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Abstract 

Current NCCN guidelines do not recommend the use of adjuvant chemotherapy for stage IA lung 
adenocarcinoma patients with R0 surgery. However, 25% to 40% of patients with stage IA disease experience 
recurrence. Stratifying patients according to the recurrence risk may tailor adjuvant therapy and surveillance 
imaging for those with a higher risk. However, prognostic markers are often identified by comparing high-risk 
and low-risk cases which might introduce bias due to the widespread interpatient heterogeneity. Here, we 
developed a scoring system quantifying the degree of field cancerization in adjacent normal tissues and revealed 
its association with disease-free survival (DFS). 
Methods: We recruited a cohort of 44 patients with resected stage IA lung adenocarcinoma who did not 
receive adjuvant therapy. Both tumor and adjacent normal tissues were obtained from each patient and 
subjected to capture-based targeted genomic and epigenomic profiling. A novel methylome-based scoring 
system namely malignancy density ratio (MD ratio) was developed based on 39 patients by comparing tumor 
and corresponding adjacent normal tissues of each patient. A MD score was then obtained by Wald statistics. 
The correlations of MD ratio, MD score, and genomic features with clinical outcome were investigated. 
Results: Patients with a high-risk MD ratio showed a significantly shorter postsurgical DFS compared with 
those with a low-risk MD ratio (HR=4.47, P=0.01). The MD ratio was not associated with T stage (P=1), tumor 
cell fraction (P=0.748) nor inflammatory status (p=0.548). Patients with a high-risk MD score also 
demonstrated an inferior DFS (HR=4.69, P=0.039). In addition, multivariate analysis revealed EGFR 19 del 
(HR=5.39, P=0.012) and MD score (HR= 7.90, P=0.01) were independent prognostic markers. 
Conclusion: The novel methylome-based scoring system, developed by comparing the signatures between 
tumor and corresponding adjacent normal tissues of individual patients, largely minimizes the bias of 
interpatient heterogeneity and reveals a robust prognostic value in patients with resected lung 
adenocarcinoma. 
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Introduction 
Curative resection is the standard of care for 

patients with stage I non–small-cell lung cancer 
(NSCLC). Current NCCN guidelines do not 
recommend the use of adjuvant chemotherapy for 
stage IA lung adenocarcinoma patients with R0 
surgery. However, approximately 20% to 40% of 
patients with stage IA NSCLC experience recurrence 
within 5 years after surgery [1-3]. Effective recurrence 
prediction in this group of patients is needed. In 
addition, although surveillance imaging is also 
recommended for all resected patients, the level of 
supportive evidences is low and adherence rates are 
limited [4, 5]. Hence, stratifying patients according to 
the predicted recurrence risk may tailor adjuvant 
therapy and surveillance imaging to patients with a 
higher risk [6]. Tremendous efforts have been 
invested to identify clinical and molecular 
characteristics that might help predict recurrence risk 
in addition to TNM stage in resected lung cancers 
[7-11]. Clinical parameters including but not limited 
to vascular invasion, visceral pleural involvement 
(VPI), poorly differentiated tumors, and wedge 
resections, as well as molecular signatures including 
Ki-67 expression, MACC1 gene amplification, 
microRNA expression were found to be indicative of 
prognosis; however, the prediction performance was 
still not satisfactory [12, 13]. In clinical practice, the 
prognostic features commonly used in clinical 
decision-making remain to be the tumor stage and the 
patient’s performance status [14]. 

DNA methylation, a primary epigenetic 
modification in mammalian genome often occurring 
at CpG islands, is an important mechanism in gene 
and microRNA expression regulation [15] as well as 
in alternative gene splicing [16]. It plays an essential 
role in the development as well as the progression and 
metastasis of lung cancer [17]. Compared with 
mutation, copy number variation (CNV) and gene/ 
microRNA expression [18-20], DNA methylation was 
utilized as the most promising marker for the early 
detection of cancer due to its stability and being easily 
detected qualitatively and quantitatively [21, 22]. In 
the past decade, there has been a blossoming of 
studies on early detection and risk of recurrence of 
lung cancer by analyzing methylation signatures 
[23-26]. However, limitations also exist such as small 
sample size, limited number of selected genes and 
qualitative instead of quantitative measurement of 
DNA methylation, which might explain the low 
reproducibility of these assays [25]. 

