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Abstract: We examine the prospect for employing a bio-inspired architecture for a lunar industrial
ecology based on genetic regulatory networks. The lunar industrial ecology resembles a metabolic
system in that it comprises multiple chemical processes interlinked through waste recycling. Initially,
we examine lessons from factory organisation which have evolved into a bio-inspired concept, the re-
configurable holonic architecture. We then examine genetic regulatory networks and their application
in the biological cell cycle. There are numerous subtleties that would be challenging to implement
in a lunar industrial ecology but much of the essence of biological circuitry (as implemented in
synthetic biology, for example) is captured by traditional electrical engineering design with emphasis
on feedforward and feedback loops to implement robustness.

Keywords: genetic regulatory networks; holonic architecture; industrial ecology; manufacturing
architectures; in situ resource utilisation

1. Introduction

Nature is renowned for its frugality. Biomimetics is the application of lessons from the
natural world into the engineered world—although mostly applicable to robotics, there are
biological lessons for other engineering applications. We shall examine lessons from biology
that point the way in which we may conduct and organise in situ resource utilisation
(ISRU) on the moon. Our first priority is to ensure that we engage the moon’s resources in
a sustainable manner. ISRU is usually proposed as a means to reduce the costs of human
missions. If resources can be extracted locally from the moon, then these resources do not
require launch and delivery from Earth. In particular, consumables—specifically water—
are of interest because they are a major input to environment control and life support
system (ECLSS) and their extraction involves minimum processing. Hence, the high degree
of interest directed towards the discovery of water ice at the lunar poles [1]. A human
requires a minimum of 4.4 kg of water per day for consumption only (including 2.5 kg for
imbibing with the rest as hydrated food but excluding personal and communal hygiene),
0.9 kg of oxygen per day and 0.7 kg of dehydrated food per day. If water was available
for consumption and as a source of oxygen, this would save 5.4 kg per astronaut per day
(almost 2 tonnes of launched mass per astronaut per year, which equates to a saving of some
40 tonnes of launch propellant). Furthermore, the implementation of closed ecological life
support systems (CELSS) which recycle water and oxygen conserves these valuable lunar
resources. Current proposals to burn hydrogen/oxygen as propellant/oxidiser for launch
and in-space propulsion is not sustainable. We do not regard this as a wise approach to
lunar colonisation. Sustainability is premised on ensuring that future generations are not
faced with a barren wasteland resulting from reckless exploitation by current generations.
Implicit in this definition is the need to plan our ISRU practices over the long term to
ensure [2]: (a) we do not consume and waste scarce resources; (b) we employ renewable
technologies as far as is feasible; (c) we adopt processes that do not yield toxic material; (d)
we minimise waste through recycling loops. To observe this, we need to design a long-term
approach to lunar ISRU that adopts the philosophy of Indigenous peoples—exploit that
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which is abundant and waste nothing. However, ultimately, we must live off the land as
much as possible to minimise our reliance on an Earth-based supply chain. We propose
a robotic approach to ISRU that implements an industrial infrastructure that supports a
wide range of capabilities that can support both robotic and human activities on the moon
with minimal supply from Earth.

Our lunar industrial ecology is designed to supply the processed lunar materials
required to construct a generic spacecraft (demandite). We discuss the issue of architectural
organisation of the lunar industrial ecology by considering architectural lessons from the
manufacturing sector in which flexible reconfiguration is a requirement. We then proceed
to examine biomimetic approaches based on lessons from metabolic and genetic regulatory
networks. We conclude that there are several lessons including the adoption of holonic
architectures but the implementation of genetic regulatory networks is likely to be complex
to implement.

2. Lunar Industrial Ecology

We have developed a lunar industrial ecology, the industrial ecology being a concept
evolved for sustainable terrestrial chemical engineering, as the basis for industrialising the
moon in a rational fashion. The basic unit of the lunar industrial ecology is the unit chemical
processor. A chemical plant comprises a set of reaction vessels for mediating chemical
reactions to produce chemical products. Chemical processes are divided into steps (unit
operations) defined by a process that occurs within a single reactor vessel. Unit operation
is a basic analytical approach in chemical processing—it involves a physical or chemical
transformation of a set of reagents into a set of products, e.g., mixing, separating or distilling,
heating or cooling, redox reactions, de(hydrogenation), halogenation, and polymerisation.
It typically involves fluid flow, heat transfer and mass transfer, resulting in thermodynamic
and mechanical processes. The vessels are typically cylindrical with rounded ends suitable
for high pressures or vacuums. Each reactor comprises a unit operation defined with
a quantified input feed and a quantified output product. Within a single reactor, the
unit operation constitutes the chemical process which converts one compound (the input
reagents) into another compound (the output products). The chemical processes may be
run in a continuous or batch mode—in either case, catalysts and packed beds that have
been poisoned by deposits may have to be regenerated periodically. The mass transfer
rate of fluids through a reactor is defined through dimensionless numbers: Sh = C.RenScm

where Sh = kL
D = Sherwood number, Re = vρL

µ = Reynolds number, Sc = µ
ρD = Schmidt

number, C = empirical constant, k = mass transfer coefficient (dimensions of velocity),
A = cross sectional area, L = characteristic length, D = mass diffusivity, v = fluid flow
velocity, µ = fluid dynamic viscosity and ρ = fluid density. The obvious way to increase
mass flow rate is to increase the pressure difference between the input and output ports
of the reactor achieved through motorised pumps. Material and energy balances must be
analysed based on chemical analysis. Indeed, diffusion equations for momentum, heat and
mass transfer all have similar form as Newton’s equation, Fourier’s conduction law and
Fick’s law, respectively. Material composition management (MCM) is the core problem in
chemical and manufacturing processes [3]. Conservation of mass requires that all material
entering the chemical process either accumulates or exits the process as product or waste
(material balance). The reactants are injected into the reaction chamber, within which
the operating conditions (temperature and pressure) determine the reaction progression.
Furthermore, the reaction itself influences those operating conditions which must be
measured continuously. The reaction is also determined by the composition of the reagents
and their physical properties. The controller must optimise the conditions and reagent
flows to maximise the product yield whilst minimising waste. Complexity is introduced
by chemical instabilities, uncertain and incomplete measurement data, limited predictive
and diagnostic models, and time delays in chemical dynamics which requires intelligent
control with process monitoring based on noisy data to deal with event-driven situations.
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An example of a single unit chemical processor is the Metalysis FFC process reactor [4]
that is central to the lunar industrial ecology. Our lunar industrial ecology processes lunar
minerals and volatiles into our demandite list of desired functional materials based on
requirements for a generic robotic spacecraft (Table 1).

Table 1. List of desired materials (demandite) based on functional requirements for a generic spacecraft.

Functionality Lunar-Derived Material

Tensile structures Wrought iron
Aluminium

Compressive structures Cast iron

Elastic structures Steel springs/flexures
Silicone elastomers

Hard structures Alumina

Thermal conductor straps
Fernico (e.g., kovar)

Nickel
Aluminum

Thermal insulation Glass (SiO2 fibre)
Ceramics such as SiO2

High thermal tolerance Tungsten
Alumina

Electrical conduction wire
Fernico (e.g., kovar)

Nickel
Aluminium

Electrical insulation

Glass
Ceramics (SiO2, Al2O3and TiO2)

Silicone plastics
Silicon steel for motors

Active electronics devices (vacuum tubes)

Kovar
Nickel

Tungsten
Fused silica glass

Magnetic materials
Ferrite

Silicon steel
Permalloy

Sensory transducers
Resistance wire

Quartz
Selenium

Optical structures Polished nickel/aluminium
Fused silica glass

Lubricants Silicone oils
Water

Combustible fuels Oxygen
Hydrogen

The most important lunar minerals for metal extraction include ilmenite (Fe and
Ti), anorthite (Al, Si and Ca) and orthoclase (K and Si). The only material required from
Earth is NaCl as a recycled reagent of the ecosystem (it is not consumed). We require
Ni-Fe-Co meteoritic material available in lunar craters [5], from which these and other
elements (such as W and Se) may be extracted. Lunar volatiles of interest include hydrogen
(from water), carbon compounds and small amounts of nitrogen which can be extracted
thermally as regolith volatiles and fractionally condensed (sulphur compounds may be
treated similarly but may be better sourced from meteoritic FeS). We utilise volatiles only
as recycled reagents so that they are not consumed (with the exception of carbon that is
the most abundant volatile by mass). The carbon may provide the basis for silicone plastic
or oils manufacture for highly restricted applications to minimise its consumption. The
adoption of mineral preprocessing with HCl acid permits the Metalysis FFC process to
reduce resultant pure metal oxides into metal powder with >99% purity. Some of the
pure metal oxides such as Al2O3, SiO2 and CaO have refractory applications. The CaCl2
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electrolyte which is not consumed but will suffer small losses may be re-supplied as a
byproduct of metal extraction though this consumes imported Cl.

