogenesis by increasing the expression of
pro-angiogenic factors from the extracellular matrix. The
immunosuppressive tumor microenvironment attributed
to repressive inflammatory cells may play a major role in
mediating the adaptive resistance to anti-angiogenic agents.
It is well-known that anti-VEGF therapy can cause tumor
hypoxia due to excessive vessel regression, M2-TAMs attracted
by oncostatin M and eotaxin from hypoxic tumor cells might
be a compensatory mechanism to secure tumor angiogenesis
through providing pro-angiogenic factors (47), which seems
partially responsible for the resistance to anti-VEGF therapy.

Furthermore, MDSC-derived Bv8 (prokinectin 2) is found to
directly promote tumor angiogenesis even when the VEGF
signaling pathway is blocked (48, 49). These studies have
provided compelling evidence that anti-angiogenic therapy is
more effective following the generation of an immunostimulatory
microenvironment. Based on various studies, the proposition
that angiogenesis and inflammation are mutually regulated has
been accepted (50–52). As mentioned, alleviated hypoxia and
normalization of the tumor vasculature by ICIs also contribute
to reprogram the immunosuppression environment, which in
turn enhances the anti-tumor effects of both therapies. Thus,
alleviated immunosuppression coupled with normalization of
the tumor vasculature eventually achieve a loop of positive
feedback that promotes each other (Figure 1). This further
assists in identifying new, non-invasive, predictive biomarkers
for immunotherapy and develop more effective combination
strategies. Functional detection of vascular remodeling within
the tumor microenvironment with Doppler ultrasonography,
perfusion scans, or dynamic contrast-enhanced magnetic
resonance imaging can more accurately represent tumor vascular
rebuilding induced by ICIs, which extends beyond the traditional
tumor cell and immune cell analysis (43).With the normalization
of the tumor vessels and tissue perfusion as well as the promotion
of oxygenation, ICIs therapy may increase the concentration of
agents from other systemic therapies in tumors (53) and enhance
radiosensitivity. Nevertheless, more detailed investigation is
warranted to delicately investigate the feasibility of the new ICIs
combination strategies.

CLINICAL DATA INVOLVING THE
COMBINATION OF ANTI-ANGIOGENIC
AGENTS AND ICIs

Numerous clinical trials and other studies have focused on the
combination of anti-angiogenic agents and ICIs. The results of
these clinical trials are displayed in Table 1. Table 2 exhibits the
currently ongoing or recruiting clinical trials to investigate the
efficacy of ICIs plus anti-angiogenic agents.

Anti-VEGF Antibody and ICIs
When combined with chemotherapy, bevacizumab (an anti-
VEGF monoclonal antibody) has been shown to prolong the
survival of patients with cancer, especially for those with
metastatic colorectal cancer (mCRC) and non-small cell lung
cancer (NSCLC).

Bevacizumab, in combination with intravenous fluorouracil-
based chemotherapy, is indicated for the first- or second-
line treatment of patients with mCRC. A series of phase
III clinical studies have demonstrated the survival benefit
of adding bevacizumab to chemotherapy (74–76). The most
common backbone regimen for combination is FOLFOX
(fluorouracil–leucovorin–oxaliplatin) (77). The phase III AVEX
study, comparing capecitabine–bevacizumab with capecitabine
monotherapy in elderly patients (aged> 70 years) with untreated
mCRC, showed a significant bevacizumab-related benefit in
median progression-free survival (PFS) (78). A phase IV
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FIGURE 1 | The mutual regulation between vasculature normalization and immune activation in tumor microenvironment.

study (NCT01506167) provided evidence that there were no
clear differences observed in outcomes between bevacizumab
with capecitabine-based chemotherapy and fluorouracil-based
regimens and confirmed the safety profile of bevacizumab in a
real-world UK-based population (79).

Several meta-analyses have confirmed the benefit of
bevacizumab in terms of PFS and OS in the first-line treatment
of mCRC. However, a subgroup analysis suggested that
the bevacizumab-related survival benefit is observed only
when combined with irinotecan-based chemotherapy (80–
83). Nevertheless, it is widely accepted that the addition
of bevacizumab to first-line chemotherapy offers a modest
clinical benefit.

The Center for Drug Evaluation of China approved
bevacizumab, in combination with platinum-based doublet
chemotherapy, for the first-line treatment of patients with
unresectable, locally advanced, recurrent or metastatic non-
squamous NSCLC. Adding bevacizumab to platinum-based
chemotherapy in advanced non-squamous NSCLC confers a
significant benefit in terms of PFS and OS (84–86) compared
with chemotherapy alone.

In a meta-analysis, the addition of bevacizumab to
chemotherapy can significantly improve PFS and overall
response rate (ORR) both in first- and second-line treatments
of advanced NSCLC; however, there was no benefit in terms
of OS (87). In the setting of maintenance therapy, PFS
was significantly improved by bevacizumab combined with
pemetrexed following first-line induction vs. bevacizumab alone.
However, OS was not prolonged upon combinatory maintenance
therapy, and the treatment led to an increase in adverse events
(AEs) (88, 89). Besides, the ERACLE phase III trial, using the
evaluation of quality of life as the end point, illustrated that
bevacizumab did not exert a superior effect on quality of life
as maintenance therapy compared with pemetrexed (90). Some
retrospective studies provided caveats regarding the benefit/risk
profile in elderly patients (91–93). Therefore, bevacizumab
in combination with chemotherapy is not recommended for
eligible patients aged > 75 years. This subgroup of patients did
not obtain significant benefit in terms of ORR, PFS, and OS
from the addition of bevacizumab. Moreover, elderly patients
in the bevacizumab group experienced a higher incidence
of ≥ grade 3 AEs.
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TABLE 1 | Clinical trials investigating the combination effect of anti-angiogenic agents and ICIs.

