Tapia et al. Molecular Cancer 2011, 10:6
http://www.molecular-cancer.com/content/10/1/6

(. MOLECULAR
CANCER

~-b

RESEARCH Open Access

LIM kinase1 modulates function of membrane
type matrix metalloproteinase 1: implication in
invasion of prostate cancer cells

Tenekua Tapia, Richard Ottman’, Ratna Chakrabarti

Abstract

MT1-MMP and its implication in cell invasion.

Background: LIM kinase 1 (LIMK1) is an actin and microtubule cytoskeleton modulatory protein that is
overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate
and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP) is a critical modulator of
extracellular matrix (ECM) turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell
invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a
variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in
prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and

Results: Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9
ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in
increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1
also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma
membrane. LIMKT physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also
noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues.

Conclusion: Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for
the first time, involvement of MMPs in LIMK1 induced cell invasion.

Introduction

LIM kinase 1 (LIMK1) is a downstream effector of Rho
signaling pathway, which modulates actin dynamics.
LIMK], a unique serine/threonine kinase containing two
N-terminal LIM domains in tandem and a PDZ domain
[1] is a newly identified candidate that promotes pros-
tate and breast cancer metastasis [2-4]. High levels of
LIMK1 have been observed in highly invasive prostate
cancer cell lines and in human prostate tumors [2,3,5].
LIMK1 expression increased invasiveness of non-inva-
sive prostate and breast cancer cells and expression of
antisense RNA or dominant negative kinase-dead
LIMK]1 greatly reduced invasion of prostate and breast
cancer cells [2-4]. LIMK1 regulates actin cytoskeleton
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remodeling through inactivating phosphorylation of cofi-
lin on Ser® residue [6] resulting in accumulation of actin
polymer. The catalytic activity of LIMK1 requires acti-
vating phosphorylation at the T°%° residue in its kinase
domain, which changes conformation of the kinase
domain and favors dissociation of the autoinhibitory
N-terminal LIM domains from the C-terminal kinase
domain making the kinase domain accessible to its sub-
strate [7]. Activating phosphorylation of LIMKI1 is
mediated by p21 kinase (PAK1 & PAK4) and Rho kinase
(ROCK), which in turn are activated by the members of
Rho subfamily of small GTPases (Rho, Rac and Cdc42)
[8]. LIMK1 is also involved in Rac-mediated lamellipodia
formation [9].

Membrane type matrix metalloproteinase 1 (MT1-
MMP) belongs to a family of zinc binding collagenase
that is involved in extracellular matrix (ECM) turnover
[10]. The ability of MT1-MMP to degrade ECM has
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established its role in physiological and pathological tis-
sue remodeling such as angiogenesis and tumor devel-
opment. Expression of MT1-MMP is documented in
various tumor cells and strongly implicated in tumor
progression and metastasis [11]. MT1-MMP shares con-
served structural features with other MMPs, such as an
N-terminal signal peptide, a propeptide and a catalytic
domain [12]. In its active form MT1-MMP is a mem-
brane-tethered metalloproteinase, which anchors to the
plasma membrane with its transmembrane domain so
that the catalytic domain is exposed on the surface of
the cells [13].

Activation of MT1-MMP requires removal of the pro-
peptide by furin convertase, resulting in a 57 kDa active
enzyme [14] and its targeting into the plasma mem-
brane. Tissue inhibitor of matrix metalloproteinase 2
(TIMP-2) interacts with the membrane-tethered MT1-
MMP with its catalytic domain and inhibits its proteoly-
tic activity [15]. MT1-MMP bound with TIMP-2 acts as
a receptor for binding of soluble pro-MMP-2 with its
hemopexin domain. The trimolecular complex of MT1-
MMP/TIMP-2/pro-MMP-2 then present pro-MMP-2 to
a neighboring TIMP-2 free MT1-MMP, which cleaves
pro-MMP2 to its active form [16]. To position another
molecule of MT1-MMP next to the ternary complex,
MT1-MMP forms a homo-oligomeric complex through
its hemopexin and or transmembrane/cytoplasmic
domain [17,18]. Recent studies linked the function of
MT1-MMP and MMP-2 on ECM degradation and
metastasis by showing the processing [19], membrane
targeting [20], autocatalysis [21] and internalization [22]
of MMPs. These studies showed that MT1-MMP and
MMP-2 function through balanced activation and inacti-
vation process and any alteration in the activation and
processing of MMPs influence the overall maintenance
of ECM homeostasis, which may trigger excessive ECM
degradation leading to cancer metastasis. MT1-MMP/
TIMP-2/MMP-2 activation complex also processes
proMMP-9 to its active form, which is mediated by
TIMP-2-regulated cascade of zymogen activation
initiated by MT1-MMP [23]. Recent studies also showed
activation of MMP-9 by an MT1-MMP associated pro-
tein through RhoA activation and actin remodeling [24].
Because MT1-MMP, MMP-2 and MMP-9 are all over-
expressed in invasive prostate cancers, it is likely that
increased activation of MT1-MMP/MMP-2 complex
also activates proMMP-9 and acts as a major mediator
of pericellular proteolysis [13,25].

Earlier studies showed the involvement of activated
Racl and RhoA in induction of metastasis in animals
suggesting that the signaling pathway regulated by these
proteins may play a role in acquisition of the metastatic
phenotype [26]. Racl is essential for growth factor-
induced cell invasion and lamellipodia formation
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through modulation of actin cytoskeleton [27]. Later on,
the role of Racl in tumor cell invasion mediated
through expression, processing and activation of MMPs
was established [28]. These observations indicate a pos-
sible link between activation of MMP and LIMK1 func-
tion. In this study, we examined the involvement of
MMPs in cell invasion induced by LIMKI1 and the role
of LIMKI in regulation of expression and activation of
MT1-MMP in prostate epithelial cells.