The lunar industrial ecology (Scheme 1) is an approach to ISRU that is sustainable
by linking many different chemical processes together into an ecological system in which
the waste of one process becomes the feedstock for another. The lunar industrial ecology
constitutes multiple unit chemical processors—this is unique to the lunar environment
as most terrestrial chemical processing systems involve only a small number of single
throughput processors. On Earth, unit chemical processors are developed for a market
in which inputs are processed into useful products with little regard to waste. Terrestrial
industrial ecology concepts feed the waste of one unit chemical processor as input into
another unit chemical processor in an ad hoc manner driven by economic considerations.
Our lunar industrial ecology is designed to form a network of unit chemical processors
in which there is minimal waste through nested recycling loops of waste employed as
feedstock. The waste generated such as clays is non-toxic and has potential applications in
building habitats [6] and in agricultural food production [7]. The lunar industrial ecology
essentially constitutes a fan-in to a suite of 3D printing facilities forming the core of a
bowtie configuration from which manufactured products fan out [8,9].
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                 2H2O→2H2+O2                                                 
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                                                                        4Fe2O3 + Fe ↔ 3Fe3O4         )   
Nickel-Iron Meteorites 
W inclusions—high density of 19.3                  →           Thermionic cathodic material 
Mond process:                                                                     Alloy                          Ni      Co      Si      C      W        .                                              
Fe(CO)5 ↔ 5CO + Fe (175oC/100 bar)             →           Tool steel                                               2%   9-18% 
Ni(CO)4 ↔ 4CO + Ni (55oC/1 bar)                     →           Electrical steel                             3% 
Co2(CO)8 ↔ 8CO + 2Co (150oC/35 bar)           →           Permalloy                 80% 
           S catalyst                                                                    Kovar                        29%  17%  0.2%  0.01%         . 
4FeS + 7O2 → 2Fe2O3 + 4SO2 
(Troilite)                            SO2 + H2S → 3S + H2O  
FeSe + Na2CO3 + 1.5O2 → FeO + Na2SeO3 + CO2 
                               KNO3 catalyst                             Na2SeO3 + H2SO4 → Na2O + H2SO4 + Se → photosensitive Se  
                                                                                                            ↑____________| 
                                                                                                                         Na2O + H2O → 2NaOH 
                                                                                                                                                      NaOH + HCl → NaCl + H2O 
Lunar Orthoclase 
3KAlSi3O8 + 2HCl + 12H2O → KAl3Si3O10(OH)2 + 6H4SiO4 + 2KCl 
  orthoclase                                    illite               silicic acid (soluble silica) 
2KAl3Si3O10(OH)2 + 2HCl + 3H2O → 3Al2Si2O5(OH)4 + 2KCl 
                                                                 kaolinite 
[2KAlSi3O8 + 2HCl + 2H2O → Al2Si2O5(OH)4 + 2KCl + SiO2 + H2O] 
                                                                                 KCl + NaNO3 → NaCl + KNO3 
                                                                               2KCl + Na2SO4 → 2NaCl + K2SO4 

Scheme 1. Cont.
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Scheme 1. Near closed loop lunar industrial ecology (emboldened materials are pure metal oxides for direct reduction using
the Metalysis FFC process). This summarises the detailed sustainable lunar industrial ecology presented in [2]. Inputs to the
lunar industrial ecology are energy and lunar raw materials and outputs are processed materials—reagents are recycled.

3. Lessons from the Factory

As a fully interconnected ecology, it is necessary to ensure that it is reconfigurable
to provide flexibility for feeding waste into different processes as required to manufac-
ture different products. Our lunar industrial ecology must be architected to operate in
a coordinated fashion to honour recycling loops between processes with maximum ef-
ficiency. Terrestrially, it is rare to coordinate and reconfigure unit chemical processors
(except through market forces) but it is common in flexible manufacturing systems (FMS)
to reconfigure and coordinate different machine units in a single factory for fabricating
different products. Lessons may be applied from the manufacturing factory and, indeed,
into which the lunar industrial ecology must be integrated as pre-processing to manu-
facturing. For example, a traditional factory layout arranges machines into functional
sections—milling, grinding, drilling, etc. Unfortunately, in such layouts, approximately
95% of total throughput time is spent in transport or queuing for processing. A material
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flow network connecting modules of machines represents the most efficient production
layout [10]. It combines the adaptability of the distributed layout with the high transport
efficiency of compact layouts. Physical transport networks must adapt to local conditions.
The Zipf inverse distance law quantifies the volume of material N as inversely proportional
to the distance D travelled: N = k

D . A more sophisticated gravitational model declares that
distance travelled is dependent on the strength of attraction imposed by additional factors

such as relief, obstacles, and vacancies/queues: N = k (
wi pi−wj pj)

da
ij

where pi = demand at

location i, pj = demand at location j, dij = distance between locations i and j, a = exponent
of distance that determines the sharpness of attraction, and wi,j = weighting factors that
quantify other factors such as relief and obstacles. This can be modelled readily by a
potential field representation to minimise distance for the transport of material, e.g., [11,12]
(Figure 1). Genetic algorithms have been applied to finding a minimum cost machine
layout for a factory floor based on interaction forces between different manufacturing
activities [13].
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Figure 1. Artificial potential field path through a rockfield (repellors) towards a goal (attractor)—this
rockfield models the Mars Viking 2 landing site but appropriate constraints may be crater slopes,
slippery locations due to loose soil, etc., which impose constraints on straight line paths between
start and goal locations.

An automated factory requires several functions: (i) product specification of complete
product; (ii) production planner to schedule and coordinate manufacturing; (iii) parts
production—in this case, primarily through 3D printing technologies; (iv) material han-
dling and transport by mobile robots and conveyors; (v) parts assembly by manipulators
including jigs; (vi) parts inspection by sensors through self-diagnosis; (vii) computer coordi-
nation of the production process. Most industrial processes can be operated without human
intervention, the human aspect being reserved primarily for setup, reprogramming and
servicing. These can similarly be automated with enhanced autonomy. Setup and servicing
require sophisticated manual dexterity which is the preserve of manipulator robotics which
has applications to space debris mitigation and on-orbit servicing [14,15]. The axiomatic
approach to manufacturing factory design flows down from its top-level functional re-
quirements to the design parameters. There are two axioms of manufacturing [16–18]: (i)
maintain independence of a minimum number of functional requirements of a product
(independence axiom); (ii) minimise information content (cost) of a product consistent
with (i) (information axiom). This may be formalised as: {FR} = [A]{DP} where FR = func-
tional requirements vector, DP = design parameters, A = design matrix = diagonal matrix
when axiom (i) is observed. A critical aspect is the decomposition of high-level system
requirements (what) into low-level components of that system to achieve the requirements
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(how) [19]. Effective design for manufacturing can reduce manufacturing costs by 80% [20].
The methodology has subsequently been widened to incorporate design for manufacturing
and assembly including logistics to minimise production costs [21]. 3D printing is an
approach that effectively minimises costs consistent with these principles and indeed offers
a more versatile mode of manufacture than subtractive modes. The methodology can be
widened to incorporate the (electro)chemical processing of raw materials and the mining
chain, i.e., from raw material mining through to final product.