Clinical trials Phase Cancer type Anti-angiogenic agents ICI Results AEs (total,

Grade 3–5)

NCT02366143 (54)

(IMpower150)

III NSCLC Bevacizumab Atezolizumab PFS: 8.3m

OS: 19.3m

Total = 94%

Gr 3–4: 223 (57%)

Gr 5: 11 (3%)

NCT02039674 (55)

(KEYNOTE-021)

I NSCLC Bevacizumab Pembrolizumab PFS: NR

ORR: 56%

Total = 96%

Gr 3–4: 10 (42%)

NCT01454102 (56) I NSCLC Bevacizumab Nivolumab PFS: 37.1w Total = 92%

Gr 3: 4 (33.3%)

NCT02443324 (57) I NSCLC Ramucirumab Pembrolizumab PFS: NR

ORR: 30%

Total = 81%

Gr 3–4: 2 (7%)

NCT03359018 (58) NA NSCLC Anlotinib Sintilimab DCR: 100%

ORR: 72.7%

Total = NA

Gr 3–4: 6 (27.3%)

NCT00790010 (59) I Melanoma Bevacizumab Ipilimumab DCR: 67.4%

OS: 25.1m

Total = 100%

Gr 3: 11 (23.9%)

Gr 4: 2 (4.3%)

NCT03722875 (60) NA HCC Apatinib Camrelizumab ORR: 30.8% Total = NA

Gr ≥3: 20 (60.6%)

NCT02715531 (61) I HCC Bevacizumab Atezolizumab PFS: NR

OS: NR

Total = 81%

Gr 3–4: 9 (35%)

NCT03434379 (62)

(IMbrave 150)

III HCC Bevacizumab Atezolizumab PFS: 6.8m

ORR: 27%

Total = 84%

Gr 3–4: 117 (36%)

Gr 5: 6 (2%)

NCT03006926 (63) Ib HCC Lenvatinib Pembrolizumab PFS: 8.6m

OS: 22.0m

Total = 95%

Gr ≥3: 67 (67%)

Gr ≥4: 4 (4%)

NCT02443324 (64) I GC/GEJ Ramucirumab Pembrolizumab PFS: 2.1 m/2.6m Total = 78%

Gr 3–4: 10 (25%)

NCT02572687 (65) I GC/GEJ Ramucirumab Durvalumab PFS: 2.6m

ORR: 36%

Total = 83%

Gr 3: 10 (35%)

NCT03475953 (66)

(REGOMUNE)

II CRC Regorafenib Avelumab PFS: 3.6m

OS: 10.8m

Total = NA

Gr 3–4: 32 (66%)

NCT02420821 (67)

(IMmotion151)

III RCC Bevacizumab Atezolizumab PFS: 11.2w Total = NA

Gr 3–4:182 (40%)

NCT02493751 (68) I RCC Axitinib Avelumab OS: 58% Total = NA

Gr ≥3: 32 (58%)

NCT02684006 (69)

(JAVELIN Renal 101)

III RCC Axitinib Avelumab PFS: 16.6m

ORR: 60.6%

Total = 64%

Gr ≥3: 20 (30%)

NCT02501096 (70) II RCC Lenvatinib Pembrolizumab PFS: 17.7m

ORR: 66.7%

Total = NA

Gr 3–4: 21 (70%)

NCT02853331 (71)

(KEYNOTE-426)

III RCC Axitinib Pembrolizumab PFS: 15.1m

ORR: 59.3%

Total = NA

Gr ≥3:327 (75.8%)

NCT01472081 (72)

(CheckMate 016)

NA RCC Sunitinib Nivolumab PFS: 12.7m

ORR: 55%

Total = 100%

Gr 3–4: 27 (82%)

NCT02501096 (73) II EC Lenvatinib Pembrolizumab PFS: 7.4m

ORR: 39.6%

Total = NA

Gr 3: 31 (59%)

The details were obtained from http://clinicaltrials.gov/.

m, months; w, weeks; EC, endometrial cancer; GC, gastric cancer; GEJ, gastroesophageal junction adenocarcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung

cancer; RCC, renal cell cancer; NA, not applicable; NR, not reached; Gr, grade.

Bevacizumab is the first approved anti-VEGF monoclonal
antibody that can maximize the clinical benefit of
immunotherapy with ICIs. A phase I trial was designed to
determine the safety and efficacy of bevacizumab in combination
with the CTLA-4 inhibitor ipilimumab in metastatic melanoma
(59). A total of 46 patients were included in that study and treated
with four dosing combinations of ipilimumab (3 or 10 mg/kg)

and bevacizumab (7.5 or 15 mg/kg). Eight and 22 patients had
partial response (PR) and stable disease (SD), respectively. The
disease control rate (DCR) was 67.4%. Median OS time was 25.1
months. Toxicities were generally higher than expected with
ipilimumab alone but remained manageable. Eleven patients
experienced grade 3 treatment-related adverse events (TRAEs),
and two patients had grade 4 proteinuria and hepatic toxicities.
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TABLE 2 | Ongoing clinical trials investigating the efficacy of ICIs plus anti-angiogenic agents.