Materials and methods

Cell lines and antibodies

The parental BPH-1 cells (a gift from P Narayana, Uni-
versity of Florida) [29], and its transfected sub-lines,
BPHL®” and BPH", were maintained in Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich). PC3 cells
(ATCC) were maintained in HAM 12 medium (Sigma-
Aldrich). All media were supplemented with 10% fetal
bovine serum, 2 mM glutamine and 1x antibiotic and
antimycotic solution (Invitrogen). BPHL“* and BPH"
cells were developed by stable transfection of constitu-
tively active (phosphomimic mutant) LIMK1 gene con-
taining a Flag tag at the 3’ end cloned in pRevIRE
(Clontech, Mountain View, CA), and an empty vector,
respectively. A number of hygromycin resistant clones
were isolated and mixed for subsequent experiments to
avoid clonal bias. The phosphomimic mutant of human
LIMK1 (LIMK™°8EE) was generated by site directed
mutagenesis of T>% to EE. Transfected cells were routi-
nely maintained in antibiotic (hygromycin) containing
media. All cells were grown in appropriate growth
media in a humidified atmosphere containing 5% CO,,
at 37°C. Monoclonal or polyclonal antibodies specific for
LIMK1 (BD Biosciences and Santa Cruz Biotechnology),
Trans-Golgi Network Golgi marker TGN46 (Novous
Biologicals, Littleton CO). MT1-MMP (Neomarker, Fre-
mont, CA, Thermo Fisher, Rockford, IL, and Chemicon,
Millipore, Billerica, MA) and Flag (Sigma) were used for
various experiments.

Tumor samples

Human multiple prostate cancer tissue microarrays
(TMA) (PR483) from US Biomax, Inc. (Rockville, MD)
were used to detect expressions of MT1-MMP and
LIMK1. PR483 contained 40 cases of prostate cancer tis-
sues with 8 cases of normal tissues from autopsy. TMA
containing formalin fixed and paraffin embedded tissue
samples were cut at 5 pm thickness and mounted on
positively charged SuperFrost Plus glass slides. Indivi-
dual cores in TMA sections were 1.5 mm in diameter.
All tumors were malignant in nature with Gleason
Scores ranged between 2(1+1) to 10(5+5) and with no
detectable local invasion or metastasis. TNM classifica-
tion showed that tumors in the TMA were either
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T2NxMO or T3NxMO or T4NxMO. The composition of
tumor tissues included 20 tumors of grades between 1
and 2 (low grade LG) and 20 tumors of grades between
3-4 (high grade HG). Tumor tissues were obtained from
patients with ages ranged from 20-87 years.

Invasion assay

BPHL“* and BPH" cells were maintained in phenol red-
free medium and were seeded at a density of 1.25 x 10° in
serum-free medium in the upper chamber containing
matrigel coated inserts (8 uM pore) of the in vitro invasion
chamber (ECM 554, Chemicon). EGF was added to the
cell suspension at a final concentration of 10 ng/ml.
Serum free media containing EGF (100 nM) was added to
the bottom chamber as the chemoattractant and chambers
were incubated at 37°C in a CO, incubator for 48 hrs. Par-
allel experiments were performed in the presence or
absence of GM6001 (Ilomastat, Chemicon) at a concentra-
tion of 25 pM in serum free media. Next, cells migrated to
the inner side of the inserts were detached, stained with
fluorescent dye solution and lysed. Fluorescence was mea-
sured in a Wallac Victor 2 spectroflurimeter. Cells that
traversed through the matrigel and accumulated in the
bottom chamber were also counted. Invasion was con-
firmed by staining the underside of the membrane with
0.1% Crystal violet solution. Data was calculated as fold
changes in the averaged values obtained from relative
fluorescence unit (RFU) and cell enumeration.

Gelatin Zymography

Transfected cells (2.5 x 10°) cells were seeded in equal
volumes of culture media into six well dishes and incu-
bated for 24 hrs. Next day, media was replaced with
phenol red free DMEM supplemented with 10% char-
coal stripped FBS and cells were incubated at 37°C in a
CO, incubator for 48 hrs. Cells were then serum starved
for 24 hrs; conditioned media were collected and centri-
fuged at 500 x g for 5 mins at 4°C. The supernatants
were separated and used for zymography. Equal volume
of each sample with or without concentration was incu-
bated with non-reducing loading buffer at room tem-
perature for 15-20 mins. Samples were then separated
on a 10% SDS gel co-polymerized with gelatin (1 mg/
mL). Next, gels were incubated in renaturing buffer
(2.5% Triton X-100 in distilled water) for 30 mins,
washed and incubated in developing buffer (50 mM Tris
pH 7.8, 0.2 M NaCl, 5 mM CacCl,, 0.02% NP-40) at 37°
C for 24 hrs. Gelatinoic bands were visualized by stain-
ing with Coomassie blue followed by destaining of the
gels and quantified by densitometric analysis of the
dried gels using Gene Snap software.

Quantitative Real time PCR

Total RNA from BPHL“* and BPH" cells was extracted
using a total RNA extraction kit (Promega, Madison,
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WI) and used for quantitative real time PCR. For cDNA
synthesis, BioRad iScript kit was used according to man-
ufacturer’s protocol. Briefly, RNase free water and 5x
reaction mix (provided with kit) were added to total
RNA samples (1 pg). Next, samples were denatured at
65°C for 15 mins and cooled to 37°C for 3 mins. Reverse
transcription was carried out at 42°C for 1.5 hrs. Real-
time PCR was performed using a SYBR green based
PCR kit (Biorad) and cDNAs. A RT-PCR reaction with-
out reverse transcriptase was used as a control. Specific
primers for MMP-2 (F: 5GTCTCCTGCTCCCCCT3, R:
5 CGAACATTGGCCTTGATCTCA3’) and GAPDH (F:
5GCAAGTTTCCGTTCCGCTTCC3, R: 5’CAGTAC-
CAGTGTCAGTATCAGC3’) were used for QPCR (40
cycles) of MMP-2 and GAPDH transcripts. Reactions
were carried out in BioRad iCycler thermocycler. Quan-
tification of the relative expression of MMP-2 gene was
performed using 2"**“* method and GAPDH as a refer-
ence gene. To calculate relative expression, MMP-2
expression was normalized for each sample using
GAPDH expression. Fold change expression was calcu-
lated as a ratio of normalized expression of MMP-2 in
BPHL* cells and in BPH" cells.