4. Flexible Manufacturing Systems (FMS)

The flexible manufacturing system (FMS) approach provides the ability to reconfigure
itself with high flexibility to adapt to manufacturing different products. FMS has been
enabled by integration of computer-aided design (CAD), computer-aided manufacturing
(CAM), computerised numerically controlled (CNC) machining and robots to collectively
form computer integrated manufacturing (CIM) systems [22,23]. CIM is the key element
in FMS in which distributed workstations are linked by computer-controlled material
handling systems. Material handling processes are an essential part of designing the
material flow structure in any distributed manufacturing system. Automation implies a
reduction (towards elimination) of human labour with higher throughput at higher quality
at lower cost. CIM integrates CNC machines and assembly robots, production control
through just-in-time (JIT) manufacture, and transport vehicle control that are part of FMS.
The manufacturing cell has a highly automated compact footprint as the basic unit of
FMS [24]. FMS comprise multiple cells of robots, CNC machines and material handling
linked by a computer network to maximise its autonomous capabilities [25]. It is a multicell
system interconnected by self-driving transport vehicles (usually but not necessarily on
guide rails) between cells. A cellular manufacturing system is a type of FMS based around
groups of machines (a cell) that are specialised for a specific function [26,27]. Cellular
manufacturing groups all related activities together into a CNC machining centre tended
by a central robot to minimise human intervention. A robot can select a workpiece and
emplace it onto a conveyor to transport it to a CNC machine. Another robot within the cell
picks up the workpiece and emplaces it into the CNC machine. Finished parts are removed,
emplaced onto another conveyor and picked up by another robot for assembly with other
parts. Cellular manufacturing reduces work-in-progress allowing a JIT approach [28,29].
Deadlocks can occur when two or more parts require the same resources at the same time.
This can invoke a freezing behaviour unless the deadlock is resolved through detection
and recovery methods. A typical manufacturing cell includes five functions overseen by a
centralised cell supervisor—manufacturing operations, machining planning, workpiece
preparation, supplementary operations and inventory stocking [30]. The cell supervisor
controls and co-ordinates machine tools, robots, sequencing tasks, production processes,
parts and instigates quality control. Only manufacturing operations add value to the
workpiece through the input of energy, information and material so all other aspects of
manufacture must be minimised. An FMS may be defined as a 7-tuple FMS = {M, B,
H, Op, C, Mob, T} where M = set of machines, B = set of buffers, H = set of material
handling systems, Op = set of operations for each machine, C = storage capacity for each
buffer, Mob = mobility of position range of handling system; T = transportation capacity of
handling system. This may be transformed into a manufacturing model P = {G,P} where
G = set of manufacturing processes, P = set of finished products. An FMS specification may
be transformed automatically into a coloured Petri net model [31]. In the automated lights-
out manufacturing system, the intelligent cell provides automated manufacturing, planning
and stocking functions with zero manual preparation and supplementary functions. An
example of an automated lights-out factory is the Japanese FANUC system of two-armed
industrial robots equipped with vision and force/torque sensors that assemble robots on
automated production lines. Although, automated production can run unsupervised for
weeks, the FANUC system has not yet expanded throughout the manufacturing industry.
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The manufacturing cell concept provides a balance between flexibility and efficiency.
Mass production maximises efficiency at the expense of flexibility while small lot produc-
tion of complex systems requires high flexibility at a cost of decreased efficiency. The need is
to provide a balance between these two factors which allows frequent customised redesign
but high production efficiency. Product variants can be accommodated readily from raw
materials to parts to assemblies. This flexibility has several components—organisational
flexibility to adapt to changes, machine flexibility to implement different machining op-
erations, material handling flexibility to move different part types efficiently, operational
flexibility to produce different parts in different ways, process flexibility to maximise parts
types without major setup, product flexibility to create new parts, routing flexibility to
produce parts through alternate routes through the production process, volume flexibility
to adjust output levels, expansion flexibility to adjust capacity and capability as needed,
program flexibility to run autonomously for long periods, production flexibility to manu-
facture a multitude of parts without new capital equipment, and market flexibility to adapt
to market changes [32]. Maximum flexibility implies the ability for rearrangement, change
in materials and machining, machining more complex geometries to increase the product
range and variation, and the ability to integrate new machining technologies. Recently,
lean production has emphasised a reduction in inventory stock (production to demand
rather than stock for supply), rational sequencing of operations and the elimination of
waste—indeed, the lunar industrial ecology implements this through recycling. Lean
manufacturing combines the high-quality customisation of craft production with the high
quantity cheapness of mass production, a task to which 3D printing is eminently suited.
Examples of this include JIT manufacturing (minimise excess inventory by matching pro-
duction rate to demand) and total quality management TQM (minimise product waste
through continuous quality control). JIT manufacturing bears similarities to generalised
assembly line balancing along a conveyor to consecutively distribute the total manufac-
turing workload along the flow line. A variation of TQM is 6 sigma quality which aims
to reduce tolerance deviance beyond the traditional 3 sigma levels at every stage of the
production process to minimise defective production. All are effectively concerned with
the minimisation of waste.

5. Manufacturing Architectures

Centralised architectures offer complete global control effort but are slow to respond
to perturbations due to high overheads. This may be modified into a top-down hierarchy
which overcomes the overhead problem through task decomposition but the response
problem remains. The hierarchy is the most traditional organisational form with its tree-like
structure where fewer higher agents have more global views than the more numerous lower
agents in the hierarchy. Complex systems often form hierarchies of interrelated subsystems
in which the interactions between subsystems are suppressed with respect to those within
subsystems—in this case, they are nearly decomposable such that subsystems can be treated
as if they are almost independent of each other. This is the principle of decomposition of
increasing precision with decreasing intelligence [33]. An example applied to FMS is a three-
layer hierarchy of an organisation level for scheduling integrated sets of machines (factory
level), coordination level for coordinating machines (cell or job shop level) and execution
level for controlling each machine task (machine level) [34]. Hierarchies implement a
divide-and-conquer strategy but are brittle. The hierarchy may or may not have same-
level interactions through internal links. Control architectures in manufacturing have
evolved from centralised hierarchies into distributed heterarchies [35]. Hierarchies may be
modified by allowing some same-level interactions in a more distributed approach. The
heterarchical architecture is a flexible distributed multi-agent approach to problem solving
in which no single agent has a global view of the problem, only a partial view. Blackboards
such as the NASREM control architecture are of this nature [36]. The true heterarchical
structure is flat characterised by entirely same-level interactions in a distributed fashion
without any central or global control. In biological systems, distributed control of modules
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operating using only local information without centralised arbitration is ubiquitous. As
long as communication exists between these subunits, coordination through a higher
level self-organised centralised controller is possible [37]. The distributed heterarchy is
highly fault tolerant to perturbations but is difficult to predict. Decentralised approaches
may be combined with supervisory control to form hybrid hierarchical/heterarchical
information structures.

Complex multi-agent manufacturing systems may be configured in several different
ways. Agent-based systems are ideally suited to distributed architectures. Agents are
objects of the object-oriented paradigm in which a set of tasks interact through message
passing. However, whereas object-oriented approaches are built around passive objects,
agent-based approaches place emphasis on active agent interactions. Agents involve au-
tonomous well-defined entities with well-defined boundaries and interfaces [38]. They
are cooperating autonomous entities that can self-organise into a population without any
global controller—each agent has knowledge for its own task. Each agent has an interface
to interact with other agents and/or the environment and each agent is hierarchically
constructed. There are many applications of agent-based computing [39]. CORBA (com-
mon object request broker architecture) is an industrial middleware agent-based protocol
applied to intelligent machine cells to coordinate their subsystems [40]. An open systems
architecture can partition the FMS into autonomous entities (modules) that communicate
and coordinate with each other [41]. Agents must learn from their environments to adapt—
with multiple agents, this is a complex task requiring mechanisms for coordination. There
are several market-based approaches to multi-agent mechanisms [42]. The bucket brigade
algorithm optimises work allocation between resources to maintain load balance without
supervision. The contract net protocol is a market-based technique that involves agents
competing for subtasks through the submission of bids [43]. However, optimisation-based
allocation of tasks among agents is superior to market-based approaches in multi-robot
task allocation [44,45]. Optimisation generally implies linear programming with respect
to utility, fitness value or resource cost of a task [46,47]. The evolutionary algorithm is an
optimisation procedure that is suited to manufacturing schedules [48]. Similarly, it has
been proposed that an information-theoretic measure—generalised correlation entropy—
of spatiotemporal coordination of multiple modules of a distributed robotic system be
employed as the fitness function of a genetic algorithm to evolve the system [49].