The concept of field cancerization (also unknown 
as field effect or field defect) was first introduced by 
Slaughter et al. in 1953 to describe a field of 

normal-appearing tissue that has been preconditioned 
by unknown processes so as to predispose it towards 
development of cancer [27]. Even though initially 
based on histological observations, field cancerization 
now has been demonstrated to occur at the molecular 
level. Precancerous cells adjacent to the tumor cells 
acquiring tumor-primed genetic alterations have been 
identified in various organs [28-30]. In addition, 
epigenetic field cancerization has also been 
discovered in various types of cancers, including lung 
[31], stomach [32], liver [33], colon [34], bladder [35] 
and so on. Field cancerization is now recognized to 
underlie the development of many types of cancer, 
including lung carcinomas [36, 37] and might have an 
etiologic role in a substantial number of recurrences 
[38]. Therefore, sensitive detection of cancerized fields 
at high risk of developing malignancy by molecular 
profiling is highly desirable. However, the whole 
cancerization idea can’t pinpoint the risk. Instead, 
biomarker based on quantifying the underlying 
evolutionary process within the cancerized field 
might have a more robust prognostic value [39]. 
Genetic diversity, genomic instability and size of 
clonal expansion have been identified as such 
evolutionary markers showing prognostic value in 
blood, Barrett’s esophagus and ulcerative colitis 
[40-43]. Under the hypothesis that the field 
cancerization of adjacent tissues from the surgery site 
might be associated with patient’s outcome, we 
developed a novel methylome-based scoring system 
namely malignancy density ratio (MD ratio) to 
characterize the degree of field cancerization of the 
adjacent normal tissues. The aim of the present study 
is to investigate the association of this MD ratio with 
the risk of disease recurrence in resected stage IA lung 
adenocarcinomas.  

Methods 
Patient information 

We retrospectively recruited a total of 44 stage 
IA (T1a/T1b, N0) lung adenocarcinoma patients who 
underwent curative resection (without adjuvant 
therapies) from Cancer Hospital, Chinese Academy of 
Medical Sciences and Peking Union Medical College 
between October 2011 and November 2015 (follow-up 
through April 2018). Curative resection was defined 
as the removal of all malignant (cancerous) tissue to 
cure the disease. The histopathological and clinical 
characteristics of patients as well as disease-free 
survival (DFS) were collected. The study was 
approved by the institutional review board of Cancer 
Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College. All patients provided 
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written informed consent, in accordance with the 
Declaration of Helsinki. 

DNA isolation from tissues 
Paired tumor tissues and adjacent normal tissues 

were obtained during surgery. Adjacent normal 
tissues were biopsied >5cm distant from resection 
margins for lobectomy and segmentectomy, and > 
3cm from margins for wedge resection. The absence of 
tumor cells in the normal tissue samples was 
confirmed by histopathological assessment. Both 
samples were subjected to DNA isolation using the 
QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia, 
CA, USA) according to the manufacturer’s 
instructions. DNA was quantified with the Qubit 2.0 
fluorimeter (ThermoFisher Scientific, Waltham, MA, 
USA). 

Bisulfite sequencing 
Forty-four paired tumor and adjacent normal 

tissues were sequenced using a capture-based 
bisulfite sequencing panel as described previously 
[44]. The bisulfite sequencing (BS-seq) library was 
prepared using the brELSATM method (Burning Rock 
Biotech, Guangzhou, China). Briefly, purified DNA 
was treated with sodium bisulfite (D5046, EZ-96 DNA 
Methylation-Lightning™ MagPrep, Zymo Research, 
Orange, CA, USA). Subsequently, the converted 
single-strand DNA molecules were ligated to a 
splinted adapter, and amplified by a uracil-tolerating 
DNA polymerase to generate whole-genome BS-seq 
libraries. Custom-designed methylation profiling 
RNA baits were used for target enrichment which 
covers 80,672 CpG sites and spans 1.05 mega base of 
human genome. The target libraries were 
subsequently quantified by real-time PCR (Kapa 
Biosciences Wilmington, MA, USA) and sequenced on 
NovaSeq 6000 (Illumina, San Diego, CA, USA) with 
an average sequencing depth of 1,000X. 