Immunoblot and immunoprecipitation

Total cell extracts from BPH-1, BPHL, BPH" and
PC3 cells were prepared using the lysis buffer (50 mM
Tris pH 8.0, 120 mM NacCl, 2.5 mM EDTA, 1 mM
PMSF, 1%NP-40, 10 pg/mL leupeptin/aprotinin) and
freeze-thaw cycles. Total proteins (50 pug) were separated
in SDS-PAGE and subjected to immunoblot analysis
using primary antibodies against the Flag tag, LIMK1 or
MT1-MMP to monitor expression of specific proteins.
A chemiluminescence detection kit (Thermo Scientific,
Rockford, IL) was used to detect target proteins using
corresponding secondary antibodies. For immunopreci-
pitation, crude PC3 cell extracts were diluted in RIPA
buffer containing proteinase inhibitor mixture set III
(Calbiochem EMD, Gibbstown, NJ) and treated with
antibodies against LIMK1 or MT1-MMP using the stan-
dard protocol. Antigen-antibody complexes were immu-
noprecipitated using protein A/G PLUS sepharose beads
(Santa Cruz Biotechnology) and detected by immuno-
blot analysis using specific antibodies.

Gene silencing using small interfering RNA

Inhibition of LIMK1 expression in PC3 cells was con-
ducted by transfection of HuSH shRNA constructs
against LIMK1 (AAGGACAAGA GGCTCAACTTCAT-
CACTGA) in pGFP-V-RS vector (Origene Technolo-
gies). Initially four different shRNAs of LIMKI1 were
screened to identify the shRNA that caused maximum
inhibition of LIMK1 expression for subsequent experi-
ments. An shRNA construct for scrambled RNA was
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used to evaluate the off target effect of the shRNA. Cells
were transiently transfected using Lipofectamine LTX
(Invitrogen, Carlsbad, CA) reagent or FuGENE HD and
shRNA constructs, and incubated for 55-72 hrs for opti-
mum knockdown of LIMK1.

Immunohistochemistry (IHC)

The TMA sections were deparaffinized in xylene,
hydrated with a graded series of alcohol (100%, 95%,
and 80% ethanol [vol/vol] in deionized H,0O), and re-
hydrated in de-ionized water. Sections were incubated
for 5 mins in 3% H,O, in water to block endogenous
peroxidase and washed. Antigen retrieval was achieved
by placing slides in 1x antigen retrieval solution (Target
Retrieval solution, S-1699, DakoCytomation) for 30
mins in microwave oven with simmering conditions
then cooled down for 15 mins at room temperature.
Slides were then washed with PBS that contained 0.1%
triton and 0.1% BSA. Nonspecific binding was blocked
with (2.5%) normal horse blocking serum and 2% BSA
in PBS. The slides were then incubated for 1 hr at room
temperature with one of the following: 1) monoclonal
mouse anti-LIMK1 (1:600 dilution) or 2) rabbit anti-
MMP-14/MT1-MMP antibodies (Millipore Ab-1) (1:800
dilution). Slides were then washed with PBS that
contained 0.1% triton and 0.1% BSA. Slides were then
incubated with ImmPRESS™ Reagent anti-Rabbit or anti-
Mouse Ig (peroxidase)(Vector Laboratories) for 30 mins
at room temperature. Slides were washed next and incu-
bated in peroxidase substrate DAB solution (DAKO
Cytomation). Finally, sections were washed in tap water
and counterstained with Hematoxylin QS (Vector Labs).
Slides were mounted with permanent mounting medium
(C0487, Sigma). IHC staining was evaluated by an inde-
pendent pathologist from US Biomax, Inc. Manual scor-
ing of intensity, negative (0), weak (1+), moderate (2+),
or strong (3+), location and cell types of staining were
performed by the pathologist and the scores were then
converted to number from O to 3 scales. Images of the
stained sections were scanned and the total positive cell
numbers and intensity of anti-LIMK1 and anti-MT1-
MMP staining were computed and measured by Image-
Scope from Aperio Scanning System (US Biomax, Inc).
Dual and triple label Inmunofluorescence analysis
BPHL“* and PC3 cells were plated on poly-L lysine
coated glass coverslips in 24 well culture dishes in com-
plete growth medium for 24 hrs. In some cases, PC3
cells were transfected with plasmids containing cDNA
for LIMK1 shRNA or nonspecific ShRNA and main-
tained for an additional 24 hs. For immunostaining, cells
were washed in phosphate buffer (0.1 M) (PB) and fixed
in 4% paraformaldehyde in PB for 10 mins at room tem-
perature. Next, cells were washed with 0.2% TritonX-
100 (BPH cells) or 0.1% Triton X-100 (3 mins) and 0.1%
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Tween 20 (4 mins) (PC3) in PB. Cells were next sub-
jected to blocking at room temperature in 10% goat
serum, 0.2% triton X100 in PB for 1.5 hrs. Primary anti-
bodies in blocking buffer (Flag 35 mg/ml, MT1-MMP
1:200, LIMK1 1:50, and TGN46 1:115) were combined
and applied to coverslips for 1 hr. Respective secondary
antibodies conjugated with Alexa 647, Cy 3 or Cy 5
were used next for 30 mins at room temperature. Cov-
erslips were washed with PB, postfixed (4% paraformal-
dehyde) for 5 mins and mounted with gel mount
(BioMeda, Foster City, CA). Cells were visualized in a
Zeiss 710 confocal microscope. For quantification of
colocalization, specific regions of singly labeled cells
were selected first to set the thresholds. Then selected
regions of interest, either of individual vesicles, entire
cell, or entire membrane were used for pixel quantifica-
tion. Colocalization of proteins was quantified using
Zeiss Zen 2009 software or Olympus FV1-ASW soft-
ware, which calculates overlap and colocalization coeffi-
cient as derived from Mander’s article based on
Pearson’s correlation coefficient.

Overlap Coefficient : [Z( Chl; )(Ch2; )] /

[\/(sum(Chli)z(ChZi )2)]

The values for the overlap coefficient range from 0 to
1. An Overlap Coefficient with a value of 1 represents
perfectly colocalized pixels.

Pearson’s Correlation : [E( Chl; - Chl,, )( Ch2; - Ch2,, )] /

[«l(sum(chli ~Chl,g )’ (Ch2; ~Ch2,, )’ H

Because each pixel is subtracted by the average pixel
intensity, the value for Correlation R can range from -1
to 1. A value of 1 would mean that the patterns are per-
fectly similar (colocalized), while a value of -1 would
mean that the patterns are perfectly opposite.