Self-organisation can be applied to multi-agent manufacturing in which multiple
agents form a society of agents to solve problems beyond any individual agent’s capac-
ity [48]. Agents have only local interactions and interact with each other through a coordi-
nation model. Local interactions between components result in emergent global properties
without any central control or supervision. For self-organisation, a critical threshold must
be exceeded for the emergence of global order to occur. It is the multiplicity of short-range
interactions that yield complex “emergent” global behaviours that are not reducible to
the behaviour of its parts. The commonest example is the collective behaviours of insect
colonies of ants, termites, bees and wasps. The ant colony is a self-organising system in
which stigmergy provides the mechanism for implicit rather than explicit coordination [50].
Each ant observes cues from its environment independently to invoke simple behaviours
individually. By depositing volatile chemicals, pheromones, some fluctuations grow while
others fade over time. These accumulating pheromones drive individual agents to ap-
pear coordinated. Communication between insects is indirect and mediated through the
environment—stigmergy. Stigmergy implements communication between components
through modification of the local environment. Individual insects mark their environment
with pheromones which collectively coordinate them. Ants modify their environment
by depositing pheromones locally and the pheromones propagate spatially as a global
dissipation field. It is these local modifications that communicate to other foraging ants.
A specific sign in the environment triggers specific actions by the agents. This can be
directly applicable to robot agents in a mining, chemical processing and manufacturing en-
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vironment. Swarms of multiple agents with simple local behaviours can generate complex
behaviours with multi-robot coordination.

Fully autonomous mining, chemical processing and manufacturing will require self-
learning and self-optimisation to adapt flexibly and rapidly to a variable demand environ-
ment, i.e., reconfigurability is essential [51]. There are certain design principles required
for reconfigurability that goes beyond traditional FMS [52]. They are based on flexibility,
convertibility, scalability and modularity and the key element is the implementation of actu-
ation to provide multiple degrees of freedom. Reconfigurability reduces the complexity and
cost of FMS by adaptively matching capacity to need [53,54]. Reconfigurable manufactur-
ing systems are designed to accommodate rapid changes in the manufacturing architecture
in response to new demands of production. Reconfigurability minimises unused capacity
but adjusts rapidly to new demands [55]. This rapid response to changing demands is
the hallmark of agile manufacturing (itself similar to lean manufacturing except that agile
manufacturing is proactive while lean manufacturing is reactive) [56,57]. Reconfigurable
systems are distinct from FMS in that they are rapid but they are limited in part diversity
whereas FMS has maximum flexibility in part range. We need both. There are six principles
of reconfigurability [58,59]: (i) modularity; (ii) integrability of interfaces; (iii) customised
flexibility; (iv) scalability of factory; (v) convertibility of factory to different production
requirements; (vi) diagnosability of abnormal behaviour. Modules can be reconfigured
rapidly into an integrated system which can be readily modified with new modules to ad-
just both product and capacity. Modular design of products permits agile manufacturing by
configuring modules into different products, the configurations of which can be searched
using tabu search [60]. Tabu search is suitable for solving NP-hard problems by starting
from an initially feasible solution to search for better solutions subject to minimum cost
constraints. Genetic programming also may be employed to evolve the self-organisation of
parts into a final self-assembly [61]. The genetic program has a hierarchical structure with
components for assembly that can be randomly selected, subject to assembly constraints
defined by a fitness function. Reconfigurable manufacturing allows ready flexibility to
perturbations that would affect throughput without re-designing the manufacturing plant.
Many reconfigurable systems employ material transport systems such as gantries and
conveyors that form the backbone of the system with an emphasis on CNC machining.
The flows of service or goods in such a transport network are controlled by demand and
supply in a market economy system forming a network topology reminiscent of a genetic
regulatory network. The volume of service or goods through the transport network may
be quantified by Kirchoff’s circuit laws. Petri nets may also be used to model concurrent
manufacturing activities. There are several types of reconfigurable manufacturing archi-
tecture affording dynamic flexibility of distributed cells—fractal, holonic and bionic [62].
The units in each case are slightly different. The fractal manufacturing architecture is a
reconfigurable system whose chief characteristic is that its autonomous agents are self-
similar and reconfigurable and these agents cooperate through message passing to solve
problems [63,64]. They are self-similar at all levels of their hierarchy, the configuration of
which is controlled by a system agent. It can autonomously self-organise its organisational
structure (but not its physical structure) in response to a dynamic environment through
reinforcement learning [65]. Reinforcement learning lies between the exact feedback of
supervised learning and the lack of feedback of unsupervised learning. It is unclear how
the fractal architecture might be implemented practically.

6. Bioinspired Manufacturing Architectures

The holonic architecture is a bio-inspired approach that implements the reconfigurable
factory of the future (Figure 2). The holonic architecture is the most popular agent-based
approach to manufacturing systems control as it combines hierarchical and heterarchical
architectures [66]. Life is a complex system in that it is characterised by multiply interacting
agents which themselves may be simple with nonlinear interactions subject to simple
short-range laws. Holony is based on Arthur Koestler’s concepts on the material basis
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of mind-brain duality in his “Ghost in the Machine” (1967) [67]. Biological cells are
comprised of organelles while also being part of tissues. Inspired by organelles of the
biological cell, the holonic factory model comprises a hierarchy of tissue holons comprised
of multiple cell holons. Each cell holon comprises a nucleus holon (for decision-making), a
golgi complex holon (for inventory), a lysosome holon (for reprocessing and recycling),
an endoplasmic reticulum holon (for transport) and ribosome holons (for production)
in which mRNA act as a messaging system and tRNA as a negotiation system. The
holarchy is a system of holons that permits a heterarchical system to implement a nested
hierarchical structure to provide conflict resolution with the holon representing a hybrid
character of both whole and part [68]. A holon is simultaneously both a subordinate agent
comprised of parts from a lower level and part of a larger superordinate agent. The holonic
architecture self-regulates in response to perturbations from the environment modelled
as a social system [69]. It is based on cooperating holons forming an integrative holarchy
based on functional decomposition. The holarchy combines the static stability of the
hierarchy with the dynamic flexibility of the heterarchy through the dual nature of the
holon [70]. The holon is an autonomous, self-contained, self-regulating module yet it is
part of higher order holons and itself is comprised of lower order holons, smearing the
difference between part and whole, i.e., holons may be aggregated (exhibiting emergent
complex behaviours from interactive simple behaviours) or specialised (exhibiting the
inheritance of agents). The holarchy comprises different sets of alliances—short-lived
coalitions, task-oriented teams, long-lived congregations, long-lived societies governed by
social laws, loosely bound federations, etc. Holons interact through broadcast messaging
and the contract net protocol. Metamorphic control of holonic systems is an approach
for real time operation [71]. The holarchy can be augmented with stigmergy to enhance
clustering through self-organisation [72]. An example of an holonic system is the plug-and-
produce software reconfiguration facility of an holonic robot assembly system comprising
three manipulators, one belt conveyor and two warehouses [73,74]. The holonic system
has been adopted in automotive factories.
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Product–resource–order–staff architecture (PROSA) is an agent-based holonic man-
ufacturing reference architecture based on four types of holonic agents [75,76]: (i) order
holons (agents for workpiece tasking, logistics and its control and timing); (ii) product
holons (agents for product functionality such as process planning and quality assurance);
(iii) resource holons (agents for physical and information resource handling such as ma-
chine or factory); and (iv) staff holons (agents for global centralised supervision). Software
agents acting as virtual ants coordinate between physical agents so they can aggregate
multiple agents to form holonic systems at multiple levels. PROSA has a self-similarity
aspect incorporating a fractal architecture. Stigmergy has been demonstrated within the
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context of PROSA as an indirect mechanism of coordination in a multi-agent holonic
manufacturing system [77,78] in which PROSA agents were coordinated for adaptability
to changes in the environment. In this case, termite-inspired robots using only very sim-
ple behavioural rules could build structures from magnetically-connected bricks through
emergence. PROSA may be extended ontologically into the bionic architecture based on
a hierarchy of biological cell analogues (modelons) including the possibility of biological
morphogenesis. A cell may be differentiated into different functions but all are based on
the same underlying architecture.

The Biological Manufacturing Systems is a bio-inspired approach to manufacturing for
coping with internal and external environmental perturbations during the product lifecycle.
In this paradigm, manufacturing machines breed products in which potential fields attract
dynamically jobs to machines [79]. A classifier system with if-then production rules
with bucket brigade credit assignment of weightings was adopted to implement genetic
learning [80]. A neuroendocrine-inspired manufacturing system (NEIMS) emulates the
biological neurocontrol-hormonal regulation system and its characteristic adaptability [81].
The endocrine system releases hormone signalling molecules through the hypothalamus-
pituitary-adrenal axis to the bloodstream in response to neural stimulus—hypothalamic
neurons stimulate pituitary CRH (ACTH-releasing hormone) to stimulate adrenal ACTH
(adrenocorticotropic hormone) synthesis which in turn stimulates biosynthesis of cortisol
which inhibits CRH/ACTH production. The nervous system implements adaptive control
while the endocrine system implements biochemical homeostasis. NEIMS implements
hierarchical neural control under nominal conditions but switches to hormone regulation
for agile adaptation under off-nominal conditions with a reorganisation of resources.
Hormonal secretion quantity is given by [82] ρij =

a
cij
(1 + λ)t−1 where a = constant, cij =

position-dependent cost for task, t = duration of job, and λ = control parameter. This latter
is particularly analogous to the lunar industrial ecology of chemical processors. Indeed, it
is modelled on a specific example of a metabolic system.

