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Abstract

Sequence Read Archive submissions to the National Center for Biotechnology
Information often lack useful metadata, which limits the utility of these submissions.
We describe the Sequence Taxonomic Analysis Tool (STAT), a scalable k-mer-based
tool for fast assessment of taxonomic diversity intrinsic to submissions, independent
of metadata. We show that our MinHash-based k-mer tool is accurate and scalable,
offering reliable criteria for efficient selection of data for further analysis by the
scientific community, at once validating submissions while also augmenting sample
metadata with reliable, searchable, taxonomic terms.
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Background
Established in 2007, the National Center for Biotechnology Information (NCBI) Se-

quence Read Archive (SRA) accepts raw sequencing data directly from high-

throughput sequencing platforms [1]. Next-generation sequencing (NGS) sets are in-

herently large, and improved technologies are exquisitely sensitive to contamination.

Submissions must be processed, before either interpretation or quality assessment is

possible, to provide submitter feedback and submission verification. The growth of

data submission is exponential (doubling approximately every 12 months [2]), render-

ing use of computationally expensive methods, such as de novo assembly followed by

alignment, impractical due to costs and limits of scale, particularly given the time con-

straint of submission processing.

We considered that questions about the quality of a given NGS run could reasonably

be inferred from the taxonomic distribution of reads within that set, whether based on

a single organism or of metagenomic design. This is often enough information to an-

swer basic experimental or clinical questions, as well as inform decisions about the

merit of subsequent resource-intensive assessment methods. Read sets with organismal

tags can be used to select data for further analysis. Moreover, binning reads into taxo-

nomic buckets can identify contaminating reads and reads outside of the stated
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experimental scope. Such identified reads can be filtered from a sample before down-

stream processing. This proposed taxonomic analysis is independent of metadata and

intrinsic to the run, capable of both validating submissions and augmenting sample

metadata with reliable, searchable, taxonomic terms.

Following these principles, we developed a k-mer-based Sequence Taxonomic Ana-

lysis Tool (STAT). Based on MinHash [3], and inspired by Mash [4], STAT employs a

reference k-mer database built from available sequenced organisms to allow mapping

of query reads to the NCBI taxonomic hierarchy [5]. We use the MinHash principle to

compress the representative taxonomic sequences by orders of magnitude into a k-mer

database, followed by a process that yields a set of diagnostic k-mers for each organism.

This allows for significant coverage of taxa with a minimal set of diagnostic k-mers.

Our results show STAT is a reliable method for examining submitted NGS data in a

timely, and scalable, manner.

Results
STAT was developed for quality assessment of SRA submissions to be shared with the

submitter, requiring that analyses ideally take no more time than that of existing sub-

mission processing, while minimizing resource usage. Our design starts from the Min-

Hash principle that a random selection of the lowest valued constituent blocks in a

pool after hashing represents a signature of the parent object. In building k-mer data-

bases from the set of sequences assigned a specific NCBI taxonomy id (TaxId), we read

32 base pair (bp) k-mers as 64-bit FNV-1 hashes [6], selecting the minimum hash value

to identify the k-mer representative for a window, then iteratively merging k-mers from

taxonomic leaves to roots (see “Methods,” Figs. 1 and 2).

Initial analysis using only densely populated k-mer databases performed well. How-

ever, despite being on average over an order of magnitude smaller than the input se-

quence database size (see below), we determined that loading the entire densely

merged “tree_filter.dbs” into memory for analysis unnecessarily incurred long I/O read

time and large memory costs since most runs required only a fraction of the complete

Fig. 1 Finding a minimum representative 32-base pair k-mer. a From a selected 64 base pair segment, the
series of 64 possible 32-base pair k-mers is defined by sequentially shifting the 32-base window by one
base. The first four and last of the possible k-mers are shown schematically. b An example k-mer sequence.
c Two-bit encoding of the k-mer sequence shown in b. d The 64-bit decimal value of the k-mer sequence
shown in b. The k-mer strand with the lower 64-bit decimal value is used to generate a hash, and the
minimal valued hash identifies the representative k-mer for this 64 base segment
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database. Moreover, STAT jobs, like many computational pipelines, are submitted to

either a local computer farm cluster scheduler (“grid engine”), or by dispatching cloud-

based virtual machines. In both cases, job scheduling typically requires explicit needed

resource declarations such as CPU and memory. An initial screen capable of evaluating

diversity of the sample and necessary resource requirements for detailed analysis mini-

mizes cost and maximizes computational efficiency. For these reasons, we pursued a se-

lective two-step analysis, using a sparse filtering database in the first step to identify the

presence of any (a) eukaryote if there are more than 100 biological reads of a species,

(b) bacteria, or archaea with more than 10 biological reads, and (c) virus if there are 1–

2 biological reads. This first pass is neither qualitative, nor exhaustive, but allows us to

quickly identify taxa for focus in the second pass (Fig. 3).