Methylation data analysis 
Trimmomatic (v.0.32) was used to remove 

custom adaptor sequences and low-quality bases. 
Paired-end reads were aligned to C to T- and G to 
A-transformed hg19 genome by BWA-meth (v.0.2.2) 
[45]. After alignment, duplicate reads were marked by 
samblaster (v.0.1.20) [46], and low mapping quality 
(MAPQ<20) or improper pairing reads were removed 
by sambamba (v.0.4.7) [47] from further downstream 
analyses. Paired reads were merged by clipping 
overlapping reads to avoid double-counting of 
methylation calls. Methylation blocks (MBs) were 
defined as the genomic region consisting of the 
neighboring CpG sites which were not only close on 
distance but also correlated on methylation level. A 
total of 8,312 MBs were generated from 80,672 CpG 

sites using a proposed region-defined algorithm. 
Within all MBs, 84% were annotated in genes with 
59% in promoter regions, 7% in exons and 18% in 
introns. We defined M and U as the methylated and 
unmethylated reads aligned on a CpG site, 
respectively. Mij and Uij sum the M and the U in the jth 
MB for the ith patient, respectively (Table S1). We 
defined βji as the methylation signature in the jth MB 
of the ith patient following the formula: βij = 
Mij/(Mij+Uij). 

Generation of the MD ratio and MD score 
MD ratio and MD score were generated as 

illustrated in Figure S1.The cancer-specific blocks 
namely differential methylated blocks (DMBs) were 
selected by testing the signature difference between 
tumor and normal tissues, and MBs with significant 
difference (P<0.05) were chosen. The personalized 
DMBs were selected by comparing the differential 
signatures in tumor and paired normal tissues of a 
given patient. We estimated the baseline methylation 
signature βj(0) based on the methylation data of normal 
lung tissues from an internal database via maximum 
likelihood estimation (MLE). We defined βij(a) and βij(t) 

as the methylation signature for adjacent normal 
tissue and tumor tissue of the ith patient respectively, 
which follow the equation: 

 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖
(𝑇𝑇) + (1 − 𝛼𝛼𝑖𝑖)𝛽𝛽𝑗𝑗

(0)  
Assuming that the methylation signature follows 

a mixed beta-binomial model, the αi (MD ratio) of 
each patient was estimated by MLE which reflects the 
proportion of methylation signature in the adjacent 
normal tissue shared by its corresponding malignant 
tumor tissue. Hessian Matrix was used to estimate the 
variance of the MD ratio estimator. MD score was 
obtained by Wald statistics under the null hypothesis 
of MD ratio equals to 0, representing the density of 
malignant signature present in the adjacent normal 
tissue of an individual patient. 

Targeted DNA sequencing for genomic 
characterization 

Capture-based targeted sequencing for somatic 
mutation profiling was performed on 44 tumor 
samples using a panel consisting of 520 cancer-related 
genes (Table S2). Ten randomly selected adjacent 
normal tissues were also subjected to capture-based 
targeted sequencing for mutation profiling. The NGS 
library was prepared as previously described [48] and 
sequenced on a NextSeq 500 (Illumina, Inc., San 
Diego, CA, USA) with pair-end reads with an average 
depth of 1,000X. The sequencing data in a FASTQ 
format were mapped to the human genome (hg19) 
using BWA aligner 0.7[49]. Local alignment 
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optimization, mark duplication, and variant calling 
were performed using the Genome Analysis ToolKit 
(GATK) 3.2[50], Picard (http://picard.sourceforge. 
net/) and VarScan[51]. Gene translocations were 
identified with FACTERA [52] and the CNV was 
called with an in-house algorithm based on 
sequencing depth [53]. 