7. Metabolic Network Modelling

Metabolism constitutes a set of material causal interrelations associated with ther-
modynamic energy flows in biological cells and organisms. There are several network
representations of the biological cell [83]: (i) metabolic networks represent chemical re-
actions between metabolites; (ii) protein networks represent protein-protein interactions
including signalling networks; (iii) gene networks represent relationships between genes
through genetic expression. The relationship between these networks is complex in the
genetic expression is mediated through RNA processing. The Monod-Jacob operon model
of gene regulation is based on two operations—inducer and repressor. The lac operon of Es-
cherichia coli requires an inducer (allolactose) to determine expression of the lac operon [84]
(Figure 3). The inducer binds to the lac repressor which prevents its binding to the lac
operon so LacZ protein is produced. Without the inducer, the lac repressor binds to the lac
operon so LacZ protein is repressed.

This is a bistable system based on a threshold level of the inducer (allolactose) with the
net rate of inducer concentration determined by the difference between inducer production
rate vin and inducer removal rate vout [85]:

d[a]
dt

= vin − vout

Removal of the inducer occurs through binding to the repressor and catabolism
such that:

vout = vcat − vbind = kcat[a] + kbind[a] = k[a]
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The rate of inducer production has a sigmoidal relation to inducer concentration given
by the Hill extension of Michaelis–Menten kinetics:

vin = [a]max

(
k0 +

[a]n

K + [a]n

)
where K and n are sigmoidal shape parameters, K = Michaelis–Menton constant, n = Hill
coefficient of molecular binding, k0 = basal diffusion of inducer. The sigmoid generates the
two states of the lac operon depending on [a]: low [a] represses the operon while high [a]
expresses the operon. The lac operon may be described by a Boolean function (Table 2) [86].

Table 2. Lac operon as a Boolean “if . . . then . . . ” operator.

Allolactose Repressor Operon

0 0 0
0 1 1
1 0 0
1 1 0

If k0 = 0 and n = 1, we have the Michaelis–Menten equation used for modelling
metabolic reactions [87]. Gillespie’s algorithm is a more sophisticated stochastic simulator
of biochemical networks within the biological cell modelling a well-mixed bioreactor in
which chemical reactions are stochastic [88].

The lac operon implements a logical implication modelling an “if . . . then . . . ” func-
tion that provides the basis for production rule based expert systems. It may be considered
that an expert system will be necessary to enable autonomous operation of the chemical
processes of the ISRU unit. This will be particularly important for continuous operations
and which supply mission-critical resources such as oxygen for life support and fuel.
Chemical processing is not a deterministic process due to random or unknown variations.
The expert system is used primarily to diagnose faults indicating off-nominal performance
to ensure sufficient production. In turn, this implies that the production process must be
simple and robust to minimise human interaction. It has been suggested that rule-based
diagnostic expert systems using a dynamic chemical model would be suitable for ISRU
systems [89]. The simplest model assumes a continuous supply of reagents with input flow
mass controlled and monitored output mass of both products and waste. Intermediate
mass flows must also be monitored and regulated through operating conditions of flow
rate, pressure, temperature, voltage and current—temperature in particular is a sensitive
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control variable. For gases such as in a Sabatier reactor, this is relatively simple. Petri
nets offer effective process models of throughput and dependencies. However, the most
difficult faults to compensate for are those involving mechanical failures that yield ruptures
to throughput, i.e., leakages or blockages in mass flow lines. There may be electronic faults
due to excess voltages from the power supply, thermal inertia delays yielding higher than
desired temperatures, etc. The most drastic solution is immediate shutdown. This is where
a scalable cellular approach is advantageous in that it yields graceful degradation allowing
continued operations in the event of individual cell failures. There must be extensive
facilities for self-health checkout, fault detection and isolation, fault correction through
simulation models and emergency shutdown procedures. Fault detection, isolation and
correction require the use of adequate process models. These must be augmented by sensor
failure models to incorporate inaccurate information. The most appropriate approach to
this type of diagnostic modeling is fuzzy control methods [90]. Model predictive control
provide the basis for self-diagnosis of faults. An estimate of different dynamic models
is generated from different plant input/output data. The current input/output datasets
determine the model which predicts the plant’s future response up to a future horizon. Al-
ternatively, qualitative simulation is based on semi-quantitative models of state transitions
which express imprecision through numeric ranges [91].

8. Genetic Regulatory Networks

Much of gene regulation occurs at the level of transcription into mRNA by ensuring the
energy is not wasted on unnecessary activities. Bacterial genes are organised as operons that
include regulatory DNA which control the transcription of the operon. Regulatory regions
to which regulatory proteins bind promote or inhibit transcription downstream. Regulatory
proteins are usually also activated or deactivated by inducers or repressors by affecting
their binding affinity to DNA through shape changes by enhancing or blocking RNA
polymerase activity at the promoter site. The genes for each of these proteins are clustered
into a single operon. The genetic regulatory network (GRN) is a mechanism through which
prokaryotic and eukaryotic organisms use a network of regulators to interact and control
gene expression to manufacture mRNA/proteins in response to a changing environment
from multiple environmental signals. We shall review GRNs and their modelling as
networks (Figure 4). Gene expression is mediated primarily through the interaction of
transcription factors (regulatory proteins) with specific DNA sequences in the control region
of the genome located separately from the protein coding region that it controls. Binding
of transcription factors to the regulatory region (promoter) acts as a molecular switch
that activates RNA polymerase. In prokaryotes, only one or two transcription factors are
involved but eukaryote gene expression is more complex with several transcription factors
forming a transcription complex. The problem with single transcription factors for single
genes is that it imposes an infinite regress problem. Employing different combinations of
transcription factors for different genes, a small number of regulatory proteins can control
a large number of genes. Each gene is switched on unless it is switched off by a specific
repressor that blocks the binding of RNA polymerase. In the absence of the repressor, the
gene is expressed only at a basal level. Higher gene expression levels require an activator. In
higher eukaryotes, enhancers bind to activators to further stimulate transcription. Genetic
networks involve highly connected protein signal pathways with feedback between many
genes that control cellular operations. GRN are the basis of biological cell function in
controlling growth, differentiation into cell types and response to the environment. They
are the networks of mutually activating and repressing genes and their gene products
forming complex circuits. Binding of repressor proteins to specific DNA motifs prevents
RNA polymerase from transcribing specific downstream genes. Regulatory genes control
transcription factors through activation or repression of specific control regions forming a
web of transcription factors for gene expression [92].
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A superior early review of DNA binding motifs is given in [93]. The DNA double
helix yields a major groove and a minor groove whose width and depth are determined
by the specific DNA sequences. The binding sites of proteins are complementary with a
protruding shape (typically an α-helix) that fits into the major or minor grooves of DNA.
High specificity of the binding for gene expression requires a significant DNA binding
length. There are a number of different motifs that serve DNA recognition. The basic leucine
zipper involves a number of transcription factors with repeating Leu residues spaced seven
residues apart forming an α-helix coiled coil. The TATA box binding protein initiates
transcription of all three polymerases in eukaryotes. Two β loops form a pair of stirrups
that wrap around the DNA grooves by deforming the TATA sequence to initiate unwinding
of DNA. The zinc finger motif is a repeated sequence of a 25–30 amino acid sequence
module with two His, two Cys and three hydrophobic amino acids. Zinc fingers are the
specific component of transcription factors with zinc ions in combination with cysteine and
histidine residues (e.g., Cys2His2 fold) that define their DNA sequence binding affinity to
the GC box. Each zinc finger module forms a folded zinc-containing domain, a multitude
of which forms a sequence-specific motif. Zinc fingers are the most widely adopted DNA
binding motifs including two-zinc fingers and three zinc fingers being common. With the
three zinc fingers motif, specific recognition is achieved by each single amino acid-base pair
interaction forming a triplet of base pairs. Hormone receptor DNA binding domains are a
class of two zinc fingers in which each finger comprises just two pairs of Cys rather than
a pair of both Cyc and His. There are other classes of zinc finger DNA-binding domains
in which Zn2+ is employed to fold proteins into compact domains required for binding to
nucleic acids.