Trial identifier Disease Treatment (arm of combination therapy) Phase Status

NCT03024437 RCC Atezolizumab + bevacizumab + entinostat I/II Recruiting

NCT03363867 OC Atezolizumab + bevacizumab + cobimetinib II Recruiting

NCT03472560 NSCLC/UC Avelumab + axitinib II Recruiting

NCT03395899 BC Atezolizumab + bevacizumab + cobimetinib, neoadjuvant II Recruiting

NCT02724878 NCCKC Atezolizumab + bevacizumab II Recruiting

NCT03386929 NSCLC Avelumab + axitinib + palbociclib I/II Recruiting

NCT03574779 OC TSR-042 + bevacizumab + Niraparib II Recruiting

NCT02921269 CC Atezolizumab + bevacizumab II Active, not recruiting

NCT03647956 NSCLC Atezolizumab + bevacizumab + carboplatin + pemetrexed II Recruiting

NCT02734004 OC/BC/SCLC/GC MEDI4736 + bevacizumab + olaparib I/II Recruiting

NCT03517449 EC Pembrolizumab + lenvatinib III Recruiting

NCT02572687 GC/GEJ/NSCLC/HCC MEDI4736 + ramucirumab I Active, not recruiting

NCT02839707 OC/FTC/PC Atezolizumab + bevacizumab + PLD II/III Recruiting

NCT02210117 RCC Ipilimumab + bevacizumab, neoadjuvant I Active, not recruiting

NCT01950390 Melanoma Ipilimumab + bevacizumab II Active, not recruiting

NCT03394287 BC Camrelizumab + apatinib II Recruiting

NCT03417895 SCLC Camrelizumab + apatinib II Not yet recruiting

NCT03491631 Multiple solid tumors Camrelizumab + apatinib + SHR9146 I Not yet recruiting

NCT02942329 HCC/GC Camrelizumab + apatinib I/II Recruiting

NCT03671265 ESCC Camrelizumab + apatinib + radiation NA Not yet recruiting

NCT03359018 Osteosarcoma Camrelizumab + apatinib II Active, not recruiting

NCT03755791 HCC Atezolizumab + cabozantinib III Recruiting

NCT03502746 Mesothelioma Nivolumab + ramucirumab II Recruiting

NCT03606174 UC Nivolumab + sitravatinib II Recruiting

NCT03680521 RCC Nivolumab + sitravatinib, neoadjuvant II Recruiting

NCT02493751 RCC Avelumab + axitinib I Active, not recruiting

NCT01633970 Multiple solid tumors Atezolizumab + bevacizumab I Active, not recruiting

The details were obtained from http://clinicaltrials.gov/. Trials without “neoadjuvant” are focusing on metastatic or advanced settings.

BC, breast cancer; CC, cervical cancer; EC, endometrial cancer; ESCC, esophageal squamous cell carcinoma; FTC, fallopian tube cancer; GC, gastric cancer; GEJ, gastroesophageal

junction adenocarcinoma; HCC, hepatocellular carcinoma; NA, not applicable; NCCKC, non-clear cell kidney cancer; NSCLC, non-small cell lung cancer; OC, recurrent ovarian cancer;

PC, peritoneal cancer; RCC, renal cell cancer; SCLC, small cell lung cancer; UC, urothelial cancer.

Data from a randomized phase II clinical trial of patients with
BRAF wild-type metastatic melanoma suggest an advantage
with the sequential use of ipilimumab followed by nanoparticle
albumin-bound-paclitaxel + bevacizumab (94). A randomized
phase II trial (NCT01950390) to compare the OS of patients
with unresectable stage III or stage IV melanoma receiving
ipilimumab plus bevacizumab vs. ipilimumab monotherapy is
currently ongoing. A phase II study (NCT04091217) evaluating
the efficacy and safety of atezolizumab in combination with
bevacizumab in patients with unresectable locally advanced
or metastatic mucosal melanoma is currently in the patient
recruitment phase.

In a retrospective study, 10 patients with untreated mRCC
received a single dose of bevacizumab and subsequent combined
administration of the anti-PD-L1 antibody atezolizumab and
bevacizumab. A total of four patients achieved PR, while another
four patients had SD. The median time to response was 4.2
months; however, the median duration of response was not
reached (35). The phase II IMmotion150 study demonstrated
that combination of bevacizumab and atezolizumab was superior

to monotherapy with sunitinib in mRCC (95, 96). The phase
III IMmotion151 study, including 915 untreated patients
with mRCC, showed a prolonged PFS for PD-L1-positive
patients after treatment with bevacizumab and atezolizumab
vs. monotherapy with sunitinib (67). Furthermore, addition of
bevacizumab to other PD-1/PD-L1 inhibitors (e.g., nivolumab
or pembrolizumab) showed potent clinical activity in advanced
and pretreated RCC (97, 98). The combination of bevacizumab
and nivolumab had a higher ORR than that of nivolumab and
ipilimumab (52 vs. 38%, respectively) (98).

In the phase III IMpower150 trials involving untreated
patients with advanced non-squamous NSCLC, the combination
of bevacizumab and platinum-based chemotherapy and
atezolizumab improved PFS compared with chemotherapy and
bevacizumab, regardless of the PD-L1 expression status (54). A
phase I study evaluating maintenance therapy in patients after
post-platinum doublet chemotherapy showed promising median
PFS in non-squamous patients: 37.1 weeks with nivolumab and
bevacizumab, and 21.4 weeks with nivolumab monotherapy
(56). The safety profile was tolerable with nivolumab and
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bevacizumab. In the KEYNOTE-021 study, the median PFS in
cohort B (pembrolizumab/carboplatin/paclitaxel/bevacizumab
+ pembrolizumab/bevacizumab maintenance) was not reached
(NR) vs. that recorded at 10 months in cohort A (without
bevacizumab) and cohort C (without bevacizumab) (55).
Moreover, there were no pembrolizumab dose-limiting toxicities
reported and the proportion of grade 3/4 TRAEs in cohort B
was 42%. However, an estimation of efficacy cannot be affirmed
because of the small numbers at the data cutoff (99).

