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Solitonic dynamics and excitations 
of the nonlinear Schrödinger 
equation with third-order 
dispersion in non-Hermitian PT
-symmetric potentials
Yong Chen & Zhenya Yan

Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, 
Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have 
been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) 
equations in the presence of non-Hermitian potentials since the concept of the parity-time ( )PT
-symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation 
with third-order dispersion in some complex PT -symmetric potentials (e.g., physically relevant PT
-symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the 
respective linear PT -symmetric phases are broken. Moreover, we also use the adiabatic changes of the 
control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. 
The elastic interactions of two solitons are exhibited in the third-order NLS equation with PT
-symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the 
presence of third-order dispersion and PT -symmetric potentials arising in nonlinear fiber optics and 
other physically relevant fields.

The representative nonlinear Schrödinger (NLS) equation can be used to describe distinguishing wave phenom-
ena arising in many nonlinear physical fields such as nonlinear optics, Bose-Einstein condensates (alias 
Gross-Pitaevskii equation), the deep ocean, DNA, plasmas physics, and even financial market, etc.1–9. The dynam-
ics of fundamental bright and dark solitons (also vortices and light bullets in higher-dimensional cases) of the 
NLS model and self-similar modes in its generalized forms have been addressed (see refs 10–17 and references 
therein). Recently, inspired by the non-Hermitian PT -symmetric potentials first suggested by Bender and 
Boettcher18,19 in the classical Hamiltonian operators, Musslimani et al.20 first introduced the complex PT
-symmetric potentials in the NLS model such that some novel phenomena with stable modes were found. After 
that, a variety of distinguishing PT -symmetric or non-PT -symmetric potentials were introduced to the contin-
uous or discrete NLS equations to explore dynamical behaviors of PT -symmetric nonlinear modes (see, e.g., 
refs 21–42 and references therein). Meanwhile, more and more physical experiments have also been designed to 
observe new wave phenomena in the sense of non-Hermitian PT -symmetric potentials43–48. Here the parity   
and temporal   operators are defined as19:    = −p p: ,   = −x x and = −p p:   ,   =x x, = −i i  . 
The one-dimensional complex potential U(x) is PT -symmetric provided that the sufficient (not necessary) con-
ditions UR(x) =  UR(− x) and UI(− x) =  − UI(x) hold19, where U(x) is also called the refractive-index in optical 
fibre.

In the study of ultra-short (e.g., 100 fs1) optical pulse propagation, the higher-order dispersive and nonlinear 
effects become significant such as third-order dispersion (TOD), self-steepening (SS), and the self-frequency shift 
(SFS) arising from the stimulated Raman scattering. The third-order NLS equation was introduced from the 
Maxwell equation49,50. The generalized inhomogeneous third-order NLS equation with modulating coefficients in 
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the complex gain-or-loss term has been verified to admit optical rogue waves51. Recently, the NLS equation with 
only third-order dispersion was used to numerically confirm the experimental observation of the spectral signa-
ture of the collision between a soliton and the dispersive wave52. To our best knowledge, the PT -symmetric linear 
and nonlinear modes in the third-order NLS equation were not studied before. Our aim in this paper is to inves-
tigate the linear and nonlinear modes of the third-order NLS equation in the presence of physically interesting 
PT -symmetric potentials, e.g., Scarff-II-like potential and harmonic-Gaussian potential. We find that some 
parameters can modulate the stable nonlinear modes even if the linear PT -symmetric phases are broken. 
Moreover, we also understand that the adiabatic changes of control parameters can be used to excite the initial 
modes subject to exact bright solitons to generate stable nonlinear modes.

The rest of this report is arranged as follows. In Section of Results, we introduce the NLS equation with 
third-order dispersion in the presence of complex PT -symmetric potentials. We consider the nonlinear modes 
and their stability in the PT -symmetric Scarff-II-like and harmonic-Gaussian potentials. The problems of non-
linear modes excitations is also investigated, which can excite initial nonlinear modes to reach stable modes. 
Moreover, we also give some methods used in this paper. Finally, some conclusions and discussions are 
presented.