Statistical analysis 
Statistical analysis was performed using R 

version 3.3.3 software. Differences in groups were 
calculated and presented either by Fisher’s exact test 
or paired two-tailed Student’s t-tests, as appropriate. 
Wilcox test was used to study the correlation of MD 
ratio with tumor cell fraction in tumor tissue. A 
receiver operating characteristic (ROC) curve was 
generated to identify the cut-off of MD ratio. Kaplan–
Meier analysis was used to estimate survival 
functions, and a log-rank test was used to determine 
the difference in the survival curves between groups. 
p < 0.05 was considered statistically significant. 
Possible predictors of DFS were investigated using 
Cox univariate or multivariate proportional-hazards 
analysis. 

Results 
Characteristics of patients 

We retrospectively recruited 44 patients with 
stage IA lung adenocarcinoma who underwent 
curative resection without adjuvant therapy. The 
demographic and clinical characteristics of patients 
were summarized in Table 1. The median age of this 
cohort was 61 years, ranged from 40 to 81 years. 
Among them, 28 (63.6%) were males. Twenty-five 
(56.8%) patients had a history of smoking. The median 
tumor diameter was 1.5cm. The perineural invasion 
(PNI) and spread through air spaces (STAS) were 
present in 6 (13.6%) and 18 (40.9%) patients, 
respectively. Visceral pleural invasion (VPI) was not 
found in any of the patients. Eleven (25%) patients 
underwent pulmonary lobectomy and 31 (70.5%) had 
thoracoscopic lobectomy. Only 2 (4.5%) were treated 
with thoracoscopic wedge resection. Twenty-nine 
(65.9%) patients had right lung resected. After a 
median follow-up time of 41.5 months, the median 
DFS of this cohort was 33 months, ranged from 3.3 - 
69.3 months. None of the characteristics significantly 
correlated with DFS (Table 1). 

The prognostic values of MD ratio and MD 
score 

Paired tumor and adjacent normal tissue 
samples from 44 patients were subjected to bisulfite 
sequencing and 39 of them generated data with 

sufficient quality for both paired samples, therefore, 
underwent further methylation analysis and MD ratio 
calculation. The cancer-specific blocks for each patient 
were selected by comparing the methylome-based 
signatures between the patient's tumor and adjacent 
normal tissues. MD ratio of each patient was 
estimated by MLE, which reflects the proportion of 
malignant methylation signal in the adjacent normal 
tissue shared by its corresponding malignant tumor 
tissue. MD ratio ranged from 0 to 0.2 with a majority 
of samples close to 0 (Figure 1A). Next, we performed 
a ROC analysis to derive a cut-off for MD ratio to 
discriminate patients who relapsed during the 
follow-up from those who did not (Figure 1B). MD 
ratio of 0.00979 was identified, with an area under 
curve of 76.3%. We observed a significantly shorter 
postsurgical DFS in patients with a MD ratio greater 
than 0.00979 (high-risk) compared with those with a 
low-risk MD ratio (33 months vs. NR, HR=4.47, 
P=0.01, Figure 1C). 

We also investigated the correlation between the 
MD ratio and some histological characteristics, 
including T stage, tumor cell fraction and 
inflammatory status (Table 2). No significant 
correlation between MD ratio and T1a/T1b was 
observed (P=1). Furthermore, neither tumor cell 
fraction (P=0.548) nor inflammatory status (P=0.748) 
of adjacent normal tissue correlated with MD ratio, 
suggesting that the MD ratio derived from this panel 
is an independent predictive factor for prognosis. 
Furthermore, we investigated the associations of 
tumor cell fraction and inflammatory status with DFS 
by univariate analysis, and neither of them 
significantly correlated with DFS (HR=0.125, P=0.097; 
HR=0.747, P=0.53). 