For advanced HCC, a phase Ib study combining atezolizumab
and bevacizumab confirmed that the response rate was 62%,
suggesting that the combination therapy has synergistic clinical
activity (61). Grade 3–4 TRAEs occurred in nine patients (35%),
and grade 5 AEs were not observed. Given the safety and
tolerability of this combination therapy, the US Food Drug
Administration (FDA) approved atezolizumab + bevacizumab
for the treatment of advanced HCC. During the 44th Congress
of the European Society for Medical Oncology, the positive
results of the IMbrave 150 phase III study (62) were inspiringly
published, revealing a PFS of 6.8 months in the atezolizumab
+ bevacizumab arm vs. 4.3 months in the sorafenib arm; the
ORR was 27 vs. 12%, respectively. At 2020 American Society
of Clinical Oncology (ASCO) annual meeting, a network meta-
analysis suggested greater OS and PFS benefits with first-line
atezolizumab + bevacizumab over other therapies approved for
unresectable HCC (100).

In a single practice case series including 20 patients with
glioblastoma treated with the combination of ipilimumab and
bevacizumab, Carter et al. (101) reported 31% PR, 31% SD, and
38% progressive disease. The toxicity profile of this regimen was
basically predictable and manageable. Grade≥ 3 AEs were found
in seven patients (35%), and only two patients discontinued
treatment due to AEs (10%).

Anti-VEGFR Antibody and ICIs
Anti-VEGFR antibody also showed a synergistic anti-cancer
effect when combined with a checkpoint inhibitor. In a phase
I trial of patients with advanced gastric or gastroesophageal
junction adenocarcinoma (64), ramucirumab in combination
with pembrolizumab led to a promising ORR (7 and 17%)
and DCR (46 and 50%) in pretreated and untreated patients,
respectively. This combination effect was also confirmed in
advanced NSCLC (57, 102). Of the 27 patients with NSCLC
included in the study, 30% had an objective response and 85%
experienced disease control. Median PFS was not reached, and
the median duration of treatment was ≥ 6.8 months. In the
pretreated group (59% had received at least two lines of therapy),
these results were encouraging. However, the small number of
patients limited the confirmation of the effectiveness of this
combination against NSCLC. The efficacy of this combination
was also observed in urothelial cancer (103).

In an early-stage trial (NCT02572687), the efficacy of the
combination of ramucirumab and durvalumab in gastric or
gastroesophageal junction carcinomas was reported; five of 29
patients (17%) achieved PR, the ORR for patients with PD-L1 ≥
25% was 36%, and the median PFS was 2.6 months (65). TRAEs

were observed in 24 patients (83%) and 10 patients (35%) suffered
grade 3 TRAEs without occurrence of grade 4 or 5 TRAEs.

VEGFR TKIs and ICIs
The combination of VEGFR TKIs with ICIs in RCC, HCC,
NSCLC, mucosal melanoma, endometrial carcinoma, esophageal
carcinoma, triple-negative breast cancer, microsatellite stability
(MSS) gastric carcinoma (GC) and CRC, head and neck
squamous cell carcinoma, urothelial carcinoma, osteosarcoma,
and other malignant tumors has been associated with favorable
outcomes (104).

A group of different VEGFR TKIs were tested in combination
with PD-1 blockade in mRCC. The efficacy of axitinib in
combination with pembrolizumab in patients with advanced
RCC was preliminarily investigated in a phase Ib trial. Following
the combination therapy, the ORR was 73%, the proportion
of patients achieving complete response was 8%, and tumor
shrinkage occurred in> 90% of patients. Only two patients failed
to attain tumor shrinkage or stable disease, with a median PFS
of > 20 months vs. 10–15 months in the axitinib monotherapy
group (105–107). A phase II study following the phase Ib
trial of lenvatinib + pembrolizumab in patients with mRCC
manifested promising antitumor activity, including a median
PFS of 17.7 months [95% confidence interval [CI]: 11.9–15.7]
and ORR of 66.7% (95% CI: 43.9–80.1) (70) compared with
the confirmed ORR of 40.4% for the combination of nivolumab
and ipilimumab in mRCC (108, 109). Additionally, nivolumab
in combination with sunitinib or pazopanib in patients with
mRCC (CheckMate 016 study) that had received more than
one prior systematic treatment showed encouraging outcome.
The ORR was 55% (18/33) and 45% (9/20) in the sunitinib
and pazopanib arms, respectively. Meanwhile, rate of response
at the first assessment (week 6) was 41% (sunitinib arm) and
56% (pazopanib arm) (72). However, the scheme of nivolumab
plus sunitinib or pazopanib were not recommended due to the
high incidence (82 and 70%) of grade 3–4 TRAEs. In 2018,
Choueiri et al. (68) reported the efficacy of avelumab and axitinib
combination therapy in treatment-naive patients with advanced
clear cell RCC (NCT02493751). During nearly 1 year of follow-
up, the OS in the combination therapy was 58% (32/55), while the
rate of SD was 20% (11/55) (68). In this study, it was observed
that the diverse expression levels of PD-L1 did not significantly
affect the efficacy of treatment. Motivated by the preliminarily
encouraging results of NCT02493751, a phase III clinical trial
(NCT02684006) (JAVELIN Renal 101) aiming to compare the
efficacy of avelumab plus axitinib vs. monotherapy with sunitinib
in advanced clear cell RCC was sequentially conducted. Median
PFS in patients with PD-L1+ tumors receiving avelumab plus
axitinib was not estimable (8.1 months, not estimable), while
that noted in patients receiving sunitinib was 11.2 months;
in patients irrespective of PD-L1 expression, the median PFS
was 16.6 months vs. 11.2 months, respectively. The ORR was
60.6 vs. 17.6%, respectively. Common TRAEs (grade ≥ 3) in
each group were hand-foot syndrome (9 vs. 9%, respectively),
hypertension (30 vs. 18%, respectively), and platelet count
decreased (0 vs. 32%, respectively) (69). Given the bracing results
of JAVELIN Renal 101 study, avelumab combined with axitinib
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was approved by FDA. In a phase III KEYNOTE-426 study
investigating pembrolizumab plus axitinib vs. sunitinib as first-
line therapy for advanced RCC, the median PFS and ORR in the
pembrolizumab plus axitinib arm vs. the sunitinib arm were 15.1
months vs. 11.1 months and 59.3 vs. 35.7%, respectively. Grade
≥ 3 AEs occurred in 75.8% of patients in the pembrolizumab
plus axitinib arm and in 70.6% of patients in the sunitinib arm
(71). Based on this outcome, first-line therapy of pembrolizumab
plus axitinib was approved for advanced RCC. Furthermore, the
updated analysis of the phase III KEYNOTE-426 study presented
that the combination continued to demonstrate superior and
durable antitumor activity over sunitinib after a 27-months
median follow-up and no new safety signals were observed
(110). A multicenter, randomized, open-label, phase III study
(NCT02811861) to compare the efficacy and safety of lenvatinib
in combination with everolimus or pembrolizumab vs. sunitinib
as first-line treatment in participants with advanced RCC
is ongoing.