To facilitate this two-step process, and further minimize resource requirements, we

decreased k-mer database size by 33% by storing only the 8-byte k-mers in a database

file, separately storing pairs of TaxId, total TaxId k-mer count for each TaxId respect-

ively in an auxiliary “annotation” file. The k-mer database / k-mer count annotation file

pair is designated “dbss,” the database sorted by TaxId, with each TaxId set sorted by

k-mer. TaxIds identified in the first step against the sparse k-mer database are used in

the second step to load into memory only those TaxId k-mers using the counts pro-

vided by the annotation file as offsets. MinHash sampling combined with dynamic load-

ing of only necessary dense TaxId database k-mers yields significant benefits for cpu

and memory requirements. Further, the selection of TaxIds to load may be augmented

by heuristics, such as purposely withholding TaxIds from contamination detected in

the prior filtering step.

STAT reports the distribution of biological reads mapping to specific taxonomic

nodes as a percentage of total biological reads mapped within the analyzed run. Since

results are proportional to the size of sequenced genomes, a mixed sample containing

several organisms at equal copy number is expected to find more reads originating

from the larger genomes. This means that percentages reported likely reflect sample

genome size(s) and must be considered by the user against the genomic complexity of

the sequenced sample.

Like all sequence-based classification schemes employing “least common ancestor”

analysis, STAT reflects and depends upon accurate sequence taxonomic attribution,

Fig. 2 K-mer taxonomic merging. See “Methods” for details. a Before merging two sibling species are
depicted containing both unique and shared k-mers (indicated in bold). b After merging the two shared k-
mers “merge” up to the genus level, while those unique to each remain diagnostic for the species
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taxonomic relationships, and taxonomic depth and breadth. The significant achieve-

ments of adapting both the NCBI reference sequence (RefSeq) data model [7], and

internationally accepted taxonomy to incorporate metagenomic viral sequences [8, 9]

fundamentally benefit STAT and other similar classification tools.

Fig. 3 STAT two phase query. a In the first qualitative phase the input query (an SRA accession, or fasta file)
is sequentially rendered into 32 bp k-mers, and matches to the decimal values found in the sparse database
identifying taxa for deeper analysis. b TaxIds identified in a are used to select the densely sampled k-mers
derived from those taxa, then the same query is used in a second quantitative pass. c Bordered in red is
the immediate STAT output consisting of one line for each spot with hits, each followed by one or more
TaxIds matching that spot. Examples of more than one hit for a TaxId are shown in bold. d The first post
processing output bordered in purple depicts the result of resolving each spot in c to a single taxon. e The
final processing step resolves the run composition from the spots resolved in d, and an example from our
public display using that result is shown
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An important consequence of merging in k-mer database construction is to avert

complications caused by biological complexities. For example, most k-mers derived

from endogenous retroviruses found in the human input reference genome will likely

merge to the root as those k-mers would also be found in the Viruses Super Kingdom.

Further, when analyzing results, each level—read, run—requires integration of less

than ideal signals. It is common to find multiple TaxIds identified in a single biological

read, ideally coherent for a given lineage. Were those Mus musculus, Murinae, and

Mammal, there is confidence in declaring the read Mus musculus. Should a read map

to multiple, related taxonomic nodes, it is reported as originating from the most prox-

imal shared taxonomic node. For example, a read with hits to sibling species may be re-

ported as their common genus, conservatively locating the most proximal common

Fig. 4 Resolution of taxonomic assignment. Three distinct k-mer hits to multiple branch taxa within a single
spot are indicated with a red star. The arrow indicates conservatively the most proximal unambiguous
common node
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node before ambiguity (Fig. 4). Likewise, such conservative heuristics are required when

integrating the signals from all biological reads to report the run. If the run subject is a

single organism, it is expected that STAT would identify taxonomic nodes across the

lineage, and that the number of reads mapping to higher level nodes will be more than

those mapping to terminal nodes.