Results
Nonlinear wave model with PT-symmetric potentials. We focus on the generalized form of the 
third-order NLS equation52–54 in non-Hermitian potentials, that is, the NLS equation with third-order dispersion 
(TOD) and complex PT -symmetry potentials
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where Raman effect, nonlinear dispersion terms (e.g., self-steepening term and self-frequency shift effect), and 
higher-order dispersion terms are neglected49,50,55,56, ψ ≡  ψ(x, z) is a complex wave function of x, z, z denotes the 
propagation distance, the real parameter β stands for the coefficient of TOD, the PT -symmetric potential 
requires that V(x) =  V(− x) and W(x) =  − W(− x) describing the real-valued external potential and gain-and-loss 
distribution, respectively, and g >  0 (or < 0) is real-valued inhomogeneous self-focusing (or defocusing) nonlin-
earity. The power of Eq.  (1) is given by ∫ ψ=

−∞

+∞P z x z dx( ) ( , ) 2  and one can readily know that 

∫ ψ=
−∞

+∞P W x x z dx2 ( ) ( , )z
2 . Equation (1) becomes the usual higher-order NLS equation in the absence of the 

gain-and-loss distribution53. Equation (1) with β =  0 becomes the PT -symmetric nonlinear model, which has 
been studied21–40. In the following we consider the case in the presence of TOD term (β ≠  0) and gain-and-loss 
distribution. Here our following results are also suitable for the case x →  t in Eq. (1).

Linear spectrum problem with PT-symmetric potential. We start to study the physically interesting 
potential in Eq. (1) as the PT -symmetric Scarff-II-like potential

β= =V x V x W x x x( ) sech , ( ) sech tanh , (2)0
2 2

where the real constant V0 and TOD parameter β can be used to modulate the amplitudes of the reflectionless 
potential V(x)57 and gain-and-loss distribution W(x), respectively. Moreover, V(x) and W(x) are both bounded 
(i.e., 0 <  |V(x)| ≤  |V0|, β≤W x( ) 2 3 /9) with β= −−W x V V x V V x( ) ( ) ( )0

2
0
2 2  and V(x), W(x) →  0 as 

|x| →  ∞  (see Fig.  1a). It is easy to see that the gain-and-loss distribution is always balanced since 
∫ =
−∞

+∞ W x dx( ) 0 and has only the limit effect on linear and nonlinear modes since W(x) ~ 0 as |x| >  M >  0. The 
sole difference between the potential (2) and the usual Scraff-II potential58 is that the gain-and-loss distribution 
in Eq. (2) will more quickly approaches to zero than one (i.e., β sec h x tan h x) in Scarff-II potential for the same 
amplitudes.

We firstly consider the linear spectrum problem (i.e., Eq. (1) with g =  0) in the PT -symmetric Scarff-II-like 
potential (2) and use the stationary solution transformation ψ(x, z) =  Φ (x)e−iλz to yield
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where λ and Φ (x) are the corresponding eigenvalue and eigenfunction, respectively, and lim|x|→∞Φ (x) =  0. Since 
the discrete spectrum of a complex PT -symmetric potential is either real or appears in complex conjugated pairs, 
thus we may find some proper parameters V0, β for which the complex PT -symmetric potential keep 
unbroken.

Here we consider V0 <  0 such that the shape of potential V(x) seems to be V-shaped with zero boundary con-
ditions (see Fig. 1a). We numerically study the discrete spectra of the operator L (see Methods). Figure 1b exhibits 
the regions of broken and unbroken PT -symmetric phases on the (V0, β) space. Two almost parallel straight lines 
(β ≈  ± 0.12) separate the limited space {(V0, β)|− 0.02 ≤  V0 ≤  − 3, |β| ≤  0.5}. The regions of broken and unbroken 
PT -symmetric phases are outside and inside between two lines, respectively. For the given TOD parameter 
β =  0.1 and varying V0, the spontaneous symmetry breaking does not occur from the two lowest states since the 
maximum absolute value of imaginary parts of λ is less than 6 ×  10−14 and they can be regarded as zero (see 
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Fig. 1(c,d)). However, for the given V0 =  − 2 and varying β, the spontaneous symmetry breaking occurs from two 
lowest states starting from some β =  0.12 (see Fig. 1(e,f)).