In the field of combination therapies for advanced HCC,
SHR-1210 (known as camrelizumab, an anti-PD-1 antibody
manufactured in China) in combination with apatinib yielded
promising results: ORR of 30.8% (95% CI: 17.0–47.6) and
PR rate of 50.0% (95% CI: 24.7–75.4) (60). Of note, this
combination therapy offered a statistically significant advantage
for patients with advanced HCC over the previous clinical
trial of monotherapy with nivolumab (111). A phase Ib study
assessing the combination of pembrolizumab and lenvatinib
treating patients with unresectable HCC was revealed at 2020
ASCO annual meeting. Median OS was 22.0 months (95% CI:
20.4-NR), median PFS was 8.6 months (95% CI: 7.1–9.7), and
ORR was 36% (95% CI: 26.6–46.2), and the safety profile was
tolerable (63). Meanwhile, a real-world study about unresectable
HCC in Taiwan demonstrated pembrolizumab plus lenvatinib
can produce excellent ORR andDCRwith tolerable safety profiles
(112). In a study using an animal model of HCC, Kimura
et al. (113) highlighted that lenvatinib has immunoregulation
activity in mice, which contributes to its antitumor activity.
This activity also enhances the antitumor activity of anti-PD-
1 antibody in combination therapy (113). Currently, multiple
clinical trials in different phases are underway, intending to
reveal the role of combination therapy based on ICIs plus
VEGFR TKIs in treating advanced HCC. For example, a
large phase III trial aims to evaluate the efficacy of the
combination of lenvatinib plus pembrolizumab as a first-line
therapy (NCT03713593), while a phase I trial was designed
to assess the efficacy of a combination of lenvatinib with
nivolumab (NCT03418922).

Han et al. (58) reported a similar evolution in patients with
advanced NSCLC. The first clinical trial to assess the efficacy
and safety of sintilimab with anlotinib as first-line therapy has
indicated a synergistic effect against advanced NSCLC. Sixteen
patients (72.7%) achieved PR and six patients (27.3%) achieved
SD with an ORR of 72.7% and a DCR of 100%; the 6-month
PFS rate was 93.8%. Notably, five of the six patients with SD
had cavities in tumors, manifesting that the combination regimen
exhibits synergy. Grade ≥ 3 TRAEs occurred in six patients
(27.3%) and remained manageable.

Sheng et al. (114, 115) conducted an open-label, phase Ib
trial combining axitinib with toripalimab (the third approved
anti-PD-1 antibody manufactured in China) in patients with
metastatic mucosal melanoma. Among 29 chemotherapy-naïve
patients with mucosal melanoma, the ORR was 48.3% (n = 14,
95% CI: 29.4–67.5), the median PFS was 7.5 months (95% CI:
3.7–NR) and the median OS was 20.7 months. The vast majority
(97%) of patients experienced TRAEs, with mild (grade 1 or 2)
TRAEs being the most common; 39.4% of patients experienced
grade ≥ 3 TRAEs.

The results of a phase Ib/II study applying combination
therapy of pembrolizumab and lenvatinib in patients with
advanced endometrial cancer were revealed at the 2018 ASCO
annual meeting (73). A total of 53 patients with advanced
endometrial cancer were included in the study. The ORR was
39.6% (21/53, including three patients with complete response)
and the median PFS was 7.4 months. The incidence of grade
3 TRAEs was 59%, and there was no occurrence of grade 4
TRAEs. Of note, in this study, the efficacy of the combination
therapy was not associated with some common important
predictive biomarkers, such as microsatellite instability and PD-
L1. Moreover, a study of pembrolizumab plus lenvatinib for
early-line treatment of previously treated, advanced, non high-
frequency microsatellite instability (MSI-H) or mismatch-repair
deficiency (dMMR) endometrial cancer patients was reported
at the 2020 ASCO annual meeting (116). Patients were divided
in two subgroups, the ORR was 41.3% (n = 63, 95% CI, 29.0–
54.4) for subgroup 1 and 57.1% (n = 21, 95% CI, 34.0–78.2) for
subgroup 2. In subgroup 1, 42 (67%) of patients were exposed to
grade ≥ 3 TRAEs, serious TRAEs occurred in 18 (29%) patients
and 2 (3%) patients died from TRAEs. The safety profile for
subgroup 2 was generally similar to that for subgroup 1.