Surface staining of MT1-MMP and cell surface
biotinylation

BPHL* or BPH" cells were seeded in complete growth
medium to 80% confluence and harvested by incubating
in cell stripper (Cell Gro, Manassas, VA) at room tem-
perature. Phosphate buffered saline (PBS) was added to
the dish and cells (5 x 10°) were collected by centrifuga-
tion. Cells were suspended in PBS containing 3%FBS
and MT1-MMP antibodies against the extracellular cat-
alytic domain (Chemicon) (5 pg/1 x 10° cells) and incu-
bated at 4°C with rocking for 3 hrs. Cells were washed
with PBS containing 3% FBS and incubated with sec-
ondary antibodies conjugated with Alexa 488 (Molecular
Probes, Carlsbad, CA) (1:800) for 30 mins with rocking
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at 4°C. Cells were washed and fixed with sterile 2% par-
aformaldehyde in PBS. Cells were analyzed in a flow cyt-
ometer (FACS Calibur/BD Biosciences, San Jose, CA).
For biotin labeling of cell surface proteins, PC3 cells
(3 x 10° cells/well) were seeded on 6-well dishes and
after 24 hrs transfected with cDNAs for LIMK1 shRNA
or control shRNA. After 68 hrs of incubation, cells were
incubated with cell impermeable Ez-Link Sulfo-NHS-
LC-Biotin (Pierce) (0.5 mg/ml) at 4°C with rocking for
30 mins and quenched with 100 mM glycine to remove
excess Biotin according to the method described in
[30,31]. Next, cells were harvested in RIPA Buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1%
Triton X-100 and 0.1% SDS) with proteinase inhibitors
(1 pg/ml aprotinin, 1 pM pepstatin, and 10 uM leupep-
tin) by scraping. Cells were lysed and clarified by centri-
fugation. Biotin-labeled surface proteins were separated
from equal amounts of cell lysate proteins, by incubating
with washed UltraLink Streptavidin sepharose beads
(Pierce) at 4°C with mixing for 14 hrs. Bead-bound pro-
teins were separated on SDS-PAGE and immunoblotted
for MT1-MMP (1:500) on the plasma membrane using
antibodies against the hinge region (Millipore).

Dual Luciferase reporter assay

The MT1-MMP promoter-luciferase construct contain-
ing firefly luciferase driven by a 7.2 KB promoter
fragment of MT1-MMP (kindly provided by Jorma
Keski-Oja, University of Helsinki) was used for transient
transfection using Lipofectamine LTX according to our
published protocol [32]. A construct containing Renilla
Luciferase driven by thymidine kinase promoter was
used for cotransfection as the transcription control.
Transfected BPH-1 sublines and PC3 cells with or with-
out co-transfection of cDNAs for LIMK1 shRNA or
control shRNA were used for luciferase reporter assays.
Cells were harvested at 62 hrs post transfection and
luciferase expression was determined using a Dual luci-
ferase assay kit (Promega) according to supplier’s
protocol.

Statistical analysis

Quantitative results are presented as meam * SD of the
number of independent experiments performed. Statisti-
cal differences were calculated using Student’s t-test in
GraphPad/Prism 4.0a. A p value of < 0.05 was consid-
ered significant. IHC scoring data were analyzed using
GraphPad/Prism 4.0a.

Results

LIMK1-induced invasion is mediated by MMPs
MT1-MMP, MMP-2 and MMP-9 are often overex-
pressed in advanced prostate cancers and play essential
roles in prostate tumor metastasis [33,34]. Because
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LIMK]1 expression was sufficient to sponsor an invasive
phenotype of BPH-1 cells [2] we sought to determine if
LIMK1-induced invasion is mediated by these MMPs.
We used transfected BPHL* cells expressing Flag-
tagged constitutively active LIMK1 (Figure 1A). We chose
BPH-1 cells, which was originally isolated from benign
prostatic hyperplasia, for ectopic expression of LIMK1 as
these cells express low levels of LIMK1 compared to the
metastatic prostate cancer cells PC3 (Figure 1B). We used
BPHL“* and BPH" cells for in vitro invasion assays with
or without treatment with ilomastat (GM6001), a broad-
spectrum hydroxamate inhibitor of MMP-2 and MMP-9
[35] and also MT1-MMP [36] (Figure 1). Our Invasion
assay results indicated that BPHL“* cells had a signifi-
cantly higher percentage (4-5-fold) of invaded cells com-
pared to control cells (BPH") (Figure 1C). Upon treatment
with MMP inhibitor GM6001 there was a significant
decrease in invasion of BPHL"* cells compared to vehicle
treated cells (Figure 1D), which strongly suggests that
MMPs are involved in LIMK1-induced cell invasion.

LIMK1 expression was associated with increased secretion
of pro-MMP-2 and pro-MMP-9 in the conditioned media
Because the hydroxamate inhibitor ilomastat inhibited
LIMK1 induced invasion we intended to study the levels
of secretory MMP-2 and MMP-9 in cells expressing
LIMK1. Enhanced expression of MMPs has been corre-
lated with increasing malignancy especially increased
expression and activities of MMP-2 and MMP-9 are
involved in the process of prostate cancer invasion and
metastasis [25,37]. To examine this, we used BPHL® or
BPHY cells for analysis of MMP-2 and MMP-9 activities
by zymography (Figure 2). In BPHL“* cells, increased
gelatinolytic activities of MMP-2 and MMP-9 were
noted. Concentration of both latent and active forms for
MMP-2 and the latent form of MMP-9 was increased in
these cells (Figure 2A-E). In comparison, very low levels
of latent and active forms of MMP-2 were noted in
BPHY cells (Figure 2A, B and 2C). To determine if
LIMKI1 expression is responsible for alteration in the
expression of mRNAs of MMP-2 and MMP-9, we per-
formed quantitative real-time RT-PCR analysis of the
steady-state mRNA. Our results showed a 10-fold
increase in MMP-2 mRNA concentration in BPHL“*
cells compared to BPH" control cells (Figure 2F). We
did not see any increase in the mRNA concentration of
MMP-9 in these cells (data not shown).