Nonlinear localized modes and stability. For the given PT -symmetric Scarff-II-like potential (2), based 
on some transformations, we can find the unified analytical bright solitons of Eq. (1) for both the self-focusing 
and defocusing cases (see Methods)

ψ κβ= − + κ µ−x z V g x e( , ) ( 1)/ sech( ) , (4)i x i z
0

where the phase wavenumber is defined by TOD coefficient κ ν β β= + +(1 1 /3 )/2  with v =  ± 1, the potential 
is μ =  (3κ2 +  3βκ −  βκ3 −  3)/6, and the existent condition g(V0 −  κβ +  1) >  0 is required. For the signs of param-
eter v and nonlinearity g, we find the following four cases for the existent conditions of bright solitons (4) (let 
α β= +1 /32 ): (i) v =  − g =  − 1 and V0 >  − α (i.e., the right-side domain of the hyperbola of one sheet V0 =  − α 
on (V0, β)-space); (ii) v =  g =  − 1 and V0 <  − α (i.e., the left-side domain of the hyperbola of one sheet V0 =  − α 
on (V0, β)-space); (iii) v =  g =  1 and V0 >  α (i.e., the right-side domain of the hyperbola of one sheet V0 =  α on 
(V0, β)-space); (iv) v =  − g =  1 and V0 <  α (i.e., the left-side domain of the hyperbola of one sheet V0 =  α on  
(V0, β)-space).

In the following we numerically59 study the robustness (linear stability) of nonlinear localized modes (4) for 
both self-focusing and defocusing cases (g =  ± 1) via the direct propagation of the initially stationary state (4) 
with a noise perturbation of order about 2% in Fig. 2 (see Methods). Figure 2(a1) exhibits the stable and unstable 
(approximate) regions for Case (i) v =  − g =  − 1 and different parameters V0 and β. For V0 =  − 0.8, β =  0.1 belong-
ing to the domain of the unbroken linear PT -symmetric phase [cf. Eq. (3) and Fig. 1b], the stable nonlinear mode 
is generated (see Fig. 2(a2)). For the fixed V0 =  − 0.8, if we change β =  1.1 corresponding to the domain of the 
broken linear PT -symmetric phase, then a stable nonlinear mode is found too, that is, the focusing nonlinear 
term can modulate the unstable linear modes (broken PT -symmetric phase) to stable nonlinear modes (see 
Fig. 2(a3)). But if β increases a little bit (e.g., β =  1.5), then the nonlinear mode becomes unstable (see Fig. 2(a4)). 
In particular, for V0 =  − 1.1, β =  0.7, which does not satisfy the required existent condition of solution V0 >  − α, 
that is, the expression (4) for this case, ψ = . − . κ µ−x z i x e( , ) 1 1 3 49/3 sech( ) i x i z

0 , is not an analytical solution 
of Eq. (1), but we still use it as the initial solution with a noise perturbation of order 2% to make numerical simu-
lations such that we find the initial mode φ0(x, 0) can be excited to a stable and weakly oscillatory (breather-like 
behavior) situation (see Fig. 2(a5)). For Case (ii) v =  g =  − 1, we also have the similar results (see Fig. 2(b3–b5)). 
For the last two Cases (iii) and (iv), we fix V0 >  0, in which the potential is similar to a Gaussian-like profile and 
the linear problem (3) has no discrete spectra, but we still find the stable nonlinear modes (see Fig. 2(c3–c5),  
(d3,d5)) and unstable (see Fig. 2(c2,d2,d4)) nonlinear modes.