The REGONIVO study included 50 patients with advanced
GC or CRC, with a median of three lines of previous treatment,
who received regorafenib plus nivolumab (117). Accordingly, the
ORR was 40%, the DCR was 88%, and the median duration of
treatment was 6.1 months. In the CRC group, the general ORR
and median PFS were 36% and 6.3 months, respectively; the
ORR of patients with MSS CRC was 33%. All examined GC cases
were of the MSS type; the ORR was 44% and the median PFS
was 5.8 months. The outcome of a phase II trial assessing the
efficacy and safety of regorafenib + avelumab combination in
non MSI-H metastatic CRC patients has been released recently
(66). The combination achieved better PFS and OS compared to
regorafenib alone with historical data of in this clinical setting.
In this trial, median number of previous treatment lines was 3
(range: 1–7). The median PFS and OS were 3.6 months (95%
CI: 1.8–5.4) and 10.8 months (95% CI: 5.9-NR), respectively, and
the safety profile was manageable. It was also reported that high
infiltration by TAMs at baseline was significantly associated with
adverse outcome (PFS: 1.9 vs. 3.7 months, p = 0.045; OS: 4.8
months vs. NR, p = 0.027) and increased tumor infiltration by
CD8+ T cells compared to baseline was significantly associated
with better PFS (p= 0.011). Besides, the efficiency of fruquintinib
(a VEGFR inhibitor manufactured in China) combined with
sintilimab (an anti-PD-1 antibody manufactured in China) in
refractory metastatic CRC patients in China was evaluated (118).

Frontiers in Immunology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 1956

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Song et al. Anti-angiogenic Therapy Combined With Immunotherapy

Median PFS was 108 days, whereas it seemed not resulted in
a significant increase in ORR, DCR and OS. In the evaluation,
patients with PFS < 90 days was considered worse subgroup,
and they were found have the following mutations: AMER1
(p= 0.0073), DNMT3A (p= 0.0075), ETV5 (p= 0.012), EWSR1
(p= 0.016), FANCA (p= 0.019), IKBKE (p= 0.0073), NOTCH1
(p = 0.015), STAG2 (p = 0.012), and TCF7L2 (p = 0.0073),
which suggested targeting these mutational genes may be helpful
to improve the efficacy.

PREDICTIVE INDICATORS FOR
COMBINATION THERAPY OF
ANTI-ANGIOGENIC AGENTS AND ICIs

The indication of anti-angiogenesis TKIs is mainly restricted
to highly vascular tumors, such as RCC, HCC, NSCLC,
endometrial cancer, and CRC (119). A barrier for the use of
these TKIs is the lack of sensitive and valid biomarkers. VEGF-
A121, a secreted isoform of the VEGF-A family (VEGF-A121,
VEGF-A165, VEGF-A189, and VEGF-A206) (120), has been
intensively studied as a measurable biomarker predicting the
efficacy of VEGF targeted agents (121). Unfortunately, it failed
to yield satisfactory results as a potent predictive biomarker.
Measurement of the tumor vascular function through dynamic
contrast-enhanced magnetic resonance imaging (122) and the
baseline levels of IL-6 (123, 124) were also declared predictors
of PFS and OS benefit in patients with RCC after pazopanib
therapy. Other biomarkers were successively proposed, such as
VEGFR-2, fibroblast growth factor 2 (FGF-2), or IL-8. However,
their use has not been established in routine clinical practice
(125). Recently, a cohort study indicated a positive correlation
between the anti-angiogenesis-related AEs and prolonged OS
(126, 127). Similarly, several investigations demonstrated that
anti-angiogenesis-related hypertension can be considered a
predictor of OS and PFS benefit after treatment with VEGF TKIs
(128, 129). Considering the lack of a robust biomarker for routine
clinical use, TRAEs may be helpful in predicting efficacy.

For ICIs, some predictive biomarkers have been strongly
associated with the response to such therapy with monoclonal
antibodies. These include, PD-L1 in NSCLC and advanced
urothelial carcinoma patients treated with pembrolizumab
(130, 131), tumor mutation burden (132), and MSI-H/dMMR
in patients with pembrolizumab for unresectable or metastatic
mismatch-repair deficient solid tumors (133). Multiple studies
have proposed the absolute lymphocyte count and lactate
dehydrogenase in peripheral blood as potential predictive
biomarkers. These data suggested that an increase in absolute
lymphocyte count or the levels of lactate dehydrogenase
predicted more positive response of patients (134–136).
The KEYNOTE-086 study (137) used lymph nodes and
cutaneous/subcutaneous metastatic surgical samples resected
from patients withmetastatic melanoma treated with ipilimumab
to validate the presence of tumor-infiltrating lymphocytes. The
results showed that, especially CD16+ and CD68+ cells, were
associated with an affirmative response to ICIs, as well as
prolonged survival. Subsequent studies including patients with

NSCLC or metastatic melanoma receiving ICIs discovered that
neoantigens coded by DNA with loss-of-function mutations
can result in drug resistance (138–140). Alterations in PD-
L1 and PD-L2 copy number (141), as well as microsatellite
instability/mismatch-repair deficiency (142) were identified as
potential predictive biomarkers. Lately, the ratio of metabolic to
morphological lesion volumes for patients with NSCLC (143)
and tumor heterogeneity index for patients with metastatic
melanoma (144), calculated through 2-deoxy-2-(18F)fluoro-D-
glucose positron-emission tomography/computed tomography,
have been utilized as imaging biomarkers for ICI therapy.