STAT was designed as a tool for assessing the quality of any SRA submission and

has matured into a tool that also significantly enhances user comprehension. Many k-

mer tools were created for the purpose of metagenomic taxonomic assignment [10]

during STAT development, including some based on MinHash [11, 12]. Unlike these

other MinHash-based metagenomic tools, STAT reports taxonomic hits per spot1.

Taxonomic classifiers balance speed, accuracy, and memory requirements. While STAT

was neither primarily developed for metagenomic analyses, nor as a tool for distribu-

tion, the same concerns apply. Using MinHash to sample and save at most 1 out of

every 64 k-mers generated from input sequences yields k-mer databases 1–2 orders of

magnitude smaller than the parental reference nucleotide database from which they

were derived. For example, currently the BLAST® refseq_genomes database used is 1.4

terabytes (tb) whereas the representative sparse and dense STAT k-mer databases are

approximately 1.5 gigabytes (gb), and 75 gb, respectively.

The STAT k-mer databases contain 248,426 TaxIds before merging. Our complete

merged 75 gb dense database (“tree_filter.dbss”) represents 130,817 TaxIds after mer-

ging (all data reflect the 20200518 build). The Kraken default 70 gb database only in-

cludes “RefSeq complete genomes, of which there are 2256, while Kraken-GB contains

8517 genomes” [13]. Despite our sparse index database (“tree_index.dbs”) size of 1.5 gb,

it nonetheless contains k-mers from 119,982 TaxIds.

We compare STAT accuracy to Kraken 2 using the strain exclusion test as described

by Wood et al. [14]. While limited to NGS classification tools that report taxonomic as-

signment on a “per-fragment” basis, using this test allows direct comparison to previous

published results, such as Fig. 2 in Wood et al. [14]. STAT shows the identical accuracy

of Kraken 2 for both bacteria and virus (see Fig. 5). As expected, STAT sensitivity is

notably dampened as we chose to sample the widest taxonomic breadth. Our desire for

conservative taxonomic assignment is further reflected by STAT never yielding a false

positive bacterial identification in accuracy test results (Additional file 3, S1). While

NCBI reference bacterial genomes are used for STAT database input, the significant

lack of representative RefSeq viral genomes led us to input non-reference viral records.

False positives are seen in the virus accuracy test results, though approximately half of

these likely represent true biological identification within the host organism genome,

while the remainder may indicate database contamination (Additional file 3, S2, S3).

We found it unnecessary to apply the same selection of k-mer hash minimums from

query sequences to compose a similarity index [3, 4, 11, 12], instead of exact k-mer

matching. We show that accuracy is robust, while still reflecting our conservative bias

in taxonomic assignment. Though similar in performance to Kraken 1 input speed

(21.6 million reads/minute) and runtime (132.5 s) characteristics, STAT (maximum

resident set size 830,304 kilobytes) required only 8% and 1% of the memory needed by

1We use the word “spot” to reference either the un-split paired biological read, or the single unpaired bio-
logical read.
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Kraken 1 and Kraken 2, respectively [14]. Unsurprisingly, the accuracy test (see

“Methods”) required additional time for extracting the requested TaxId k-mers on de-

mand. Maximum resident set size during the accuracy test was approximately an order

of magnitude greater than Kraken 2 (14, data not shown), despite loading a k-mer data-

base 20 times the “strain_excluded” FASTA file size (3.9 gb) and over 100 times

“strain_excluded.dbs” size (545 megabytes (mb)).

We provide two symmetrical examples of expected and unexpected contamination

that illustrate STAT effectiveness.

Contamination during a pandemic

Like many public health institutions worldwide Public Health England (PHE) program-

matically surveils infectious pathogens using NGS, and submits targeted reference gen-

omic analyses to SRA. The SARS-CoV-2 pandemic emerged in December 2019, and

many countries outside China identified their first cases in early 2020 [15]. The UK’s

first cases were identified on January 30, 2020 [16]. We began developing scientific pan-

demic resources using STAT results to identify SARS-CoV-2 submissions (see

“Methods”) and were surprised when the metadata of many of these records listed a

single bacterial source organism. This routine STAT analysis of submissions during

early 2020 identified over 2000 PHE surveillance bacterial NGS submissions likely con-

taminated with SARS-CoV-2 sequences. The earliest of these was dated February 11,