Figure 1. Linear spectrum problem. (a) PT -symmetric potential (2) with V0 =  − 0.8, β =  1, (b) The phase 
transitions for the linear operator L (3) with PT -symmetric Scarff-II-like potentials (2). The domain of 
unbroken (broken) PT -symmetric phase is inside (outside) the domain in (V0, β)-space. (c) Real and (d) 
imaginary parts of the eigenvalues λ [see Eq. (3)] as functions of V0 for the PT -symmetric potential (2) at 
β =  0.1, in which the imaginary parts are almost zero. (e) Real and (f) imaginary parts of the eigenvalues λ [see 
Eq. (3)] as functions of β for the PT -symmetric potential (2) at V0 =  − 2.
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For the above-obtained nonlinear modes (4), we have the corresponding transverse power-flow or Poynting 
vector given by ψψ ψ ψ κ κβ= − = − +−⁎ ⁎S i g V x/2( ) ( 1) sechx x

1
0

2  with (V0 −   κβ  +   1)/g  >   0 and 
κ ν β β= + +(1 1 /3 )/2 . We here consider the only case β >  0 (the case β <  0 can also be considered). For v =  1 
(or − 1), we have S >  0 (or < 0), which implies that the pamaeter v change the directions of power flows from gain 
to loss regions. The power of the solutions (4) is ∫ ψ κβ= = − +

−∞

+∞P z x z dx V g( ) ( , ) 2( 1)/2
0 , which is 

conserved.

Interactions of bright solitons. We here study the interactions of two bright solitons in the PT -symmetric 
potential. For the defocusing case g =  − 1, if we choose V0 =  1.1, β =  v =  1 and consider the initial condition 
ψ φ= + . + −x x x e( , 0) ( , 0) 1 2 2/ 3 sech ( 20) ix

1
4  with φ(x, 0) given by Eq. (4) such that the elastic inter-

action is generated (see Fig. 3a). If we choose V0 =  − 1.5, β =  0.1, v =  − 1 and consider the initial condition 
ψ φ= + . . +x x x e( , 0) ( , 0) 0 5 sech (0 5 10) ix

2
7  with φ(x, 0) given by Eq. (4) such that the elastic interaction is 

Figure 2. Stability of nonlinear modes (4). (a1–a5) v =  − g =  − 1, (a1) stable and unstable regions [the 
maximal absolute value of imaginary parts of the linearized eigenvalue δ on (V0, β) space (common logarithmic 
scale), similarly hereinafter], (a2) V0 =  − 0.8, β =  0.1 (stable), (a3) V0 =  − 0.8, β =  1.1 (stable), (a4) V0 =  − 0.8, 
β =  1.5 (unstable), (a5) V0 =  − 1.1, β =  0.7 (periodically varying); (b1–b5) v =  g =  − 1, (b2) V0 =  − 1.5, β =  0.1 
(stable), (b3) V0 =  − 1.5, β =  1.9 (stable), (b4) V0 =  − 1.5, β =  2 (unstable), (b5) V0 =  − 0.9, β =  0.2 (stable);  
(c1–c5) v =  g =  1, (c2) V0 =  1.2, β =  0.1 (unstable), (c3) V0 =  1.2, β =  1 (stable), (c4) V0 =  1.2, β =  1.2 
(periodically varying), (c5) V0 =  0.9, β =  0.2 (stable); (d1–d5) v =  − g =  1, (d2) V0 =  0.8, β =  0.1 (unstable),  
(d3) V0 =  0.8, β =  1 (stable), (d4) V0 =  0.8, β =  1.1 (unstable), (d5) V0 =  1.1, β =  0.7 (stable).

Figure 3. The interactions of bright solitons (4) of Eq. (1). (a) V0 =  1.1, β =  v =  − g =  1, (b) V0 =  1.2, 
g =  β =  v =  1, (c) g =  v =  − 1, V0 =  − 1.5, β =  0.1, (d) g =  − v =  1, V0 =  − 0.8, β =  0.1.
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generated (see Fig. 3c). For the self-focusing case g =  1, if we choose V0 =  1.2, β =  v =  1 and consider the initial 
condition ψ φ= + − . −x x x e( , 0) ( , 0) 2/ 3 1 1 sech( 20) ix

3
7  with φ(x, 0) given by Eq. (4) such that the elas-

tic interaction is generated (see Fig. 3b). If we choose V0 =  − 0.8, β =  0.1, v =  − 1 and consider the initial condi-
tion ψ φ= + . . +x x x e( , 0) ( , 0) 0 5 sech (0 5 10) ix

4
7  with φ(x, 0) given by Eq. (4) such that the elastic interaction 

is generated (see Fig. 3d).

