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Non-locality Correlation in Two 
Driven Qubits Inside an Open 
Coherent Cavity: Trace Norm 
Distance and Maximum Bell 
Function
A.-B. A. Mohamed1,2*, H. Eleuch3,4 & C. H. Raymond Ooi5

We analytically investigate two separated qubits inside an open cavity field. The cavity is initially 
prepared in a superposition coherent state. The non-locality correlations [including trace norm 
measurement induced non-locality, maximal Bell-correlation, and concurrence entanglement] of the 
two qubits are explored. It is shown that, the generated non-locality correlations crucially depend 
on the decay and the initial coherence intensity of the cavity field. The enhancement of the initial 
coherence intensity and its superposition leads to increasing the generated non-locality correlations. 
The phenomena of sudden birth and death entanglement are found.

Two-level system (qubit) is not only the key element in various fields of the modern physics, such as quantum 
optics and collision physics1,2, but also the fundamental building block of modern applications ranging from 
quantum control3 to quantum processing4.

Due to the rapid development of experiments in macroscopic solid state physics, the artificial two-level atoms 
qubits based on the superconducting (SC) circuits5,6 and quantum dots (QDs)7 have been recognized as possible 
candidate for quantum processing. The SC-qubits have macroscopic quantum coherence. It may be helpful for the 
realization of the conditional two-qubit gate and quantum hybrid system8,9. Embedding QD-qubits in microcav-
ities enhances the light extraction efficiency via the Purcell effect and permits the study of cavity QED effects in 
solid-state systems10–12. Experimentally, the qubit-photon interaction was intensively investigated8,9,13–16.

The dissipation eradicates the useful quantum coherence and correlations17,18. The existence of dissipative 
qubits, such as in amorphous solids, is a longstanding problem in solid-state physics19,20.

There is a growing interest in the dynamics of non-local correlations (NLCs) beyond the quantum entangle-
ment (QE)21, which is a unique type that has a major role in quantum processing22. However, QE does not have all 
of the non-classical properties of the quantum correlations23. While NLCs between the parts of a system in a pure 
state is fully characterized by their entanglement, mixed states may possess NLCs even if they are not entangled. 
New types of NLCs were introduced beyond QE24 as: measurement-induced disturbance25, quantum discord26, 
and that was determined by using p-norms such as; the Hilbert-Schmidt norm, Schatten one-norm and Bures 
norm. Due to analytic difficulty to the quantum discord, the geometric correlations appeared via geometric quan-
tum discord (GQD) and the measurement-induced nonlocality (MIN)27 were proposed by using the 2-norm28. 
However, these measurements that are based on 2-norm have been proved to be incompetent measures of NLC29. 
Consequently, the GQD and MIN are derived using 1-norm (trace norm)30–32. Moreover, non-classical correla-
tions registered by Bell inequality violation33 (that constitutes one of the most striking phenomena ever observed 
in nature) is used as an indicator of non-local quantum properties.

While NLCs between the parts of a system in a pure state is fully characterized by their entanglement, mixed 
states may possess NLCs even if they are not entangled. Unlike entanglement, quantum discord is rather robust 
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against decoherence34. It is shown that the dynamics of GQD is more robust than the thermal entanglement. Also, 
the measures of MINs can be considered as one type of quantum correlation that differs from entanglement and 
quantum discord30,31,35.

Despite the complexity of the suggested model, it is significant to introduce an analytical description of 
two optically driven qubits inside an open cavity, that is initially prepared in a coherent state. Therefore, the 
non-locality correlations [including, trace norm measurement induced non-locality, maximal Bell-correlation] 
and the entanglement via the concurrence could be determined.

In Sec. 2, the model of (two-qubit)-cavity system and its analytical solution are introduced. In Sec. 3, the 
non-locality correlation functions is displayed. We discuss the results of the non-locality correlations in Sec. 4. 
Finally, we conclude in Sec. 5.