Based on the successful combination of anti-angiogenic agents
with ICIs and the ongoing research, it becomes clear that
the use of a single predictive biomarker regardless of cancer
type or combination therapy regimen may be inappropriate
(59). Wallin et al. (35) confirmed that the combination of
bevacizumab and atezolizumab in mRCC promotes antigen-
specific T-cell migration. Meanwhile, elevation of intra-tumoral
MHC-I, Th1, and T-effector markers, and chemokines (most
notably CX3CL1) was also found. Moreover, the VEGF inhibitor
improves the levels of the CX3CL1 receptor CX3CR1 on
periphery CD8+ T cells (145). In the IMmotion 150 and
IMmotion 151 trials comparing bevacizumab+ atezolizumab vs.
monotherapy with sunitinib in mRCC, patients with tumors with
T-effector/IFN-γ-high response or high myeloid inflammatory
gene expression signatures had better PFS after treatment
with the combination regimen (146, 147). Remarkably, the
IMpower150 study addressed that atezolizumab + bevacizumab
benefitted the EGFR or ALK wild-type patients with high
expression of T-effector gene signature, which substituted the
PD-L1+ populations in defining the other group for primary
endpoint analysis (148).

The synergetic promotion of the intra-tumoral chemokine
and its receptor in the periphery implies the presence of a
lymphocyte-trafficking mechanism associated with inhibition of
VEGF. In a phase I clinical trial (NCT00790010) to investigate the
effect of ipilimumab plus bevacizumab in patients withmetastatic
melanoma, patients receiving the combination regimen showed
a great advantage in prognosis (median OS, combination therapy
vs. ipilimumab monotherapy: 25.1 vs. 10.1 months, respectively)
(59, 149). In addition, conspicuous upregulation of CD31,
E-selectin, VCAM-1, and other adhesion molecules on intra-
tumoral endothelia cells were recorded (150). In a clinical
trial investigating the combination therapy of camrelizumab
plus apatinib, the efficacy in patients with GC/esophagogastric
junction cancer was unsatisfactory, although the therapeutic
effect in patients with HCC was encouraging. We can presume
that the discrepant consequences among these different types
of cancers may be attributed to tumor immunogenicity (60).
Interestingly, in numerous studies, elevation in PD-L1 expression
is considered a consequence of hypoxia induced by anti-
angiogenic treatment (151) or independent of hypoxia or
hypoxia-inducible factor 1α (HIF1α) (152, 153). This implies that
the detection of PD-L1 expression is not applicable for prediction
during treatment with this combination therapy. The JAVELIN
Renal 101 study demonstrated that the PD-L1 expression levels
cannot distinguish whether the combination therapy benefits
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PFS, while the high levels of intratumoral CD8+ T cells were
strongly associated with better efficacy. Notably, 26 gene profiles,
including immune-related genes, may be potential biomarkers
for this combination (69).

In summary, numerous predictive biomarkers with
diverse functions have been studied in anti-angiogenesis
and immune checkpoint blockade, respectively. However,
multiple sensitive and efficient predictors for anti-angiogenic
agents in combination with ICIs are currently being investigated,
where both cancer type and combination therapy regimen should
be taken into consideration. As the authors are concerned, it
seems rare difficult to determine a common indicator applied
to several kinds of cancer, probably owing to different tumor
immunogenicity resulting in distinct response to various
medicines. Another reason is assumed to be the objective lack
of relevant clinical trials. Since this combination therapy is
emerging and the antibodies/TKIs are rapidly developing, the
amount of certain trials is increasing at a low baseline and
the data of detecting biomarkers is insufficient. Thus far, no
appropriate predictive biomarker has been identified and clinical
trials need accumulate more.

SAFETY OF COMBINATION THERAPY OF
ANTI-ANGIOGENIC AGENTS AND ICIs

Undoubtedly, both types of therapy will result in complicated
biological responses. This complexity was further enhanced since
the development of the combination strategy, suggesting that
an increased risk of toxicities may ensue. In a systematic review
(154), it was clarified that the risk of cardiovascular events,
hypertension, arterial thromboembolism, and proteinuria
associated with anti-angiogenic agents was high. Meanwhile,
immune-related AEs, such as autoimmune colitis (155),
immune-related pneumonitis (156), and immune-related
dermatitis (157) are relatively frequent symptoms. According to
previous studies, toxicities (both anti-angiogenesis-related and
immune-related AEs) have been simultaneously or, respectively,
observed during treatment in the majority of cases. The
synergistic effects of combination treatment are affirmative.
However, theoretically, the frequencies and degrees of the two
aforementioned toxicities may be elevated accordingly (158).
In a former study combining pazopanib and nivolumab in the
treatment of mRCC, the addition of nivolumab enhanced the
pazopanib-related unpredictable elevation of transaminases
(159). In contrast, based on the clinical data available thus
far, there is no appearance of novel anti-angiogenesis-related
or immune-related toxicity, and the toxicity profile of the
regimen remains tolerable (with only the spectrum of TRAEs
expanding). The evaluation of the safety of ICIs in combination
with anti-angiogenic agents demands consideration of both
the tumor type and position, requiring further investigation.
Reports have shown that treatment with ICIs increases the risk
of edema in brain parenchyma for patients with primary brain
tumors and metastatic encephaloma, and my even result in
death (160, 161). Nevertheless, anti-VEGF agents are reported
to decrease the risk of glioblastoma-associated brain edema