Since MD ratio is a point-estimation on the 
proportion of tumor-shared methylation signature in 
the adjacent normal tissue, a raw statistic which lacks 
the statistical significance. We further developed an 
MD score, which was obtained by Wald statistics 
under the null hypothesis that MD ratio equals to 0. 
Statistically, the MD score is positively correlated with 
the probability (p-value) of the condition that the 
malignant signature presents in the adjacent normal 
tissue of a given patient. As a Wald statistic, MD score 
follows a chi-square distribution with 1 degree of 
freedom and takes the variance of MD ratio into 
consideration, so it is a more robust marker to stratify 
patients. We used 1.96 (p-value<0.05) as the calling 
threshold of the high-risk score. Patients with a 
high-risk MD score also showed significantly poorer 
prognosis (DFS: 33 months vs. NR, HR=4.69, P=0.039, 
Figure 2). 
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Figure 1. The association of malignancy density (MD) ratio and prognosis in resected stage IA adenocarcinoma patients (n=39) A. The distribution of MD ratio; B. The ROC 
curve of MD ratio to discriminate patients relapsed from those did not during the follow-up; C. The disease-free survival (DFS) in patients with different MD ratios, 
cut-off=0.00979. 

 

The genomic profile and correlation with 
prognosis 

We performed a comprehensive analysis on the 
genomic alternations in 44 tumor tissue samples 
(Figure 3). Driver mutations were detected in 33 out of 
the 44 samples (70%), including EGFR driver 
mutations (n=18, 41%), ALK fusion (n=3, 7%), KRAS 
G12V (n=7, 16%), MET amp (n=2, 5%), MET 14 
splicing (n=1, 2%), ERBB2 amp (n=2, 5%) and ERBB2 
20ins (n=1, 2%). The most common concomitant 

alternations occurred in TP53 gene (66%), followed by 
DAXX (14%) and LRP1B (11%). TP53 (P=0.011) and 
SPTA1 (P=0.044) mutated less frequently in patients 
with recurrence compared with those without (Figure 
S2). 

By investigating the correlation between 
mutation landscape and DFS, we revealed that 
patients harboring EGFR 19del displayed significantly 
shorter DFS compared with those carrying EGFR 
L858R (25 months vs. NR, HR=5.141, P=0.031, Figure 
4A). A median DFS of 34 months was observed in WT 
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patients without significant difference compared with 
EGFR-mutant groups. 

We randomly selected 10 adjacent normal tissues 
for somatic mutation profiling. All sample had no 
mutation identified except for one, which was 
detected with an EGFR G719A with an allele 
frequency (AF) of 1.43%. This patient’s paired tumor 
tissue also harbored EGFR G719A with a higher AF of 
40.30%. Concordantly, both MD ratio and MD score 
classified the patient into high-risk group. On the 
other hand, 7 out of the 9 patients, whose adjacent 
normal tissues were free of mutation, were stratified 
into to high-risk by both MD ratio and score, 
suggesting a superior sensitivity of MD ratio/score to 
predict recurrence over somatic mutation. 

 

 
Figure 2. The association of malignancy density (MD) score and prognosis in 
resected stage IA adenocarcinoma patients (n=39). The cut-off for high-risk group 
was 1.96, DFS: Disease-free survival. 

 

Stratifying patients with both genomic 
signature and MD score 

MD score and EGFR driver mutation, that were 
significantly associated with DFS in univariate 
analysis, were included in Cox multivariate 
proportional-hazards analysis. The multivariate 
analysis revealed that EGFR 19 del (HR=5.39, P=0.012) 
and MD score (HR= 7.90, P=0.01) remained as 
predictors for the risk of developing postsurgical 
recurrence (Figure 4B). Next, we stratified patients by 
integrating both prognostic factors and assessed the 
difference in DFS among subgroups. Our results 
displayed a significantly shorter DFS in patients with 
a high-risk MD score and an EGFR 19 del compared 
with those with a high-risk MD score but without the 
EGFR 19 del (EGFR others or WT)(P=0.014, Figure 

4C). No significant difference between other 
subgroups was observed due to the small number of 
patients. 