Exciting stable nonlinear localized modes in equation (1). Nowadays we turn to the excitation of 
nonlinear modes by means of a slow change of the control TOD parameter β →  β(z) in Eq. (1) which is regarded 
as a function of propagation distance z, that is, we focus on simultaneous adiabatic switching on the TOD and 
gain-and-loss distribution, modeled by
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where V(x), W(x) are given by Eq. (2) with β →  β(z), and β(z) is chosen as
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sin( /2000) , 0 1000,
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with β1,2 being real constants. It is easy to see that the solutions (4) with β →  β(z) do not satisfy Eq. (5), but for 
z =  0 and z ≥  1000 solutions (4) indeed satisfy Eq. (5).

Figure 4 displays the wave propagation of the solutions ψ(x, z) of Eq. (5) subject to the initial condition given 
by Eq. (4) with β →  β(z) given by Eq. (6). For v =  1 and different parameters g, V0, β1,2, Fig. 4(a–c) exhibit the 
stable modes in which the initial states |ψ(x, 0)|2 given by Eq. (4) with z =  0, β =  β1 are all of the higher ampli-
tudes and then the amplitudes decrease slowly as z increases such that they reach the alternative stable sates 
beginning from about z =  1000. For v =  − 1 and different parameters g, V0, β1,2, Fig. 4(e,f) also exhibit the stable 
modes in which the initial states are all of the lower amplitudes and then the amplitudes grow step and step as 
z increases such that they reach the stable and weakly oscillatory (breather-like behavior) situations beginning 
from about z =  1000, but Fig. 4d shows that the stable mode keeps from z =  0 to z =  1100 and then the wave 
slowly increases a little bit to reach another stable and weakly oscillatory (breather-like behavior) feature. In 
particular, in Fig. 4(b,f), we can excite the initial states subject to inexact solitons (4) of Eq. (1) for v =  − g =  1, 
V0 =  0.8, β =  0.7 (or v =  − g =  − 1, V0 =  − 1.1, β =  0.7) to the stable states subject to exact solitons (4) of Eq. (1) for 
v =  − g =  1, V0 =  0.8, β =  1 (or v =  − g =  − 1, V0 =  − 1.1, β =  0.8 of Eq. (1)).

Nonlinear model with the spatially varying TOD. We here consider nonlinear modes of the generalized 
form of Eq. (1) with x-spatially varying TOD coefficient β →  β(x), that is,

ψ ψ β ψ ψ ψ ψ∂
∂
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We here are interested in the TOD coefficient β(x) of a Gaussian function

Figure 4. Exciting stable nonlinear localized modes [cf. Eq. (5)]. (a) v =  − g =  1, V0 =  0.8, β1 =  0.4, β2 =  0.1, 
(b) v =  − g =  1, V0 =  0.8, β1 =  0.7, β2 =  0.3, (c) v =  g =  1, V0 =  1.2, β1 =  0.5, β2 =  0.1, (d) v =  g =  − 1, V0 =  − 1.5, 
β1 =  0.6, β2 =  0.1, (e) v =  − g =  − 1, V0 =  − 0.8, β1 =  1, β2 =  0.1, (f) v =  − g =  − 1, V0 =  − 1.1, β1 =  0.7, β2 =  0.1.
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β β= −x e( ) (8)x
0

2

with β0 ≠  0 being a real amplitude of the Gaussian profile and another complex PT -symmetric 
harmonic-Gaussian potential

βγ γ β γ βγ= + − + = − + −V x x x W x x x x( ) 1
2

(36 7 4), ( ) 1
6

(3 ) 9 (4 1),
(9)

2 2 2 3

in which β =  β(x) is given by Eq. (8) and we have introduced the function γ σ= −e x /22
 with σ ≠  0 being a real 

constant. In fact, we can also consider the general case β(x). We know that the potential V(x) approaches to the 
harmonic potential x2/2 (which is related to the usual physical experiments) and W(x) →  0 as |x| →  ∞  (see 
Fig. 6(b,d)).