The Physical Model
The studied system is constituted by two sufficiently separated identical artificial two-level atoms (considered as 
two qubits A and B) resonantly interacting with an open cavity. The two atoms are separated by a distance much 
larger than their size, consequently their dipole-dipole interplay can be neglected36. In the rotating wave approx-
imation, the total Hamiltonian is:
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where ω0 represent the qubits and the cavity frequency. ˆ†a  and â are respectively the creation and annihilation 
operators of the cavity mode. The operators σ±ˆi  and σ̂i

z are the Pauli matrices which are defined by the upper states 
|1〉i, and lower states |0〉i. λi designate the coupling between the cavity and the qubits. Here, we focus on the case 
where λi = λ.

If we consider only the dissipative term of the dipole decay of the qubits, the dynamic of the system is given 
by37
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where γi are spontaneous emission rates of the two qubits, which are treated by coupling each qubit to reservoir. 
In the basis states {|1〉 = |1A1B, n〉, |2〉 = |1A0B, n + 1〉, |3〉 = |0A1B, n+1〉, |4〉 = |0A0B, n + 2〉}, the dressed states, |Ψi

m〉
(i = 1–4), are
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a b a b( ) ( ) 2n n . In the case of high −Q cavity (γ λi i), we apply 
the dressed-states representation (DSR) based on the Hamiltonian eigenstates38–40. The operators of the qubits, 
|1〉ii〈0|, of Eq. (7) are written in the DSR.

In this paper we focus on the case where the two qubits are initially in the excited state (uncorrelated state),  
i.e., ρ̂ (0)AB  = |1A1B〉〈1A1B|. While the wave function of cavity mode field is initially prepared in the superposition 
coherent state: |α〉 + κ|−α〉, where α is the intensity of the coherent state, i.e.,
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N = |α|2 designs the mean photon number and κ = 0 and 1 are taken respectively for the coherent state and 
the superposition coherent state. Coherent states and their superpositions are proposed as major elements for 
the realization of quantum processing. Using the dressed states space, {|Ψi

m〉}, of Eq. (3), the initial total density 
matrix in DSR is rewritten as:
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In the basis states of the two qubits {|1〉 = |1A1B, n〉, |2〉 = |1A0B, n + 1〉, |3〉 = |0A1B, n + 1〉, |4〉 = |0A0B, n + 2〉}, 
Eq. 2 becomes
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If i ≠ j, the elements 〈Ψk
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where γ  =  γA +  γB, Ai =  〈Ψ1
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. The Eq. (9) is exactly solvable for the case where each state has at most N 

photons only, i.e, AN+1 = BN+1 = CN+1 = 0, the case N → ∞ could be considered38. Equation (9) gives at i = N,
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Then we can calculate for i = N − 2, N − 3, ..., 0. The density operator of the qubits ρAB(t) can be determined, 
by tracing the cavity field degrees of freedom as:

∑ρ ρ ρ= = 〈 | | 〉.
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Now, we can explore the time evolution of the non-local correlations.

Non-Locality and Concurrence Quantifiers
We adopt as non-locality quantifiers: the trace norm measurement induced non-locality (MIN) and the Bell func-
tion. These measures will be compared to the concurrence as a quantifier of entanglement.

Concurrence.  The concurrence41 is one of the most used measures of the entanglement between two qubits. 
It is defined as,
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where λi are the eigenvalues of the following matrix:
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Trace-norm MIN.  Firstly, the measurement induced non-locality for a two-qubit state ρAB(t) is defined via 
Hilbert-Schmidt norm (2-norm)27. Unfortunately, just like geometric quantum discord based on 2-norm, it may 
change under trivial local reversible operations on an unmeasured subsystem of ρAB(t)29. To address this issue, the 
MIN based on trace norm (1-MIN) and others have been introduced by30–32. The modified versions of the p-MIN 
based on the Schatten p-norm is given by30,31