 

Table 1. Clinicopathological characteristics of patients 

Characteristics All (n=44) Correlation with DFS  
Age, years  P=0.134 
Median (Min, Max) 61 (40,82)  
Gender, n (%)  P=0.051 
Female 16 (36.4%)  
Male  28 (63.6%)  
Smoking history, n (%)  P=0.151 
No 18 (40.9%)  
Yes  25 (56.8%)  
Unknown 1 (2.3%)  
Tumor diameter, cm  P=0.068 
Median (Min, Max) 1.5 (0.7,2.0)  
PNI, n (%)  P=0.512 
No 38 (86.4%)  
Yes 6 (13.6%)  
STAS, n (%)  P=0.141 
No 24 (54.6%)  
Yes 18 (40.9%)  
Unknown 2 (4.5%)  
VPI, n (%)  - 
No 44 (100%)  
Surgical procedure, n (%)  P=0.085 
Pulmonary lobectomy 11 (25%)  
Thoracoscopic lobectomy 31 (70.5%)  
Thoracoscopic wedge resection 2 (4.5%)  
Surgery Location, n (%)  P=0.06 
Right lung 29 (65.9%)  
Left lung 15 (34.1%)  
Follow-up time, months  - 
Median (Min, Max) 41.5 (8.1, 74.9)  
DFS, months   - 
Median (Min, Max) 33 (3.3, 69.3)  
PNI: Perineural invasion; STAS: Spread through air spaces; VPI: Visceral pleural 
invasion; DFS: Disease-free survival. P-value was calculated by Cox univariate 
proportional-hazards analysis. 

 
 

Discussion 
Since the global change of DNA methylation 

occurs very early in the process of carcinogenesis, 
DNA methylation has been considered as one of the 
most powerful biomarkers for early detection and 
screening in cancer. Extensive efforts have been 
invested in the discovery of methylation biomarkers 
for lung cancer screening and early detection [25, 
54-56]; however, fewer studies have assessed the 
utility of aberrant methylation profiles to predict 
recurrence risk after resecting NSCLC. Brock et al. 
demonstrated that methylation of the promoter region 
of p16, CDH13, RASSF1A, and APC was associated 
with early recurrence in surgically-treated patients 
with stage I (T1-2N0) NSCLC [23]. Belinsky et al. 
reported the methylation detection of 8 selected genes 
(CDKN2, MGMT, DAPK1, RASSF1, GATA4, GATA5, 
PAX5α and PAX5β) in sputum and blood had 
prognostic value for recurrence in stage IA (pT1N0) or 
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stage IB (pT2N0) NSCLC [24]. More recently, Wang 
and colleagues derived a classifier based on 16-CpG 
sites to predict the overall survival of lung 
adenocarcinoma patients [26]. Sandoval et al. 
discovered a methylation signature based on 10 sites 
(HOXA9, C1orf114, TRH, HIST1H4F, SP9, PCDHGB6, 
OTX2, NPBWR1, TRIM58, and ALX1) that effectively 
distinguished stage I NSCLC patients with high 
recurrence risk and low risk [57].Conventionally, 
molecular or epigenetic biomarkers are often 
identified by comparing the genomic or epigenomic 
landscapes of two groups with diverse outcomes. This 
identification method might be influenced by 
selection bias present in the groups due to the 
widespread interpatient and intra-patient 
heterogeneity [6]. Notably, our panel covers 7 of the 
10 sites identified in Sandoval et al. 2013 [57] (Table 
S3). However, neither any single nor combination of 
the 7 sites correlated significantly with DFS in our 
cohort (Table S3, Figure S3). 