Transcription factors are regulatory proteins that bind to DNA motifs signifying regula-
tory genes and are often activated through phosphorylation. Phosphorylation, acetylation,
methylation and ubiquitination are protein modification mechanisms associated with the
regulation of gene expression. Phosphorylation is the process of adding a phosphate
group to a protein catalysed by kinase enzymes and reversed by phosphatases. The most
basic protein dynamics is characterised as a balance subject to the law of mass action (e.g.,
between anabolism/catabolism or phosphorylation/dephosphorylation) [94]:

dR
dt

= k0 + k1S− k2R

dR
dt

= k1S(RT − RP)− k2RP
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where S = [mRNA] = signal, R = [P] = unphosphorylated protein response, RP = [RP] =
phosphorylated response, and RT = [RT] = [R + RP] = total response. One steady-state
solution is given by:

R =
k0 + k1S

k2
and RP =

RTS
(k2/k2) + S

If phosphorylation/dephosphorylation reactions are mediated by Michaelis–Menten
reaction kinetics:

dRP
dt

=
k1S(RT − RP)

km1 + RT − RP
− k2RP

km2 + RP

The steady-state concentration of phosphorylated protein is given by the solution to
the quadratic equation:

k1S(RT − RP)(km2 + RP) = k2RP(km1 + RT − RP)

The shape of a genetic regulatory function determines its temporal response to input
(environmental) signals, e.g., feedforward loop in which two genes X and Y both regulate
a common gene Z which is insensitive to minor fluctuations, i.e., noise [95]. There are
often multiple phosphorylation sites on a protein. In the embryo of Xenopus, MAPK
(mos-nitrogen-activated protein kinase) is a family of kinases that phosphorylate a set
of proteins activated by MAPK kinase that itself is activated by MAPKK kinase—this
MAPK cascade is activated by the steroid progesterone. In response to extracellular
signals, cyclic AMP activates the phosphorylating enzyme protein kinase A that regulates
genetic transcription factors such as cAMP response element binding protein (CREB) that
binds to the nucleotide sequence TGACGTCA [96]. The motifs—cis-regulatory control
modules—form the core of genetic regulation and these modules are re-used by different
genes [97]. Cis-regulatory control modules are wired together to form complex network
circuits implementing combinatorial logic functions [98]. Diffusion of transcription factors
implements information transmission with only local synchroneity. GRN determine which
genes are transcribed and expressed. Positive and negative feedback loops between
genes implement regulation of transcription with circular chains of interaction. When
bacteriophage λ infects a bacterium and lyses the host cell (host cell destruction—Xis),
it releases a short arbitrium peptide—the greater the number of bacterial cells infected,
the greater the peptide signal until the phage implements a state of lysogeny (prophage
integrated into host DNA—Int) due to quorum sensing, i.e., viruses communicate [99]. A
genetic circuit decides between lysogeny and lysis depending on feedback on the state of
the environment. GRN logic may be simulated through electrical circuit representations in
which biochemical repression or activation of transcription act as active logic gate functions
with signal time delays to simulate transcription and signal accumulation times [100]. Cl
and Cro regulatory proteins control promoter repression at OR1 and OR3 sites repressing
the synthesis of each other with complex logical rules:

“Int is produced” IF “CI is above threshold” OR “(“state is prophage” AND “PL-
initiated RNAP is present”)

“Xis is produced” IF “PL-initiated RNAP is present” NAND “CII is present”
A switch selects between two stable configurations determined by Cl or Cro negative

feedback loops that selects between lysis and host integration:
“Next state is prophase” IF (“current state is prophage” NAND “Int above threshold”)

OR (“Int above threshold” NAND “Xis above threshold”)
This bacteriophage λ gene regulatory circuit is very robust to genetic changes to in-

dividual components of the control system [101]. Genetic regulatory circuits are typically
modular as their genes are co-located but their wiring into more complex functions may be
subject to considerable evolutionary plasticity as an adaptation to environmental complex-
ity [102]. Transcription network motifs are highly conserved sets of recurring regulation
patterns forming the building block of GRN [103]. A significant fraction of motifs involve
negative autoregulation in which a transcription factor represses the transcription of its
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own gene, e.g., threonyl tRNA synthetase represses the transcription of its own mRNA.
This motif accelerates up response time when production is below threshold beyond which
it slows. Positive autoregulation involves a transcription factor that enhances its own rate
of production—it slows response time when production is below threshold. Autoregula-
tion through negative feedback is crucial to gene network stability [104]. The feedforward
loop (FFL) is a three-gene network motif comprising two input transcription factors X
and Y, one regulating the other and both of which regulate a target gene Z [105]. X and Y
may be configured as an AND gate or an OR gate. Of eight possible activator/repressor
interactions, four act as signed accelerators that speed up response time of gene expression
to stimulus in one direction only while the other four act as signed delay elements, e.g.,
flagella gene expression is prolonged after input signal is stopped but no delay occurs with
active inputs. FFL can be combined into more complex transcription circuits—interlocking
FFLs control differentiation of Bacillus subtilis into spores under starvation conditions by
switching genes ON and OFF through a series of temporal waves to generate sequences of
sporulation stages that exploit FFL acceleration and delays.

Biological GRNs are complex and require modelling as networks. GRN modelled
as a graph G with nodes representing genes with edges representing causal relations
between genes, i.e., activation/repression of transcription factors. Co-expressed genes
with similar expression activity are assumed to be related in function through correlation
measures (such as Pearson’s correlation coefficient). However, gene duplication can alter
patterns of activity in genetic networks. There are four main methods for modelling genetic
networks—random Boolean networks, differential equations, relevance networks and
Bayesian networks [106–108]. Random Boolean networks are abstract representations of
genetic and metabolic networks that can replicate spontaneous self-organisation. In random
Boolean networks, networks of N genes are represented as randomly interconnected sets
of binary switches (gene on/off) [109]. Each node’s state is determined by a Boolean logic
operation on its inputs. The initial node state is random but it evolves depending on
their interconnections. If each gene is randomly linked directly to K other genes, there are
22K possible Boolean functions. Each gene is controlled by a randomly assigned Boolean
function from the ensemble of all possible NK Boolean networks. A sequence of states
forms a state trajectory which is characterised by different attractors—point attractor, limit
cycle or strange attractor. Such networks may exhibit edge-of-chaos dynamics, a phase
transition between order and chaos [110]. When K = 2, the network dynamics exhibits
short stable behaviour cycles at the edge of chaos. It predicts cell replication time and
the number of cell types (

√
N) as the number of attractors in terms of gene number. If

K = 1, the network is highly ordered; if K = 3, the network becomes chaotic. The K = 2
condition generates cyclical dynamics implying that complex GRN may be decomposed
into simpler weakly interconnected regulatory modules with localised feedback loops [111].
GRNs must be both robust to genetic errors—point mutations, gene duplications and
gene deletions—and adaptable (evolvable) into new states [112]. Gene duplications with
divergence in particular offer the prospect for high evolvability coexisting with genetic
stability. This requires edge-of-chaos dynamics between order and chaos (instability). The
Boolean network exhibits the robustness of GRN afforded by the connectivity K ≥ 2 [113].
It has been suggested that random Boolean networks modelling activation patterns of GRN
can implement low-density parity check codes [114].