ρ ρ ρ= − Π .
χ Π∈

M t t t( ( )) max ( ) ( ( ))
(13)p

AB AB A AB
p
p

A

where A p is the Schatten p-norm of a matrix/vector A. Here we use 1-MIN that represents the maximal trace 
distance between the pre-measurement state and the post-measurement state caused by the locally invariant 
measurements. the trace-norm MIN in explicit form can be written as:
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over all the cyclic permutations of 1,2,3. where where xi = Tr(ρAB(t)(σi ⊗ I)) are the elements of the local Bloch 
vector x, while, rmn = tr{ρAB(t)(σm ⊗ σn)} represent the components of the correlation matrix R = [rmn]28. 
σ σ σ σ→ = ( , , )1 2 3  represents a vector of the Pauli spin matrices.
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(ii) - Maximum Bell function:
The maximal value of the Bell function Bmax(t), is considered as an indicator of non-locality correlation33. If 

Bmax(t) > 2, then the Bell’s inequality is violated, i.e., Bmax(t) locates the nonlocal quantum correlations when its 
value is above 2 (the classical threshold). Here, we use the Bell function defined by

= −B t S( ) 2 1, (17)max

where, Smax is the summation of the two largest eigenvalues for the matrix = †U R R, R represents the correlation 
matrix of a two-qubit state ρAB. The function B(t) identifies NLC when it is above the classical threshold 1.

NLC Dynamics
Effect of the coherent cavity superposition.  In Fig. 1, we display the resulted non-locality correlations 
of the two qubits with respect to the unitary interaction γ = 0. Where the trace-norm MIN, M(t), maximal Bell 
function, B(t), and the concurrence C(t) are displayed for different values of the superposition parameter κ = 0; 
κ = 0 in (a), κ = 1 in (b) and κ = −1 in (c) with the initial coherence intensity N = 2.

From a chosen initial pure state of the qubits |1A1B〉 or |0A0B〉, the elements of the correlation matrix R are zero 
except for r33 = 1, and the Bloch vector is x = (0, 0, ±1)t ≠ 0. Therefore, M(0) = 0, B(0) = 1, and C(0) = 0, i.e, the 
state of the qubits does not have correlations. If the pure state of the qubits develops to one of the maximal corre-
lated states, | 〉 ± | 〉( 01 10 )1

2
, the elements the correlation matrix R are zero except for the element r11 = ±0.5, 

r22 = ±0.5 and r33 = −0.5, and the Bloch vector is x = (0, 0, 0)t. Therefore, M(0) = 1, B(0) = 1.8284, and C(0) = 1 
(generating maximal NLCs). Otherwise, the qubits-cavity interaction generates partial correlations.

In Fig. 1a, we consider the initial coherent state κ = 0 while the dipole decay of the qubits is neglected (γ = 0). 
We observe that the unitary interaction leads to: (1) the uncorrelated state of the qubits, |1A1B〉, produces an 
oscillatory partial entanglement and non-locality correlations during the time evolution of the qubits-cavity 
interaction. These partial correlations are enhanced with increasing the interaction time. As the unitary inter-
action evolves, the concurrence C(t) is zero for a short time, and it suddenly grows to its partial maximum value 
at particular points. These points are called growth-start points (GSPs). C(t) presents sudden birth and death 
entanglement42.

(2) the trace-norm MIN M(t) grows from zero (i.e., GSP is zero) to its partial maximum values. It has different 
behaviour compared to C(t). M(t) never vanishes. The upper bounds of trace-norm MIN are larger than that of 
the concurrence. (3) with respect to B(t), we observe that the Bell’s inequality is violated for short time intervals, 
in which B(t) > 1.
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Where, in the case of κ = −1, the values of NLC functions may reach approximately the values of the maximal 
correlated states, | 〉 ± | 〉( 01 10 )1

2
, that are mentioned above. This mean that there is relation between the correla-

tion dynamics and the evolution of the state of the qubits.
In Fig. 1b,c, the dependence of the NLCs on the superposition of coherent states parameter κ is depicted. The 

NLC functions for the two cases of the initial even coherent state κ = 1 in (b) and the initial odd coherent state 
κ = −1 in (c) are simulated with the same data of Fig. 1a.