2020, less than 2 weeks from the first recognized UK cases. PHE was alerted to the

likely carryover contamination, acting quickly to limit further events. Subsequent inves-

tigation confirmed SARS-CoV-2 contamination, ranging from a minimum of 1 positive

spot containing 1 positive hit, reaching to 4233 positive spots containing 18,270 hits

(see “Methods,” and Additional file 1). This example underscores STAT utility in

Fig. 5 STAT accuracy and sensitivity. Comparison of STAT and Kraken 2 accuracy, sensitivity, and F1 measure
using positive predictive value at the genus level for a Bacteria and b Virus
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monitoring submissions for possible contamination, allowing curators to contact sub-

mitters to alert, and correct, the source of contamination.

Identifying and removing potential personally identifying information

As lower cost significantly expanded human genome sequencing, awareness rose of po-

tential personally identifying information residing in public repositories [17]. Large ef-

forts employing NGS to diagnose and monitor human health or detect pathogenic

outbreaks such as SARS-CoV-2, caused clinical sample submitters to worry about the

inclusion of human sequence. As a counterpart to the previously discussed contamin-

ation example, we sought a STAT-based tool to find and remove unavoidable human

sequence reads in clinical pathogen samples.

We began by building a k-mer database using human reference sequences withhold-

ing the iterative merging previously described. The majority (approximately 80%, see

Methods) of k-mers derived represent conserved ancestral sequences, but our goal here

is to aggressively identify human sequences. We then subtracted any k-mer also found

in the merged kingdom databases Viruses and Bacteria to protect against spurious false

positive hits targeting clinical pathogens. After testing several window sizes, we found

optimal performance using a segment of 32 bp (twice as dense as our standard tax-

onomy database).

Because unintended contamination is never uniform, we chose different ends of the

expected spectrum of human content for testing (see Table 1). Two RNA_Seq runs

were derived from bronchoalveolar lavage fluid taken from suspected SARS-CoV-2 pa-

tients. The wash of the lower respiratory tract from a patient suffering an active infec-

tion is expected to contain patient immune cells, sloughed patient epithelial cells, lung

microbiota, and suspect clinical pathogens. Each run contains over five million spots,

with approximately 85% eukaryotic content (see Additional file 2, S5). Table 1 shows

that for SRR11092056 the STAT Human Sequence Removal Tool removed 92%

(45234589 / 5239723) of the spots, and 90% (4683473 / 5184909) of SRR11092057

spots. The observation that a 3% selection of all possible human-derived 32-bp k-mers

Table 1 Summary of STAT Human Sequence Removal Tool Results

Human RNA_Seq:
bronchoalveolar lavage fluid

SARS-CoV-2 Amplicon

Accession SRR11092056 SRR11092057 SRR13402847 SRR13444106

Total spots 5239723 5184909 216859 471848

Total spots remaining 438796 501436 216720 470934

Total spots removed 4800927 4683473 139 914

Human spots remaining 26265 25384 20 2

Conserved lineage spots 27217 29507 70 13

Total length (kbp) of human spot
alignments

3684 3508 < 3 < 1

Summary of results for SRA accessions subjected to STAT Human Sequence Removal Tool (see Human Contamination
Identification and Removal in “Methods”). “Total Spots Remaining” is the count of spots found in the output (fastq) file
and subtracting this count from the total determine “Total Spots Removed”
We define “Human Spots” as those where all hits (up to top five) are identified as human with eValue < 1e−10.
“Conserved Lineage Spots” are those containing a human top hit (lowest eValue) though not the exclusive organism of
hits with eValue < 1e−10, and where all spot hits have either identical eValue or the greatest has eValue < 1e−14. “Total
Length of Human Spot Alignments” is the sum of all the top alignments for all human spots remaining
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identifies over 90–92% of a random selection of likely human spots validates using

MinHash and underscores its efficiency. These examples present a difficult test, and we

identify 5–6% of the remaining spots as human (Table 1).

Unlike the previous examples, amplicon-directed sequencing of pathogens is expected

to contain less unintended human content, as can be seen in Table 1. In both cases,

0.1% or less spots were removed, while among those remaining, 0.01% or fewer spots

were identified as human. In no case was there any deleterious loss of the intended tar-

get signal (see Additional file 2, S5 Taxonomic Summary).