We established a scoring system by comparing 
the methylation signatures in a tumor and its adjacent 
normal tissue of the same individual to reflect the 
malignant progression of a cancerized field. This 
classification is independent of patients' DFS and 
largely attenuates the effect of interpatient 
heterogeneity. MD ratio demonstrated a significant 
association with DFS, which was independent of 
clinicopathological factors including T stage and 
tumor cell fraction, suggesting its robustness in a 
heterogeneous population. In addition, epigenetic 
modifications arising from exposure to the 
environment, such as the disturbance of DNA 
methylation in the context of transcriptional level, as 
well as the signal-transduction and cellular pathways 
of the inflammatory cascade, has been closely linked 
with the pathophysiology of inflammatory diseases 
[58, 59]. Conceivably, the inflammatory status might 
affect the methylation signatures in the tissue. In our 
study, the methylome-based MD ratio was 
independent of the inflammatory status (congestion, 

emphysema, pulmonary bullae with interstitial 
fibrosis or obstructive pneumonia) in the adjacent 
normal tissue because our scoring system was based 
on the degree of field cancerization of the adjacent 
normal tissues. In other words, it is a comparison 
between the tumor tissue and adjacent normal tissue 
of the same individual and minimizes the selection 
bias that could be introduced during the identification 
of conventional markers. Our method indicates the 
merit of evolutionary markers over selective markers. 

The prognostic role of EGFR mutations also 
remains controversial in patients with resectable lung 
adenocarcinoma [60, 61]. A recent study [62] 
conducted in 835 patients, who underwent complete 
surgical resection for lung adenocarcinoma without 
EGFR TKIs as a neoadjuvant or adjuvant therapy, 
showed that patients with 19del had a significantly 
higher incidence of extrathoracic recurrence than 
patients with L858R (p =0.004), and the L858R group 
had a significantly longer recurrence-free survival 
than the WT group (p < 0.001) and the 19del group (p 
= 0.016). Concordantly, our results also showed that 
19del was an independent genetic predictor 
significantly associated with a worse prognosis. 

Our study was limited by the number of patients 
enrolled and its retrospective and non-randomized 
nature. To extend the interesting findings from our 
work, prospective studies with larger cohorts are 
required to validate the prognostic value of the MD 
ratio/score. Nonetheless, we established a 
methylome-base scoring system to quantitatively 
assess the malignant progression of adjacent normal 
tissue based on personalized cancer-specific 
methylation signatures of individual. The scoring 
system revealed robust prognostic value in patients 
with resected stage IA lung adenocarcinoma and was 
independent of clinicopathological factors and genetic 
signatures. Using it to characterize the risk of lung 
cancer and recurrence will facilitate a personalized 
utility of adjuvant therapy and surveillance imaging 
in completely resected NSCLCs. 

 

Table 2. The association of MD ratio with histopathological features 

Characteristics  MD ratio P-value  
 All (n=39) Low-risk (n=15) High-risk (n=24)  
Stage, no. (%)    Pa=1 
T1a 4 (10.3%)  1(6.7%) 3 (12.5%)  
T1b 35 (89.7%)  14(93.3%)  21 (87.5%)  
Adjacent normal tissue status, no. (%)     Pa=0.748 
Normal  19(48.7%) 8(53.3%) 11 (45.8%)  
Inflammatory * 20(51.3%) 7(46.7%) 13 (54.2%)  
% tumor cells in tumor, median (range) 0.5(0.1-0.9) 0.5(0.2-0.9) 0.5 (0.1-0.8) Pb=0.548 
*Inflammatory status includes congestion, emphysema, pulmonary bullae with interstitial fibrosis, obstructive pneumonia; a. P-value was calculated by Fisher’s exact test; b. 
P-value was calculated by Wilcox test. 
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Figure 3. The landscape of genomic mutations in tumor lesions of patients (n=44). 

 
Figure 4. The prognostic value of genomic and epigenetic signatures in resected stage IA adenocarcinoma patients. A. The correlation of EGFR driver mutation subtype with 
disease-free survival (DFS) (n=44); B. Cox multivariate proportional-hazards analysis of the correlation of molecular factors with disease-free survival (n=39); C. The correlation 
of EGFR driver mutation subtype and MD score with DFS (n=39). 
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