LIMK1 expression positively correlated with expression of
MT1-MMP in prostate cancer cells

Activation of MMP-2 is mediated by MT1-MMP, which
is also a target of ilomastat. Therefore, next we studied
the effect of expression of LIMK1 on MT1-MMP con-
centration in prostate cancer cells. In prostate cancers,
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Figure 1 MMP inhibitor suppressed invasiveness of BPH cells expressing LIMK1. A) Immunoblot analysis of expressed Flag-tagged LIMK1
in transfected BPH-1 cells (BPHL™") using anti-Flag antibodies. No cross reactivity was noted in vector transfected (BPH") cells. B) Comparative
analysis of LIMK1 expression in PC3, parental BPH-1 and BPHL™" cells using anti-LIMK1 antibodies showing increased expression of LIMK1 but at
a physiological level in BPHL? cells. C and D). In vitro invasion assays of BPHL™" and BPH" cells with or without treatment with MMP inhibitor
GM6001. C) Fold increase in the number of invaded cells expressing LIMK1 (BPHL®Y) compared to the vector control (BPHY). D) Fold changes in
cells treated with GM6001 that invaded through the matrigel membrane compared to the vehicle treated BPHL" cells. Values are Mean + SD of
three separate experiments. *P < 0.003, **P < 0.002 (BPH" vs. BPHL" cells).

MT1-MMP expression has been shown to correlate with ~ PC3 cells compared to the parental BPH-1 cells (Figure
the tumor stages and metastasis of prostate cancer cells 3A). Quantitative real-time RT-PCR analysis of the
in xenograft animal models [38]. MT1-MMP degrades steady-state mRNA also showed an increase (~8-fold) in
several components of the ECM and this degradative =~ mRNA levels of MT1-MMP in BPHL"* cells compared
activity is enhanced by activation of latent MMP-2. We  to BPH" cells (data not shown). To confirm the involve-
used BPHL?, BPHLY and PC3 cells for analysis of ment of LIMKI in expression of MT1-MMP, we con-
MT1-MMP expression using MT1-MMP antibodies ducted LIMK1 shRNA-mediated down regulation of
against the hinge region (ThermoFisher), which recog- LIMKI1 in PC3 cells. We used four different constructs
nize all forms of MT1-MMP. Our immunoblot results  for transfection to identify the one with maximum inhi-
showed increased expressions of the latent, active and  bition (shRNA 3) compared to nonspecific (scr) sShRNA
43 kD autolytic forms of MT1-MMP in BPHL“* and  (Figure 3C and additional file 1). Short hairpin RNA
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Figure 2 Increased secretion of MMP-2 and MMP-9 in cells expressing LIMK1. Gelatin zymography of secreted MMP-2 (A and C) and MMP-
9 (D) in the conditioned media of BPHL* and BPH" cells. A) Relative gelatinotytic activity of latent MMP-2. B) Densitometric analysis of relative
gelatinolytic activity of MMP-2. C). Zymography showing latent, active or partially active MMP-2 in concentrated conditioned media of each cell
line. Values are Mean + SD of three experiments. * P = 0.010 (BPHL™ vs. BPH" cells). D): Gelatinolytic activity of pro-MMP-9 E): Densitometric
analysis of the relative intensity of the gelatinoic bands of pro-MMP-9. Values are Mean + SD of three experiments. ** P = 0.001 (BPHL™" vs. BPH"
cells). F) Quantitative real-time PCR analysis of MMP-2 mRNA. Fold difference in mRNA concentrations in BPH
was calculated using normalized average ACT values for BPHY and BPHL" cells. Values are Means + SD of three independent analyses.

L“" compared to BPH" cells. Data

induced down regulation of LIMK1 showed a significant
reduction in both active and latent MT1-MMP concen-
trations in PC3 cells, which was not noted following
expression of scr shRNA (Figure 3B). This observation
indicates a positive correlation between LIMK1 and
MT1-MMP expressions in these cells.

LIMK1 and MT1-MMP are overexpressed in cancerous
prostate

To understand the clinical relevance of LIMK1 and
MT1-MMP overexpression, we examined the expression
profiles of LIMK1 and MT1-MMP in clinical specimens
using immunohistochemistry of formalin-fixed paraffin
embedded prostate tumors tissues. We noted increased

expression of LIMK1 and MT1-MMP in the tissues from
the same tumors showing adenocarcinoma with Gleason
scores 9/10 compared to the normal epithelium (Figure
4). All of the positive staining (weak to strong positive) of
LIMK]1 were located in cytoplasm or cytoplasm/nucleus
in tumor cells of prostate adenocarcinoma (Figure 4B),
while only weak staining (0-1+) in the cytoplasm of the
glandular epithelium was noted in normal prostate tis-
sues (Figure 4A). The intensity and the number of cyto-
plasm or nucleus stained positive cells as determined by
IHC analysis software (data not shown) were in agree-
ment with the pathologist’s evaluation of scales of posi-
tive staining (0 to 3+) in most of cases. For MT1-MMP,
positive staining (weak to strong positive) was present in
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Figure 3 Expression of LIMK1 associated with increased
expression of MT1-MMP. A) Expression of Pro-MT1-MMP (66 kD)
and active MT1-MMP (57 kD) in BPH cells expressing LIMK1. Western
blot analysis of MT1-MMP using anti-MT1-MMP antibodies in total
protein extracts of BPH cells expressing LIMK1 phosphomimic
mutant (pLIMKT). PC3 cell, that express high levels of LIMKT, also
showed higher amounts of expression of latent and active MT1-
MMP. B) Immunoblot analysis of MT1-MMP in these cells showing
that inhibition of LIMK1 expression reduced MT1-MMP. C) Western
blot analysis of LIMKT using anti-LIMK1 antibodies in total extracts
of wild type and transfected PC3 cells prepared at 72 hrs post
transfection with LIMKT shRNA or scrambled (scr) RNA expressing
vector showing knock down of LIMK1 in PC3 cells. GAPDH was
used as the loading control in all western blots.

the cytoplasm (majority) and in the nucleus (small num-
bers) in tumor cells of prostate adenocarcinoma (Figure
4B), whereas only weak staining (0-1+) in the cytoplasm
or nuclei of the glandular epithelium could be seen in
normal prostate tissues (Figure 4A). The intensity and
the number of cytoplasm or nucleus stained positive cells
as determined by IHC analysis software also were in
agreement with the pathologist’s analysis of scales of
positive staining (0 to 3+) in most of the cases. Compari-
son of staining intensity with the tumor grades showed
stronger staining of both antibodies in tumors with
higher grades than that in tumors of lower grades (Figure
4C). A positive correlation in the nuclear expression
(staining) of LIMK1 and MT1-MMP in grade 3 and
grade 4 tumors, which increased from 20% (grade 3
tumors) to 40% (LIMK1) and 45%(MT1-MMP)(grade 4
tumors) of the tumor samples stained, was also noted
(additional file 2). No correlation could be seen in the
cytoplasmic expression of these proteins in these tumors.
Although increased expression of MT1-MMP in prostate
adenocarcinoma has already been reported our study
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showed overexpression of both LIMK1 and MT1-MMP
in the same tumor samples, which supports our in vitro
studies and shows an association between LIMK1 and
MT1-MMP expressions in clinical samples.