Although Boolean networks can exhibit complex logical relationships represented
by wiring diagrams, they do not model real biological systems well. Metabolic networks
across all three domains of life on Earth are topologically similar as scale-free networks
in which the probability of k links between nodes is given by a power law P(k) ≈ k−γ

where γ = 2.2–2.5 [115,116]. Their topology is dominated by a few highly connected hubs
in that a few hubs are highly connected but most nodes are relatively localised. Most genes
are regulated by only one to three transcription factors but a few transcription factors
are common to many genes. In metabolism, only three or four metabolic reactions link
most pairs of metabolites—these are commonly remnants of the RNA world including
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coenzyme A, NAD and GTP that form the core of glycolysis and the tricarboxylic acid
(Krebs) cycle [117]. This is the bowtie architecture in which highly conserved core processes
such as the Krebs cycles are highly conserved but funnelling many inputs and many outputs.
The bowtie is robust to evolutionary perturbations by permitting a multitude of inputs to
the core process. Our lunar industrial ecology exhibits a bowtie architecture (essentially
a de Laval nozzle architecture), a strategy common in complex biochemical pathways to
control the complexity of biochemical networks. A large suite of input streams fan-in to a
small set of processes (the throat) to generate a large fan-out of products. In our case, our
throat comprises the Metalysis FFC process and a small suite of additive manufacturing
processes. High clustering of highly interconnected modules form functional modules that
the scale free architecture combine into hierarchical modules. Modularity at hierarchical
scales is ubiquitous in biological systems—the biological cell is a module of multicellular
organisms, itself comprised of organelles downscale and forming the basis of tissues
and organs upscale. Hierarchical modularity is the essence of the holonic architecture.
All major cellular functions are executed by modular networks, e.g., Krebs cycle [118].
The widespread incidence of such modularity in biological networks is a direct result of
evolutionary selection to reduce the costs of connections to ensure evolvability [119]. The
small world topology means that any two nodes can be connected with a path of just a few
links. Scale-free networks are robust to random errors. The scale-free topology results from
evolutionary expansion with the addition of new vertices which preferentially attached to
highly connected nodes through gene duplication [120]. It is apparent therefore that gene
networks are not randomly connected as represented by random Boolean networks.

Ordinary differential equations may be employed to model chemical reaction kinetics
of GRN constrained by balancing mass action between two species concentrations:

dX
dt

= vX
syn(Y)− vX

deg(X)

dY
dt

= vY
syn(X)− vY

deg(Y)

Genetic expression of genes is given by the weighted sum of all genetic expression at
the previous time step:

δxi(t)
δt

= f

(
n

∑
j=1

wijxj(t− 1) + bi

)
The weight matrices W, where wij represents the regulatory influence of gene i and

gene j and the entire matrix models interactions between all n gene combinations. The
simplest model is that of cross-regulation of two genes through activator/repressor bind-
ing [121]: (i) if both proteins are either activators or repressors, a single bifurcation yields
bistability for n ≥ 2, i.e., genetic switches; (ii) for combinations of activators and repressors,
Hopf bifurcations result in undamped oscillations for n > 2. In the two-gene network of
gene expression, the ratio of noise variance to the noise mean (Fano factor) as a measure of
noise amplitude for both proteins must exceed unity [122]. GRN and PPI (protein-protein
interaction) networks may be integrated [123]. In general, GRN in discrete recursive form
is given by mRNA expression level of gene i:

xi(t + 1) = xi(t) +
n

∑
j=1

aijzj − αixi(t) + ki + ni(t)

where xi(t) = mRNA expression level of gene i at time t, zj(t) = f j
(
yj(t)

)
= 1

1+exp
(
−

yj(t)−uj
σj

)=jth

transcription factor protein binding to gene i modelled as a sigmoid function, aij = regula-
tory ability of jth regulatory gene to the ith expressed gene, αi = degradation factor from
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time t to t + 1, ki = basal level, and ni(t) = stochastic noise. PPI in discrete recursive form is
given by protein activity level of gene i:

yi(t + 1) = yi(t) +
m

∑
j=1

bijyi(t)yj(t)− βiyi(t) + γixi(t) + hi + vi(t) (1)

where yi(t) = protein activity level of gene i at time t, yj = activity of jth protein interact-
ing with protein i, bij = interaction ability of jth interactive protein with the ith protein,
βi = degradation factor from time t to t + 1, γi = translation effect from mRNA xi(t) to
protein yi(t), hi = basal level, and vi(t) = stochastic noise. The transcription factors and
translation parameter γi of gene expression of protein act as the coupling mechanisms
between GRN and PPI.

Relevance networks define the interaction between two genes i and j through mutual
information I for all gene pairs:

I
(
xi, xj

)
= ∑

xi

∑
xj

p
(

xi, xj
)
log

(
p
(
xi, xj

)
p(xi)p

(
xj
))

where p
(

xi, xj
)

= joint probability distribution of xi and xj, and p(xi), p
(
xj
)

= marginal
probabilities. The chief problem with relevance networks is that they are bidirectional.
Bayesian belief networks represent interactions between genes as joint probabilities of

conditional dependence, p(x) =
n
∏
i=1

p(xi|pa(xi)) where pa(xi) = parent of xi. Learning a

Bayesian network is a NP-hard problem and Bayesian networks cannot represent circular
dependencies of gene relations. Dynamic Bayesian networks resolve the latter by mapping
them onto sequences of acyclic events. Approximation techniques such Markov Chain
Monte Carlo resolve the former. Bayesian networks then represent an appropriate repre-
sentation of GRN in incorporating logic, probability and network properties that could
potentially be applied to our lunar industrial ecology.

9. Biological Cell Cycle

The bacterial cell cycle is under closed loop control of a small number of discrete regu-
latory proteins organised as a cyclical genetic circuit [93]. Feedback and feedforward signals
in GRN generate sigmoidal switches (buzzers), transient responses (sniffers), hysteretic
switches (toggles) and oscillators (blinkers) as components for complex regulatory and
signalling circuits [124]. The animal cell cycle of replication follows through four phases
every 10–30 h in tissue culture (except when in a non-growing quiescent G0 state)—G1
(unreplicated chromosomes)—S (DNA synthesis)—G2 (replicated chromosome)—M (mito-
sis) [125] (Figure 5). Collectively, G1-S-G2 form the interphase between mitosis events—the
mitosis phase itself is subdivided into four subphases—prophase (DNA condenses into
chromosomes and nuclear membrane dissolves releasing its contents into the cytoplasm),
metaphase (chromosomes attach to mitotic assembly at each opposing side of the cell),
anaphase (chromosomes are pulled apart into opposing sides of the cell) and telophase
(two nuclear membranes reform, cell contents redistribute and two cells separate). Different
cell types have different cell cycle durations due to variations in G1 with the other phases
being relatively constant—S (6–8 h)—G2 (2–6 h)—M (1 h). DNA is replicated in the S state
and the two chromatids are segregated in the M state. Transition to G1 state with DNA
synthesis or G0 quiescent state is determined early in the cell cycle by biochemical signals.
If in the G1 state, rRNA and tRNA proliferate prior to entering S state; G0 state is entered if
G1 events cannot be completed. Chromosomes must be aligned and attached to the spindle
in metaphase. MtDNA replication is independent of and occurs continuously through-
out the eukaryotic cell cycle. Cells use checkpoint controls that prevent initiation of a
sequence of events by maintaining a checkpoint state until a feedback signal is transmitted
on completion of an earlier sequence. Checkpoints involve a monitoring system to sense
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completion of specific events and a signal transduction pathway relays this status to cell
cycle system. The cell cycle is governed by transitions through phases that are irreversible
due to these feedback signals in reaction networks [126].
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In eukaryotes, cell cycle transitions in eukaryotes are driven by cyclin-dependent
kinases (CDK). CDK are enzymes that regulate target proteins through phosphorylation
that execute DNA replication and mitosis. A subset of CDK includes Cdk1 and Cdk2,
the timing of cell cycle transitions is based on oscillations in cyclinB which binds to
Cdk1. Cdk1 and Cdk2 form complexes with cyclins that are involved in timing regulation
of the eukaryotic cell division cycle but are themselves regulated by oscillations in the
phosphorylation of highly specific active binding sites and inhibitory binding sites by CKI
(Cdk inhibitors) [127]. The G1/S transition is a toggle switch based on mutual inhibition
of Cdk1-cyclinB and CKI while the S/G2 transition is an irreversible transition due to
Cdk1-cyclinB activity. In the G2 phase, Cdk1-CycB activity is inhibited by phosphorylation
of the tyrosine subunit of Cdk which is reversible. G2-M transition into mitosis is triggered
by activation of the Cdk1-CycB complex by CycB activity exceeding a threshold—the
threshold imposes reversibility., i.e., the G2/M transition is a toggle switch based on
mutual activation of Cdk1-cyclinB and Cdc25 and mutual inhibition between CDK1-
cyclinB and Wee1. The mitotic spindle forms in the M phase. In the M phase, chromosomes
condense within the nucleus, the centrosomes divide and migrate to opposing sides of the
nucleus. DNA damage during G2 induces CKI production and prevents passage through
the checkpoint to M phase by tyrosine phosphorylation of the p34-cyclinB pathway while
activating the p53 pathway [128,129]. The M/G1 transition is an oscillator based on
negative feedback of Cdk1-cyclinB activating APC which activates Cdc20 which degrades
cyclinB. M-G1 transition out of mitosis is triggered by repression of CDk1 by the proteolysis
of CycB initiating cell division and the G1 phase. Proteolysis is crucial in maintaining
low basal levels of regulatory proteins by recycling the proteins when tagged by the short
polypeptide ubiquitin [130]. Ubiquitin is an essential protein in coordinating regulation of
multiple simultaneous pathways by tagging some proteins for destruction (proteolysis)
and modifying the function of other proteins [131]. Ubiquitin forms the basis of a histone
code in which modification of histone proteins are translated into activation or silencing
of gene transcription such as histone methylation. In G1, Cdk1-CycB activity is inhibited
by CKI. G1-S transition to DNA replication is initiated by Cdk1-CycB complex activity.
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The eukaryotic cell cycle of Cdk levels may be modelled as a set of nonlinear ordinary
differential equations [132,133]:

d[CycB]
dt

= k1 −
(
k′2 + k′′ 2[Cdh1]