We observe that the generated NLCs are bigger compared to the ones of the coherent cavity. The superposi-
tion of the coherent state parameter κ leads to the increase of the time intervals of the maximal violation of Bell’s 
inequality of B(t) > 1.

Effect of the dipole qubits decay.  In Fig. 2, the NLC functions M(t), B(t), and C(t) are plotted for the 
initial coherent state κ = 0 and the dipole decay of qubits (γ = 0.08λ). We note a more rapid deterioration of the 
non-local correlations. In case of coherent cavity field κ = 0 with γ/λ = 0.08, we observe: (1) due to the dipole 

Figure 1.  Time evolutions of M(t) (dashed dotted plots), B(t) (dashed plots) and C(t) (solid plots) with the 
dissipative rate γ/λ = 0 and N = 2 for different values of κ = 0 in (a), κ = 1 in (b) and κ = −1 in (c).

https://doi.org/10.1038/s41598-019-55548-2
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decay of the qubits, the two functions of maximal Bell function and the concurrence vanish approximately 
whereas the trace norm MIN function does not vanish.

For the cases of the initial even coherent κ = 1 and odd coherent κ = −1 microcavity field, we observe that the 
oscillations, amplitudes and the negativity of the NLC functions M(t), B(t), and C(t) are more robust against the 
rate of dipole qubits decay γ/λ, (see Fig. 2b,c).

Therefore, the generated NLCs depend on the dipole decay and on the initial coherent cavity field. Due to the 
dipole qubits decay, the stable state of the two qubits has a value of the trace norm MIN correlation beyond that 
of entanglement and non-locality Bell-correlation.

Effect of the initial coherence intensity.  In Fig. 3, we analyze the effect of the initial coherence intensity 
N, where N = 0.5 is small and the dipole decay of qubits is neglected. We notice the change of the dynamical 
behavior of the NLCs. We observe that the NLC functions M(t), B(t), and C(t) (see Figs. 1 and 3) exhibit extreme 
values and amplitudes less than that of N = 2.

Figure 2.  As Fig. 1, but with γ = 0.08λ.
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The Bell’s inequality is violated during short intervals, for the initial even coherent κ = 1 and odd coherent 
κ = −1 cavity field. However, for a coherent state there is no violation of the Bell’s inequality is observed. We 
deduce that the amount of the generated entanglement and non-locality correlations may be increased by increas-
ing the initial coherence intensity N.

Figure 4 shows the effect of the dipole decay γ = 0.08λ on NLCs between the two qubits. We observe that the 
NLCs for γ = 0.05λ have damped oscillations, their amplitudes decrease until completely vanish. When the dipole 
decay is increased, reduction of the final disappearance time of the NCLs is noted. For the small initial coherence 
intensity, N = 0.5 (see Fig. 4b), C(t) is quasi-periodic. The sudden birth and death entanglement is observed 
for large time windows. The generated NLCs are weak and has less robustness as the initial coherence intensity 
decreases. The NLCs are reduced by the decrease of the initial coherence. The extreme values of trace norm MIN 
is more robust than the entanglement and non-locality Bell-correlation.

Figure 3.  As Fig. 1(a), but with α = 0.5.
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Conclusion
Throughout this paper, an analytical description of a cavity contains two qubits spatially separated is estab-
lished. The non-locality correlations [including trace norm measurement induced non-locality, maximal 
Bell-correlation and concurrence entanglement] of the two qubits are explored via the trace norm measurement 
induced non-locality and the Maximum Bell function. The rise in two-qubit damping rates induces a fast deterio-
ration of the coherence. We notice that this system presents sudden birth and death entanglement. The generated 
non-locality correlations essentially determined by the loss rate of the two-qubit and the initial coherence of the 
cavity.
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