LIMK1 colocalizes and physically associates with MT1-
MMP

Physical interaction between LIMK1 and MT1-MMP
was studied next using immunofluorescence and immu-
noprecipitation experiments. Intracellular localization of
MT1-MMP and LIMK"*%*** in BPHL“* and PC3 cells
was monitored using anti-MT1-MMP (Neomarker) and
anti-Flag or anti-LIMKI antibodies. Our results showed
colocalization of MT1-MMP and LIMK % (BPHL%)
or LIMKI to the perinuclear region and in the plasma
membrane of both cell types (Figure 5A). These cells
also showed intense staining in the Golgi areas and
accumulation of LIMKI1 in the ruffling membranes
(insert, BPHL* and PC3). Quantitative analysis of over-
lapping pixels and intensity using Zeiss Zen 2009 soft-
ware confirmed colocalization of MT1-MMP and
LIMKI in these cells (Figure 5B and additional file 3).
A physical association between LIMK1 and MT1-MMP
was also noted in coimmunoprecipitation and reverse
coimmunoprecipitation experiments using PC3 cell
extracts, which showed that LIMK1 interacted either
directly or indirectly, with both active and latent MT1-
MMP (Figure 5C and 5D).

LIMK1 facilitates transport of MT1-MMP to the plasma
membrane through Golgi vesicles

Our imunofluorescence images showed possible localiza-
tion of LIMK1 and MT1-MMP in the Golgi vesicles. To
confirm that LIMK1 colocalizes with MT1-MMP to the
Golgi vesicles, we used antibodies against Trans-Golgi
Network Golgi marker TGN46. Triple label immuno-
fluorescence analysis showed colocalization of LIMK1,
MT1-MMP and TGN46 to the Golgi transport vesicles
in the perinuclear region and between TGN and the
plasma membrane (Figure 6A). Pearson’s correlation
coefficient analysis of colocalization between MT1-MMP
and TGN46, MT1-MMP and LIMK1 and LIMK1 and
TGN46 at the Golgi vesicles and in the membrane area
confirms vesicular transport of these proteins (Figure 6B
and additional file 4A and 4B). Down regulation of
LIMK1 by shRNA in PC3 cells showed a substantial
reduction in MT1-MMP staining and its restricted locali-
zation mainly to the perinuclear regions compared to
cells expressing nonspecific ShRNA (Figure 6C). Quanti-
tative analysis of staining intensity in the Golgi and in the
membrane confirmed reduction of MT1-MMP in the
Golgi vesicles as evident from correlation coefficient
analysis between TGN46 and MT1-MMP in these areas
(Figure 6D and additional file 4B). Immunofluorescence
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Figure 4 Expression analysis of LIMK1 and MT1-MMP in clinical specimens. A) Very low to no staining (black arrows) of LIMKT and MT1-
MMP in luminal cells and weak (red arrow) staining of LIMK1 in some of the basal cells in the normal prostate (Mag. x 200). B) Representative
images of prostate tumors of different grades. Upper panels: Weak staining of LIMK1 (yellow arrows) in grade 1 (TG1) and grade 2 (TG2) tumors
(left two boxes); Strong nuclear and cytoplasmic staining of LIMK1 in cancerous areas (blue arrows) of grade 3 (TG3) and grade 4 (TG4) tumors
(right two boxes). Lower panels: Left two boxes: Weak staining of MT1-MMP (yellow arrows) in grade 1 (TG1) and grade 2 (TG2) tumors; Right
two boxes: Strong nuclear and cytoplasmic staining of MT1-MMP in tumor areas could be seen (blue arrows) in grade 3 (TG3) and grade 4(TG4)
tumors (Mag. x 200). C) Graphical representation of the relative staining intensity of LIMKT and MT1-MMP in low-grade (LG) and high-grade (HG)

tumors. LGNS and HGNS: Very low to no staining.

and quantitative intensity analysis confirmed down regu-
lation of MT1-MMP and LIMK1 but not TGN46 in
LIMK1 shRNA transfected cells (Figure 6E and 6F and
additional file 4C). No reduction in MT1-MMP levels
was noted in cells transfected with scrambled RNA.
Immunoblot analysis of shRNA transfected cells con-
firmed down regulation of both latent and active MT1-
MMPs in these cells (Figure 6G). Colocalization of MT1-
MMP with TGN46 was noted in the perinuclear regions
but not in the Golgi vesicles moving towards the plasma
membrane. This observation indicates an inhibitory effect
of LIMKI1 knockdown on the vesicular transport of MT1-
MMP to the plasma membrane.

Expression of LIMK1 increased surface localization of
MT1-MMP

To determine any change in the activation status of
MT1-MMP upon expression of LIMK1, we monitored
surface localization of MT1-MMP in these cells.

Activation of MT1-MMP requires cleavage of the pro-
peptide by furin like convertases, the active form of
MT1-MMP, and its insertion into the plasma membrane,
therefore the plasma membrane associated form is con-
sidered to be the active form of MT1-MMP. To confirm
increased activation of MT1-MMP, we studied surface
localization of MT1-MMP in cells expressing LIMK1
using flow cytometry and surface biotinylation assays
(Figure 7). We used antibodies against MT1-MMP,
which recognize the catalytic domain of MT1-MMP that
is exposed to the extracellular side of the plasma mem-
brane and could be detected in intact cells. Our results
indicated that the BPHL“" cells expressed a higher
amount of MT1-MMP on the surface (Figure 7A) as
shown by the right shift of the red histogram compared
to BPH" cells. Densitometric analysis of the number of
fluorescent cells showed a two-fold increase in MT1-
MMP expression in BPHL“* cells compared to BPH"
cells (Figure 7B). Surface localization of MT1-MMP and
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its relation with expression of LIMK1 was further studied
in PC3 cells by surface biotinylation followed by western
blotting using MT1-MMP antibodies against the hinge
region (Millipore). Our result showed expression of bioti-
nylated MT1-MMP at the surface of PC3 cells decreased
following knockdown of LIMK1 compared to control
shRNA expressing cells, and confirmed the role of
LIMK1 in regulation of surface localization of MT1-
MMP (Figure 7C and 7D).