It is estimated that as little as 30–80 statistically independent single-nucleotide poly-

morphisms (SNP) can uniquely identify an individual human [18]. The average se-

quence error rate [19] is greater than estimated human (intra-species) variation [20].

Considering the poor coverage of unintended human content in the samples, even in

the extreme lavage fluid examples, the total length of spot alignments identified as hu-

man are extremely unlikely to reveal validated, statistically independent SNPs capable

of individual identification. The great majority of spots characterized by a human best

hit though not the exclusive organism of the top five (“Conserved lineage spots” in

Table 1) are highly significant alignments to related primates with approximately 20%

sharing the same low eValue for all members (see Additional file 2, S1-S4). These likely

represent conserved regions unfavored for SNP location [21].

Conclusions
STAT has provided a successful framework for our SRA NGS submission pipeline.

Sometimes actual sample content may be unknown, and submitted metadata are often

incomplete and of poor quality [22, 23]. Contamination, as highlighted above, may

complicate or confuse further analysis. Recognizing these limitations stimulated our

foremost goal to derive signals able to validate and accurately describe submitted data

for the benefit of our users. Reflecting the National Institutes of Health (NIH) Science

and Technology Research Infrastructure for Discovery, Experimentation, and Sustain-

ability (STRIDES) Initiative [24] and ensuring that NIH-funded research data is find-

able, accessible, interoperable, and reusable (FAIR) [25], results from STAT are

available through Amazon Web Services’ Athena and Google Cloud Platform’s BigQu-

ery query services. Both can be searched to identify runs containing specific organismal

content [26] despite insufficient, incomplete, or incorrect metadata, allowing efficient

selection of data for further analysis by the scientific community. Over approximately 5

years, we have processed more than 27.9 Peta base pairs from runs averaging 1.1 Giga

base pairs in size with average total processing throughput of 3 min per run. While

roughly 20% of runs analyzed to date are withheld by submitter request until ready for

publication, nearly 10.8 million are publicly queryable records, now richly annotated by

STAT analysis.

Building a STAT database is flexible; it can be tailored to specific needs. For example,

we are currently testing a STAT k-mer database designed to identify antimicrobial re-

sistance (AMR) in NGS. The AMR_CDS FASTA file containing sequences curated by

the NCBI Pathogen group [27] is used as input to generate 32 bp k-mers with a window

size = 1; that is, the complete non-redundant k-mer set. For the purpose of removing

human reads from clinical pathogen screening samples, we presented a tool combining

STAT aligns_to with a human-specific database. As part of recent NIH-wide efforts to
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combat SARS-CoV-2, we released a detection tool containing aligns_to and a Virus

“dbs” that allows users to map k-mers found in NGS data to taxa included under Coro-

naviridae [28]. Our choice to maximize taxonomic coverage while minimizing k-mer

count has proved a reasonable and effective balance. Employing the principle of Min-

Hash in design, we contribute a framework others may find useful and offer the collec-

tion of tools to use freely.

The success we and others have experienced is consistent with the notion of a ran-

dom model of k-mer occurrence [29]. Yet, as keenly shown by Breitwieser et al. [30],

unique k-mer hits are the most informative. Through serendipity while preparing this

manuscript, our colleague John Spouge enlightened us with his method of a non-

parametric statistical approach to assess an NGS run using unique hits for confident

measurement of taxonomic assignments2. We are just beginning to explore this imple-

mentation in STAT and look forward to reporting results in the future.

Methods
General design

STAT refers to a collection of tools for building k-mer databases, querying those data-

bases, and reporting results of our SRA submission pipeline using the former. Details

described below are based on our standard pipeline settings.

k-mer size

STAT uses 32 bp k-mers (i.e., k = 32) for database generation, and as the unit for com-

parison. The majority of unaligned SRA data are reads between 60 and 150 bp in

length, with mean error rate of 0.18% [19]: such reads can be expected to yield many

correct 32 bp k-mers for reliable identification. While reducing from 32 bp k-mers to

16 bp k-mers decreases the size of resulting databases, there is significant loss of specifi-

city (109) per k-mer that requires notably increased processing to resolve taxonomic as-

signment. By comparison, using 64 bp k-mers is extraordinarily more selective, but

database size becomes impractical. Finally, with each base encoded in 2 bits, 32 bp k-

mers fit fully and compactly in a 64-bit integer, while anything between 17 bp and 32

bp requires the same 64-bit integer storage resulting in poor memory efficiency and

performance.

k-mer databases

Two types of k-mer databases are constructed (as described below). All unique k-mers

are generated and the minimum hash valued k-mer representing the segment size is se-

lected. A dense database selects one k-mer per 64 bp segment (“tree_filter”), of input

sequence, while a sparse database (“tree_index”) selects one k-mer per 64 bp (Virus),

8000 bp (Eukaryota), and 2000 bp (Bacteria, and Archaea) segment respectfully, noting

that segment size is roughly proportional to genome size.