For the given PT -symmetric harmonic-Gaussian potential (9), we studied the discrete spectra of linear prob-
lem (3) such that we give the separated regions for the broken and unbroken PT -symmetric phase (see Fig. 5(a)). 
When |σ| is greater than about 0.16, we only find the discrete spectra for β0 very approaching to zero (here we 
consider |β0| ≤  0.3). For the given amplitude β0 =  0.1 of TOD coefficient, we give the first six lowest eigenvalues 
(see Fig. 5(b,c)), where the spontaneous symmetry breaking occurs from the two lowest states.

We find the exactly analytical solutions of Eq. (7) with the Gaussian TOD coefficient in the PT -symmetric 
harmonic-Gaussian potential (9) in the form

ψ σ= σ π− − +x z g e e( , ) 3 2/ , (10)x iz i x/2 /2 3 2 erf ( / 2 )2

where g >  0 and erf(·) is an error function. In the following we take g =  1 without loss of generality.
In what follows we numerically investigate the robustness (linear stability) of nonlinear localized modes (10) 

for self-focusing case (g =  1) via the direct propagation of the initially stationary state (10) with a noise pertur-
bation of order about 2% in Fig. 6 (see Methods). The linear stability of the solutions (10) is displayed in Fig. 6a) 
such that we find the solutions (10) are possibly stable nearby σ =  0. For σ =  β0 =  0.1, in which the potential 
becomes almost a harmonic potential x2/2 (see Fig. 6b), we find the stable nonlinear mode (see Fig. 6c). But for 
σ =  0.2, β0 =  0.35, in which the potential is a double-well potential (see Fig. 6d), we also obtain the stable nonlin-
ear mode (see Fig. 6e).

For the above-obtained nonlinear modes (10), we have the corresponding transverse power-flow or Poynting 
vector given by ψψ ψ ψ σ= − = − −⁎ ⁎S i g e/2( ) 108x x

x3 1 3 /22
, which implies that sgn(S) =  sgn(σ). Since the 

Figure 6. Stability and dynamical behaviors with g = 1. (a) stable and unstable regions, (b) PT -symmetric 
potential with sing-well σ =  β0 =  0.1, (c) stable nonlinear mode for σ =  β0 =  0.1 (linear unbroken PT
-symmetric phase), (d) PT -symmetric potential with double-well σ =  0.1, β0 =  1, (e) stable nonlinear mode for 
σ =  0.1, β0 =  1 (linear broken PT -symmetric phase).

Figure 5. Linear spectrum problem. (a) The phase transitions for the linear operator L (3) with PT
-symmetric harmonic-Gaussian potential (9). The unbroken (broken) PT -symmetric phase is in the domain 
inside (outside) the almost rectangle domain on (σ, β0)-space. (b) Real and (c) imaginary parts of the 
eigenvalues λ [see Eq. (3)] as functions of σ for the PT -symmetric potential (9) at β0 =  0.1.
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gain-and-loss distribution W(x) given by Eq. (9) depends on TOD parameter β0 and σ, which generate that there 
are more one intervals for gain (or loss) distribution, thus though the power flows along the positive (negative) 
direction for the x axis as σ >  0 (< 0), it is of the complicated structures from the gain-and-loss view.

Moreover, we also study the interactions of two bright solitons in the PT -symmetric potential.  
For the focusing case g =  1, if we choose σ =  − 0.1, β0 =  0.1 and consider the initial condition 
ψ φ= − . − −x x e( , 0) ( , 0) 0 3 2 x

1
( 10) /22

 with φ(x, 0) given by Eq.  (10) such that the elastic interaction is  
generated (see Fig.  7(a)). If we choose σ  =   0.2, β0 =   0.1 and consider the initial condition 
ψ φ= + . − −x x e( , 0) ( , 0) 0 3 2 x

2
( 10) /22

 with φ(x, 0) given by Eq. (10) such that the elastic interaction is generated 
too (see Fig. 7(b)).