in both mice and patients (162, 163), offering promise for the
combination of anti-VEGF therapy and ICIs in the treatment
of glioblastoma and possibly brain metastases. In breast cancer
models, a vascular normalization effect induced by ICIs was
observed (34), contrasting to the severe cerebrovascular events
noted in former cases. Toxicities caused by ICIs can often
resolve after discontinuing or reducing the treatment doses
(155). Considering that vascular normalization due to the anti-
angiogenic agents can improve the delivery of therapeutic agents
to tumors (164), the proposed combination strategy may not
require large doses of ICIs to maintain its immunostimulatory
effect and simultaneously reduce the risk of immune-related AEs
(2). In the CheckMate 016 study, higher frequencies of high-
grade (3 or 4) TRAEs were reported with combination therapy
than monotherapy with nivolumab, sunitinib, or pazopanib.
In addition, the frequencies of AEs resulting in treatment
discontinuation were higher with the combination regimen
than monotherapy with nivolumab, sunitinib, or pazopanib.
Notably, responses to nivolumab combined with sunitinib
or pazopanib and the OS outcome were encouraging. When
compared with other regimens of combination therapy, the
discoveries of the CheckMate 016 study suggest that the safety
and efficacy of different regimens based on ICIs combined with
anti-angiogenic agents may depend on thoughtful selection
of the anti-angiogenic component and dose. Of note, the
accurate mechanism of TRAEs occurrence during this treatment
(anti-angiogenesis-related or immune-related) can differ
owing to individual differences. For instance, both drugs may
lead to thrombocytopenia, which may be a consequence of
anti-angiogenic agent-induced thrombotic microangiopathy
and atypical hemolytic uremic syndrome or ICIs-induced
overactivation of T cells (165–167). According to those reports,
the treatment-related thrombocytopenia diminished with
the discontinuation of agents or intravenous monoclonal
antibodies (e.g., eculizumab) from the perspective of anti-
angiogenesis therapy, or with the application of corticosteroids
or immunosuppressive drugs from the perspective of ICIs
therapy. Hence, clinicians are requested to distinguish the
pathogenesis for adopting optimal countermeasures.

With ICIs attracting more attention in the treatment of
patients with HCC, several clinical trials combining ICIs with
anti-angiogenic agents are currently recruiting patients with
HCC worldwide. For example, a phase III, randomized, active-
controlled trial aiming to assess the safety and efficacy of
lenvatinib in combination with pembrolizumab compared with
lenvatinib plus placebo as first-line therapy of advanced HCC
(NCT03713593) is ongoing. Moreover, a phase II trial evaluating
sorafenib combined with nivolumab as first-line therapy is also in
the recruitment phase (NCT03439891).

Overall, the toxicity of anti-angiogenesis therapy combined
with ICIs is not severe, and lower than that of ICIs combined
with chemotherapy. Most existing clinical trials show tolerable
or manageable safety profile. In authors’ opinion, the doses
of ICIs or anti-angiogenic agents can be slightly inadequate
to reduce the degree and frequency of TRAEs, and the
administration time of each agent during the treatment is
worth considering to achieve better efficacy. However, physicians
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are required to carefully identify the source of the TRAEs
associated with this combination to precisely determine the
corresponding countermeasures.

CONCLUSION

Although immunotherapy with ICIs in the treatment of
cancer is undoubtedly one of the most promising strategies,
serious challenges remain (e.g., low response rate, AEs,
and acquired resistance). Studies have revealed that anti-
angiogenesis and ICIs therapy can reprogram the tumor
milieu from an immunosuppressive to an immune permissive
microenvironment, and mutually enhance the antitumor effect.
Firstly, deeper comprehension of the impact anti-angiogenic
agents and immunotherapy have on the immune system
of patients with cancer, and the mechanism of mutual
enhancement is warranted. Secondly, diverse combination
therapy regimens involving ICIs (PD-1, PD-L1, and CTLA-4
inhibitors) combined with anti-VEGF antibody, anti-VEGFR
antibody, or VEGFR TKIs have shown more clinical benefit
than ICIs or anti-angiogenic monotherapy and homogeneous
combination therapy, providing a hopeful solution to the
dilemma of immunotherapy with ICIs. Nevertheless, the timing
or the sequence of each agent in the combination and the
optimal regimen are currently unclear, while the optimal dose
of each agent remains unknown. Thirdly, owing to the vascular
normalization caused by anti-angiogenic agents, the delivery
of therapeutic agents to tumors is improved, thereby reducing
the doses of ICIs and decreasing the risk of immune-related
AEs. Despite these exciting achievements, several safety problems
urgently need to be resolved. Finally, the lack of sensitive and
efficient predictive biomarkers for anti-angiogenic agents in
combination with ICIs impedes the adjustment of the scheme on
certain conditions. On the other hand, the evaluation of either
safety or prognosis should take both the type of cancer and the
selection of drugs into sensible consideration. This may lead to
a low efficiency clinical decision and demand for a number of
relevant studies in the future.

In conclusion, anti-angiogenic agents in combination with
ICIs have demonstrated promising outcome in certain types

of carcinoma. However, further intensive studies are warranted
to resolve the above problems. The effectiveness, toxicity, and
tolerability of the combination therapy need to be optimized
by determining the appropriate dose and sequence. Anti-
angiogenic agents combined with ICIs are more suitable for
patients with advanced malignant tumors who are not sensitive
to, willing, or able to tolerate chemotherapy. This therapy
has been proved competent for the treatment of HCC and
RCC, but further research is still warranted to claim that the
treatment of cancer has reached the chemotherapy-free era.
In the future, basic researches investigating the mechanism
of the positive feedback loop between anti-angiogenic agents
and ICIs should be conducted in a more detailed and
interconnected manner to help develop new formulation and
design clinical studies. Meanwhile, not only the efficient
of certain regimen is evaluated, biomarkers are supposed
to be detected synchronously in more clinical trials. With
increasing valid evidence, physicians are tending able to decide
better combination and administration time and sequence,
enhancing the efficacy and reducing the toxicities. Optimizing
this new strategy into the most standard therapy requires a
long distance.
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