2John Spouge, Statistical Computational Biology Group, National Library of Medicine, National Institutes of
Health, Personal communication.
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k-mer generation

k-mers are selected using an iterative approach derived from MinHash [3]. To compose

STAT databases, for every fixed length segment (“window”) of incoming nucleotide se-

quence, a list of overlapping k-mers (effectively segment length plus right k-1 bp

“wings”) is generated. The 32 bp k-mers are encoded using 2 bits per base into 64 bits

(8 bytes), the smaller value k-mer strand is chosen and used to generate an FNV-1 hash

value [6]. The k-mer with the minimal 64-bit hash value is selected to represent this

segment (see Fig. 1).

Taxonomic k-mer database generation

Construction of k-mer databases is guided by the NCBI Taxonomy Database [5], specif-

ically the four root Super Kingdoms: Archaea (722 species, 1330 total nodes), Bacteria

(20,259 species, 29,835 total nodes), Eukaryota (455,421 species, 638,336 total nodes),

and Viruses (4656 species, 7583 total nodes) [current as of manuscript date [31]].

From each (Super Kingdom) root, lineage paths traverse nodes where terminal nodes

are those containing only child leaves. Input sequences (see below) have an assigned

NCBI Taxonomy Id (TaxId) and represent leaves on these trees. These lineage relation-

ships are represented in a two-column file referred to as “parents,” wherein each node

TaxId (first column) reports its parent node TaxId (second column).

All sequences (see “Database input sequences”) attached to a particular TaxId are in-

put to k-mer database generation using segment (“window”) sizes as described. For

each input set of sequences assigned a TaxId, the immediate output is a dictionary that

contains the set of unique 32 bp k-mers derived as described (we designate this “db” file

extension). Each dictionary is further transformed into a binary file that encodes every

32 bp k-mer as an 8-byte (64-bit) integer using 2 bits per base, followed by its TaxId

represented in a 4-byte (32-bit) integer. Thus, each k-mer record is stored as one 12-

byte pair (k-mer, TaxId) in a database file designated with “dbs” file extension, sorted

by k-mer for binary search optimization.

Next, using the taxonomic node relationships (found in the “parents” file), starting

from the leaves we recursively merge each binary (“dbs”) file representing a unique set

of k-mers derived from a single TaxId to sibling(s), then parent nodes. Each sibling leaf

is merged such that k-mers specific to a leaf remain as diagnostic of that TaxId, while

those found in neighboring (sibling species) leaves are moved up (“merged”) to the

common parent node TaxId (see Fig. 2). This process results in a single merged data-

base file (“tree_filter.dbs”) representing all k-mers assigned a TaxId.

While it is difficult to generalize, we note that when the process of merging is complete,

approximately 20% of the Homo sapiens 32 bp k-mers remain as unique to human; that is,

80% were not diagnostic for the species and instead merged up the eukaryotic tree.

Database generation can be accomplished using any of the build_index* tools (see

github), and each takes parameters for window size and k-mer size. The process of

merging is accomplished using merge_db.

Database input sequences

We use NCBI BLAST® “refseq_genomes” database [32], supplemented with viral se-

quences extracted from the BLAST® “nt/nr” database as input source for taxonomy
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identification in both sparse (“index”) and dense (“filter”) k-mer databases [33]. Viral re-

cords are extracted from “nt/nr” by loading only sequences assigned a TaxId whose

lineage root is the Super Kingdom “Viruses”.

Querying the taxonomic k-mer database (STAT)

To query a k-mer database an input SRA accession or FASTA sequence is used to gen-

erate the unique set of query 32 bp k-mers read as 64-bit integers for finding identical

value k-mers (and assigned TaxId) from the designated k-mer database using the tool

aligns_to. Proximal results are counts for each specific taxonomic k-mer hit (see “Re-

sults,” Fig. 3). Passed an SRA accession, STAT built with NCBI NGS library support

will retrieve query sequences and aligns_to option -unaligned_only is available to limit

analysis to the unaligned reads found in the SRA object.