Expression of LIMK1 was associated with increased
transcriptional activation of MT1-MMP

MT1-MMP and other MMPs are overexpressed in
advanced prostate cancers and also in invasive PC3 cells
[39]. Specifically, MT1-MMP expression is regulated in

prostate cancer cells based on the aggressiveness of the
cell type [40]. Increased expression of MT1-MMP in
PC3 cells is mediated by transcriptional activation of
MT1-MMP promoter through Spl transcription factor
activated by the components of AKT/JNK pathway.
PI3BK/AKT is also capable of activating LIMK1 through
direct activation of PAK1/PAK4 [41] in response to
treatment with bone morphogenic protein II (BMPII).
In this study, we examined the effect of down regulation
of LIMK1 on MT1-MMP promoter activation using
luciferase reporter assays. We used transfected BPHL"*
and BPH" cells, and PC3 cells for transient transfection
of luciferase expression plasmids driven by the full-
length (7.2 kb) MT1-MMP promoter (Figure 8). Dual
luciferase assays showed a 3-4-fold increase in luciferase
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expression in BPHL“? cells compared to BPH" cells,

suggesting a positive correlation between expression of

untransfected and LIMK1 shRNA transfected cells was
much higher and consistently observed in experimental

LIMKI1 and transcriptional activation of MT1-MMP
(Figure 8A). This assumption was further supported by
the results obtained following knock down of LIMKI.
PC3 cells transfected with shRNA constructs of LIMK1
showed a significant reduction (95%) in luciferase
expression compared to untransfected PC3 cells (Figure
8B). Although some off target effects of scr shRNA were
observed the reduction of luciferase expression between

repeats. Other LIMK1 shRNA constructs, which were
not effective in reduction of LIMK1, showed similar or
higher activation of MT1-MMP promoter as noted in
scrambled RNA transfected cells. This rules out the pos-
sibility of the off target effect of LIMK1 shRNA 3 (used
for all experiments) (additional file 5). This observation
indicates that expression of LIMK1 has a stimulatory
effect on transcription of MT1-MMP.
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Discussion

LIMKI1 being an actin and microtubule modulatory pro-
tein is likely to be involved in acquisition of an invasive
phenotype commonly noted in tumors exhibiting
advanced stages of malignancy. Accordingly, earlier stu-
dies including ours clearly demonstrated an important
role of LIMK1 in induction of invasion and metastasis
of prostate and breast cancer cells and tumors [2-4].
More recently, role of LIMKI in induction of metastasis
in pancreatic cancer in zebrafish xenograft assays [42];
and mesenchymal and ameboid modes of invasion of
fibrosarcoma cells in 3D matrices [43,44] were shown.
These studies further strengthened the importance of
LIMK1 and Rho/Rock signaling pathway in generation
of protrusive forces of tumor cells through collagen
matrices.

Our studies presented here demonstrated that LIMK1
is involved in regulating MT1-MMP functions at various
levels. The role of MT1-MMP in invasion and metasta-
sis through direct and indirect collagenolytic activities is
well documented therefore it is likely that the critical

role of LIMK1 in facilitation of cell motility and invasion
is at least partly mediated through modulation of MMP
functions. We confirmed the association of MMPs such
as MT1-MMP, MMP-2 and MMP-9 in LIMK1-induced
invasion of BPHL®" cells in invasion assays. Expression
of phosphomimic LIMKI in BPH-1 cells changed their
noninvasive phenotype to invasive ones, but use of the
hydoxamate inhibitor (GM6001) of MMPs, specifically
MT1-MMP, MMP-2 and MMP-9 completely abrogated
the invasive property of these cells. To our knowledge,
this is the first report showing a functional link between
LIMK1 and MT1-MMP.

The question that we asked next is that if LIMK1
expression also increased the proteolytic function of
MMPs. Indeed, our results showed that processing of
pro-MMP-2 to its active form was increased in BPHL*
cells (Figure 2). In addition, there was an overall
increase in secreted MMP-2 (latent) as commonly noted
in invasive prostate cancer cells. We investigated
whether LIMK1 expressing cells also have a higher
expression of mRNAs of pro-MMP-2, which was also
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Figure 8 Effect of LIMK1 on transcription activation of MT1-
MMP. A) Relative luciferase activity in BPHL“" and BPH" cells
transfected with MT1-MMP promoter luciferase constructs. B)
Relative luciferase activity in PC3 cells transfected with MT1-MMP
promoter luciferase construct alone or in combination with
scrambled shRNA or LIMK1T shRNA expressing plasmids. Results
show Mean + SD of at least three separate experiments. *P = 0.0075
(BPHL™ vs. BPH'), **P = 0.004 (PC3 scr shRNA vs. PC3LIMKT shRNA),
*¥¥P = 0.0005 (PC3 vs. PC3LIMKT shRNA).

the case and a significant increase in MMP-2 mRNA
was noted in these cells. Increased expression of LIMK1,
either ectopically or endogenously, was associated with a
significant increase in expressions of the latent and
active forms of MT1-MMPs, which were substantially
diminished upon knockdown of LIMKI. It is speculated
that increased expression of the latent MT1-MMP
resulted in increased levels of active MT1-MMP as seen
in BPHL“® and PC3 cells. The correlative expression
profile of LIMK1 and MT1-MMP was also detected in
clinical samples pathological reports of which showed
higher tumor grades. In addition, most of tumor cells of
prostate adenocarcinoma had higher cytoplasmic and
nuclear expression of LIMK1 and MT1-MMP, com-
pared to normal prostate tissues. A number of studies
showed increased expression of MT1-MMP in advanced
cancers including prostate cancer. Increased expression
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of LIMK1 in luminal cells has been reported also in
advanced prostate tumors. Our study shows increased
expression of both proteins in the same tumor samples,
which suggests a clinical relevance of overexpression of
both LIMK1 and MT1-MMP.