Nowadays we turn to the excitation of nonlinear modes by means of a slow change of the control TOD param-
eter β(x) →  β(x, z) in Eq. (5) whose amplitude β0 is regarded as a function of propagation distance z, that is, we 
focus on simultaneous adiabatic switching on the TOD, potential, and gain-and-loss distribution.

For the given σ =  0.1, we consider the varying amplitude β0 →  β0(z) in Eq. (8) in the form

β π=




. + . ≤ <

≤
z z z

z
( ) 0 9 sin( /2000) 0 1, 0 1000,

1, 1000 (11)0

which makes the TOD coefficient given by Eq. (8), potential V(x) and gain-or-loss distribution W(x) given by 
Eq. (9) change, but it does not change the expression of solutions (10). Now we study the wave evolution of the 
solution ψ(x, z) satisfied by Eq. (5) with Eqs (8), (9) and (11) subject to the initial condition given by Eq. (10). As 
a consequence, we find the stable nonlinear modes by using the excitation (11), that is, we can steadily excite one 
stable mode (Fig. 6(c)) to reach another stable one (Fig. 6(e)), which is exhibited in Fig. 8(a).

Now we fix the amplitude of TOD, β0 =  0.1, and consider the effect of varying amplitude σ →  σ(z) on nonlin-
ear modes:

σ π=




. + . ≤ <

. ≤
z z z

z
( ) 0 1 sin( /2000) 0 1, 0 1000,

0 2, 1000 (12)

which makes the potential V(x) and gain-or-loss distribution W(x) given by Eq. (9), and solutions (10) change, 
but it does not change the TOD coefficient given by Eq. (8). We consider the wave evolution of the solution ψ(x, z) 
satisfied by Eq. (5) with Eqs (8), (9) and (12) subject to the initial condition given by Eq. (10) such that we find the 
stable nonlinear modes by using the excitation, that is, we can smoothly excite one stable mode (see Fig. 6(c)) to 
another stable mode (see Fig. 8(b)). Moreover, if we simultaneously consider the effect of varying β0(z) and σ(z) 
given by Eqs (11) and (12) then we also find the similar result (see Fig. 8(c)).

Figure 7. The interactions of bright solitons (10) of Eq. (5). (a) σ =  − 0.1, (b) σ =  0.2. Other parameters are 
g =  1, β0 =  0.1.

Figure 8. Exciting stable nonlinear localized modes. (a) σ =  0.1 and β0(z) given by Eq. (11), (b) β0 =  0.1 and 
σ(z) given by Eq. (12), (c) β0(z) and σ(z) given by Eqs (11) and (12).
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Discussion
In conclusions, we have introduced some non-Hermitian (e.g., complex PT -symmetric) potentials in the nonlin-
ear Schrödinger equation with third-order dispersion. For the chosen physically interesting PT -symmetric 
Scarff-II-like and harmonic-Gaussian potentials, we found exact analytical bright solitons of this equation. In the 
presence of these PT -symmetric potentials, we study the broken and unbroken of PT -symmetric phases of the 
corresponding linear problem (third-order linear operator with complex potentials) for TOD and potential 
parameters such that we find the TOD parameter has a strong effect on the spectra (it only admit a few discrete 
spectra). We have studied the linear stability of exact bright solitons. In particular, we find the stable nonlinear 
modes for some control parameters for which even if the corresponding linear PT -symmetric phase is broken. 
Moreover, we also investigate the problems of nonlinear modes excitations, which can excite initial nonlinear 
modes to reach stable modes. The method in this paper can also be extended to explore other higher-order or/and 
higher-dimensional NLS equations in the presence of non-Hermitian potentials and may open a new window to 
investigate similar problems. Our results may be useful to provide theoretical researchers and experimental sci-
entists with more new data about the PT -symmetric nonlinear modes in higher-order nonlinear wave models.