Database filtering

We determined the need to delete low-complexity k-mers composed of > 50% homo-

polymer or dinucleotide repeats (e.g., AAAAAA or ACACACACACA). This is accom-

plished using filter_db. We have also investigated “dusting” input sequences [34] and

found it complementary to filtering, though it is not used at this time in our pipeline.

Performance measurement

STAT performance metrics were gathered as described in Wood et al. (see “Execution

of strain exclusion experiments” and “Evaluation of accuracy in strain exclusion experi-

ments” in Methods, 14). A “dense” k-mer database was created using the excluded taxa

sequences for input [14]. Briefly, we used Mason 2 [35] to generate 500,000 simulated

Illumina 100 bp paired reads for each excluded strain TaxId, and collected cpu and

memory using ram-disk storage of the simulated reads and database employing 16

threads (16 Intel® Xeon® 2.8 GHz CPUs 64 GB RAM). Accuracy was measured using

aligns_to against “tree_filter.dbss” (see “Results”) with a list of all TaxIds excluding the

50 strains tested (130,769 TaxIds total, see Additional file 3, S4) using command

aligns_to -dbss 20200518_tree_filter.dbss -tax_list TaxID_file -out accuracy_X.hits ac-

curacy_X.fasta. Measurement calculations using “true positives” (TP), “true

negatives” (TN), “false positives” (FP), “false negatives” (FN), and “vague positives”

(VP) are defined as follows: “Sensitivity” = TP/(TP + VP + FN + FP); “Positive Predict-

ive Value (PPV)” = TP/TP + FP; “Recall” = TP/TP + FN; “F1” = 2 × [(PPV × Recall) /

(PPV + Recall )] (see “Evaluation of accuracy in strain exclusion experiments” in

Methods, 13). Data for Kraken 2 are taken from Wood et al. [14] and reproduced in

Fig. 5 for convenience.

SARS-CoV-2 contamination identification and verification

Submissions containing SARS-CoV-2 were identified by searching STAT results in

Google Cloud Platform’s BigQuery [26] using a simple select statement (e.g., SELECT *

FROM `nih-sra-datastore.sra_tax_analysis_tool.tax_analysis` where name = 'Severe

acute respiratory syndrome coronavirus 2' ).

Those with metadata identifying a single bacterial source suggesting contamination

with SARS-CoV-2 were subject to two further verification methods. All identified
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accessions were rerun using the current SARS-CoV-2 Detection tool (28, DockerHub

Tag1.1.2021-01-25, see Additional file 1). Low-level contamination (1 spot, 1 or 0 re-

solved hits) observed in 31 records was further examined using STAT against a SARS-

CoV-2-specific database (“dbs”) composed of 32-bp k-mers identified by Wahba et al.

[36]. Using these 18,582 SARS-CoV-2-specific k-mers as queries never found a match-

ing k-mer when run against our full tree_filter.dbs (data not shown).

Human contamination identification and removal

The special-purpose k-mer database uses NCBI BLAST® “refseq_genomes” limited to

Human (TaxId 9606) for input using a “window” segment of 32 bp and filtered as de-

scribed previously. Any k-mers found also in the merged Kingdom databases of Bac-

teria and Viruses were removed. The current database contains 80,143,408 k-mers and

is 612 mb in size. The STAT Human Sequence Removal Tool (“sra-human-scrubber”) is

intended as the last step before submission and takes as input a “fastq file,” and outputs

a “fastq.clean file” in which all reads identified as potentially of human origin are re-

moved [37].

Examples discussed in “Results” and shown in Table 1 were run against the STAT

Human Sequence Removal Tool docker container ( 37, DockerHub Tag 1.0.2021-03-11).

For each, the resulting “{file}.fastq.clean” was transformed into a fasta file, and then

subject to NCBI blastn 2.10.0+ using (megablast) parameters [-max_target_seqs 5, -eva-

lue 0.00001, -strand plus] against the “refseq_genomes” BLAST® database [38]. The top

five hits (by eValue) for each spot containing a human best hit (with all hits eValue <

1e -10) can be found in Additional file 2.
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Additional file 1. Microsoft Excel: The first sheet (S1) contains results from accessions using SARS-CoV-2 detection
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