Our studies further provide evidence that LIMK1 phy-
sically interacts with MT1-MMP and regulates its vesicu-
lar transport to the plasma membrane. Colocalization of
MT1-MMP and LIMKI1 was in abundance in the Golgi
areas at the perinuclear region in both PC3 and BPHL“*
cells. In addition, distinct vesicles at various distances
between perinuclear region to the plasma membrane
with colocalized LIMK1, MT1-MMP and TGN46 were
seen in PC3 cells. This observation indicating a role of
LIMK1 in vesicular trafficking is in support of earlier
reports showing that LIMK1 regulates endocytic or exo-
cytic vesicular transport in endothelial cells for transport
of SREBP cleavage activating protein (SCAP) [45]. Earlier
studies also showed that LIMK1 modulates Golgi
dynamics through protein-protein interaction through its
LIM domain and trafficking of Golgi transport vesicles
between ER and Golgi in primary neuronal cells [46].
Recent studies by Nishimura et al [47] indicated a role of
LIMK1 in regulating endocytic trafficking of EGFR
wherein LIMK1 delays internalization of EGFR bound
EGF, thereby maintaining sustained activation of EGF/
EGER axis in invasive tumor cells. Nonetheless, it is not
clear if LIMKI1 also regulates internalization of MT1-
MMP and requires further study. Importantly, inhibition
of LIMK1 dramatically reduced plasma membrane target-
ing of MT1-MMP (Figure 6), which confirms a distinct
regulatory role of LIMKI in vesicular transport of MT1-
MMP for its surface localization.

Surface localization of MT1-MMP is another essential
event for MT1-MMP to be functionally active for its col-
lagenolytic activities either directly or through increased
activation of soluble pro-MMP-2 through the ternary
complex formation (MT1-MMP/TIMP-2/pro-MMP-2),
and pro-MMP-9 through activation of MMP-2/TIMP2
axis [14,23]. In support of our immunoblot results,
increased surface localization of MT1-MMP was noted in
BPHL cells expressing LIMK °*FF a5 shown by flow
cytometry. Surface biotinylation assays in PC3 cells fol-
lowing knockdown of LIMKI1 further confirmed the role
of LIMK1 in MT1-MMP surface localization. We specu-
late that LIMK]1 regulates surface localization of MT1-
MMP through its physical interaction with MT1-MMP,
as our immunofluorescence analysis and coimmunopre-
cipitation studies confirmed such interaction. It is possi-
ble that interaction between LIMK1 and latent MT1-
MMP helps the proteolytic processing of MT1-MMP and
its targeting to the plasma membrane.

Our studies using luciferase reporter assays showed that
LIMK]1 expression increased activation of MT1-MMP
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promoter in BPHL"* cells and knockdown of LIMKI1 sig-

nificantly reduced luciferase expression in PC3 cells. This
result indicates that LIMK1 has a regulatory role in tran-
scription of MT1-MMP and thereby increases pro-MT1-
MMP levels when overexpressed in cells. Role of LIMK1
in promoter activation has been reported earlier, which
showed that LIMK1 expression increased activation of
uPA promoter in breast cancer cells [4]. However, how
LIMK1 induces transcriptional activation of MT1-MMP is
not clear and studies are underway to determine the
mechanism of LIMK1-induced increased transcription of
MT1-MMP. To this end, the importance of this study lies
in the realm of a possibly better therapeutic approach for
metastatic cancer by inhibition of LIMK1 instead of MMP
inhibitors which showed higher toxicity.

Additional material

Additional file 1: Western blot analysis of knock down of LIMK1
using shRNA constructs. Western blots of LIMK1 using anti-LIMK1
antibodies in total extracts of wild type and transfected PC3 cells
prepared at 72 hrs post transfection with different constructs of LIMK1
shRNA or scrambled (scr) RNA expressing vector showing knock down of
LIMKT in PC3 cells. GAPDH was used as the loading control.

Additional file 2: Quantitative analysis of nuclear and cytoplasminc
staining of LIMK1 and MT1-MMP. Analysis of expression patterns of
LIMKT and MT1-MMP in prostate tumor tissues. A) Nuclear staining in
grade 3 and grade 4 tumors. B) Cytoplasmic staining in grade 3 and
grade 4 tumors. Data shows a distinct increase in percent of tumors with
higher pathological grade exhibiting nuclear staining of both proteins.

Additional file 3: Colocalization of LIMK1 and MT1-MMP in the
Golgi and plasma membrane areas. Scatter plots of colocalization of
LIMKT and MT1-MMP in the selected areas in the membrane and in the
Golgi region in BPHL" and PC3 cells. Presence of pixels in the quadrant
3 indicates colocalization.

Additional file 4: Quantitative analysis of colocalization of TGN46,
LIMK1 and MT1-MMP in the Golgi vesicles. Quantitative analysis of
colocalization of LIMK1, MT1-MMP and Golgi marker TGN46 in the Golgi
vesicles and in the membrane. A). Scatter plots of colocalization of
LIMK1/TGN46, MT1-MMP/TGN46 and LIMKT/MMP in the same areas
(yellow arrows in Figure 5A). Presence of pixels in upper right quadrant
indicates colocalization of two proteins. B) Analysis of overlap coefficient
between LIMK1 and MT1-MMP following knockdown of LIMKI. Data
represent average correlation coefficient + SD of 5-6 different subcellular
areas selected in PC3 cells transfected with LIMK1 shRNA or scrambled
RNA. Data shows reduced overlaps between LIMKT and MT1-MMP in
LIMK1 shRNA expressing cells. C) Relative staining intensity of TGN46 in
the Golgi and in the cell membrane with or without knock down of
LIMK1. Data represent average correlation coefficient + SD of 6 different
subcellular areas chosen for the analysis. Data show no effects of knock
down of LIMK1 on the staining intensity of TGN46.

Additional file 5: Analysis of MT1-MMP promoter activity following
knock down of LIMK1. Relative luciferase activity in PC3 cells
transfected with MT1-MMP promoter luciferase construct alone or in
combination with scrambled shRNA or four different LIMKT shRNA
expressing plasmids as shown in additional file 1. Results show Mean +
SD of at least three separate experiments.
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