Methods
Linear spectrum problem. For Eq. (1) in the absence of nonlinear term (g =  0), we assume that 
ψ(x, z) =  Φ (x)e−iλz, then we have Eq. (3), which with the PT -symmetric potential (2), as |x| →  ∞ , reduces to 

λ− + Φ = Φβ( )i x x( ) ( )d
dx

d
dx

1
2 6

2

2

3

3
, whose characteristic equation is λΛ + Λ + =β 0i1

2
2

6
3 , whose roots, in general, 

are complex numbers and complicated. For example, if λ =  1/(3β2) and β >  0 (without loss of generality), we have 
its three roots Λ 1 =  i/β, βΛ = ± i(1 3 )/2,3 , which probably lead to the result that the corresponding eigenfunc-
tions should satisfy periodic boundary conditions. Additionally, if β depends on the space x, e.g., 
β(x) =  β0 exp(− x2), and V(x), W(x) are given by Eq. (9), then we have β(x), W(x) →  0 and V(x) →  x2/2 as |x| →  ∞ . 
Thus for this case Eq. (3) reduces to − + Φ =( )x x( ) 0d

dx
1
2

1
2

22

2
 as |x| →  ∞ , where the condition λ  x2 is used, 

and we have the asymptotic solutions Φ ∼ ±x e( ) x /22
. Based on the standard conditions of wave function, we only 

take Φ ∼ −x e( ) x /22
, which generally corresponds to zero boundary conditions and discrete spectra. Therefore, in 

order to verify these results, we use the Fourier collocation method59–61 to numerically study the above-men-
tioned linear spectrum problems and obtain the agreeable conclusions as ones by the theoretical analysis.

Nonlinear stationary modes. We consider the stationary solutions of Eq. (1) in the form ψ(x, z) =  φ(x) 
e−iμz, where φ(x) is a complex field function and μ the corresponding propagation constant. We have 
µφ φ φ φ φ φ+ + − + + =βi V x iW x g[ ( ) ( )] 0xx xxx

1
2 6

2 . To study nonlinear modes of this equation we assume 
that φ ρ ϕ=x x i x( ) ( )exp[ ( )] with ρ(x) and ϕ(x) being real functions and separate the real and imaginary parts to 
yield

βϕ ρ βϕ ρ βϕ ϕ βϕ µ ρ ρ− + + + − − + + =V x g( 3) [ 3 6 ( ) 6 ] 6 0, (13)x xx x x xxx x x
2 3 3

βρ ϕ βϕ ρ ϕ βϕ ϕ ρ+ − + − − = .W x(6 3 ) 3[ 2 ( )] 0 (14)xxx x x x xx x xx
2

For the given PT -symmetric potential (2) we can find the exact bright solitons (4) of Eq. (1). Similarly, we can 
also find the solutions of Eq. (5) in the PT -symmetric potential (9).

Linear stability of nonlinear stationary modes. To further study the linear stability of the 
above-obtained nonlinear stationary solutions ψ(x, z) =  φ(x)e−iμz of Eq. (1), we considered a perturbed solu-
tion59,62 ψ φ= + +δ δ µ− −⁎ ⁎

x z x F x e G x e e( , ) { ( ) [ ( ) ( ) ]}i z i z i z, where  1 , δ and F(x) and G(x) are the eigenvalue 
and eigenfunctions of the linearized eigenvalue problem. We substitute the expression into Eq. (1) and linearize 
it with respect to ϵ to yield the following linear eigenvalue problem

φ

φ
δ




− −















 =















⁎ ⁎
L g x

g x L
F x
G x

F x
G x

( )
( )

( )
( )

( )
( )

,
(15)

2

2

where φ µ= ∂ + ∂ − + + +β
L i V x iW x g x[ ( ) ( )] 2 ( )x x

1
2

2
6

3 2 . It is easy to see that the PT -symmetric nonlin-
ear modes are linearly stable if δ has no imaginary component, otherwise they are linearly unstable.
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