)
[CycB]

d[Cdh1]
dt

=
(k′3 + k′′ 3 A(1− [Cdh1])

J3 + 1− [Cdh1]
− k4m[CycB][Cdh1]

J4 + [Cdh1]

where [Chdh1], [CycB] = concentrations of Cdh1 and CycB, k = rate constants, J = Michaelis
constants, and m = cell mass (G2/M checkpoint). This oscillatory system exhibits check-
points corresponding to stable steady states that enforce time delays while phase transitions
correspond to irreversible bifurcations into cell phases based on Chd1 and CycB levels [134].
The eukaryotic cell cycle also exhibits functional redundancy with several cyclins (A, B
and E) and Cdks (1 and 2), e.g., CyclinB supports mitosis, CyclinE supports DNA and
centrosome replication and CyclinA supports all three processes [135]. In fact, cell cycle is
more complex with an additional four phosphorylation–dephosphorylation cycles—pre-
MPF/MPF, Cdc25P/Cdc25, Wee1P/Wee1 and APCP-APC [136]. Cyclin combines with
Cdk to form maturation promoting factor (MPF); anaphase promoting complex (APC) is
activated by cyclic degradation; Cd25 and Wee1 regulate MPF. In Xenopus eggs, the cell
replication cycle involves a number of Cdk complexes with nonlinear interactions generat-
ing emergent properties of multistable states, limit cycles and switches [137]. While CDKs
are crucial to the regulation of the cell cycle, there is a contribution from the emergence
of a cell cycle oscillator (repressilator) from a transcription factor network of three tran-
scriptional repressor systems [138,139]. Biological information processing within the cell
has extremely high complexity forming vast networks [140]. Although cell cycles may be
mapped onto sequential processes of the lunar industrial ecology, it is questionable that the
subtleties of real biological networks could be emulated in any such artificial metabolism.

10. Biological Circuitry

Cellular processes arise from the interconnections between genes and proteins forming
the signalling pathways of GRN. However, genetic expression is subject to intrinsic noise
in promoter, mRNA and protein activity and extrinsic noise from environmental cellular
fluctuations which introduces phenotypic variation, e.g., in lysis-lysogeny switch [141,142]
(Figure 6). The key to noise tolerance in all biological circuitry is feedback [143]. Negative
feedback loops implement homeostasis or damped oscillation while positive feedback loops
implement multistability (switching). Negative feedback is a noise reduction mechanism
that low pass filters high frequency components. An example oscillatory transcription is the
circadian rhythm of day-night cycles based on the phosphoform cycle mediated by coupling
of a delayed negative feedback (morning transcription activates daytime transcription
which activates nighttime transcription which represses morning transcription) and a
repressilator (morning transcription represses nighttime transcription which represses
daytime transcription which represses morning transcription) [144]. The bacterial cell
cycle of Caulobacter has also been modelled as an oscillatory finite-state machine controlled
by a few time-controlled master regulator proteins [145]—DnaA, CtrA, GcrA, and CcrM,
the first two of which control DNA replication through DNA hemimethylation as the
replication fork passes through those methylated encoding genes. One regulatory protein,
CtrA, is involved in over 25% of bacterial cell cycle regulation of genetic transcription [146].
Genetic control circuits implement balancing between negative feedback loops to stabilise
deviances in output signals (robustness) while positive feedback increases sensitivity
to noisy input signals (adaptation). A combination of feedforward control to reject a
large preset disturbances supplemented by integral feedback control for finer adaptive
disturbance rejection offers a robust biochemical strategy despite its tendency to saturation
instability [147]. An oscillation between negative and positive feedbacks is responsible
for repetitive segmentation stripes in insect embryos due to differential gene expression.
Negative feedback introduces instability with time delays. The toggle switch is a bistable
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on/off switch implemented through positive feedback whose stability is unaffected by
time delays [148]. Positive feedback exploits stochastic noise to generate a stable response
to perturbations, i.e., noise tolerant [149]. For example, bacteriophages can exist in one of
two states within a bacterial cell—in the lytic state, the virus replicates itself and then lyses
the bacterial cell to release the viral particles; in the lysogenic state, viral DNA integrates
itself into the bacterial DNA. In this case, the repressor inhibits expression of other viruses
acting as a switch implemented through a positive feedback loop. In a demonstration of
design modularity, the toggle switch may be interfaced with different signalling pathways
to impose a binary response [150].
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Positive feedback may be implemented through double feedback loops: a double
positive feedback loop involves two activators that activate each other for both ON or
OFF; a double negative feedback loop involves two repressors that repress each other for
ON/OFF or OFF/ON. Double feedback loops exhibit the properties of positive feedback
loops but yield irreversible rather than reversible bistable (toggle switch) response [151].
In the double negative feedback loop, protein A (such as LacI) represses protein B (such
as TetR) while protein B represses protein A. Irreversible bistability results with either
A-on/B-off (TetR-off) or A-off/B-on (TetR on) but A and B cannot be in the same state.
Any even number of negative feedback circuits yields bistability but any odd number
of negative feedback circuits yields oscillatory response, e.g., three negative feedback
circuits yields the repressilator (ring oscillator) that generates periodic oscillations in the
concentrations of the three proteins—LacI protein represses the promoter for the tet gene,
the TetR protein represses the promoter for the cI gene, and the CI protein represses the
promoter for the lac gene. Robustness is a distinctive property of biological systems which
ensures maintenance of biological function despite external or internal perturbations in
which feedback and feedforward control play a central role [152,153]. Biological physiology
tends to employ integrator-based controllers to ensure robust response to variations in
environmental states but biological physiology is characterised by networks of interlinked
processes that afford system robustness [154]. Robustness is enabled through hierarchical
feedback control systems, especially integral feedback, which in biological organisms, is
implemented through GRN [155]. Negative integral feedback provides robust adaptation
while positive feedback amplifies stimuli to generate robust bistable response.
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Redundancy is another widely adopted approach to robustness in biological systems.
Functional redundancy may be implemented through genetic buffering involving either
duplicate genes (which rapidly diverge in functionality) or different genes with similar
functionality. Modular redundancy (e.g., genetic duplication) imposes the cost of replicated
modules while functional redundancy (e.g., phenotypic plasticity) employs different sys-
tems to perform the same function. Biological robustness affords evolvability and itself is
afforded by evolution, e.g., genetic duplication is a mechanism for evolutionary innovation
including functional redundancy such as anaerobic glycolysis and oxidative phosphory-
lation for ATP production [156]. Hox genes are an example of highly conserved genetic
modularity for the development of multicellular body plans. Furthermore, transcriptional
regulatory networks in bacteria have exhibited convergent evolution with independent
evolution in different species [157]. Heat shock response in cells involves molecular heat
shock chaperones as a universal genetic module under feedback control that provides
robustness to heat stress by reversing protein unfolding [9]. We have addressed these
factors of robustness elsewhere [158]. It is clear that there are strong correlations between
biological control systems and electronic control systems. In unit chemical processors, so-
phisticated process control systems are required to monitor and control process throughput
with both robust and adaptive behaviour. The lunar industrial ecology, as in biological
systems, will involve complex feedback and feedforward control systems.

Synthetic biology proposes to construct genetic circuits within biological cells to en-
gineer complex information processing functions [159,160]. Synthetic biological circuits
typically take hours to compute. A registry of genetically encoded standard biological
parts (BioBricks) with well-defined transfer functions—such as sensors, logic gates and
actuators—permits the construction of hierarchies of engineered devices and systems [161].
It is also possible to dynamically self-tune behaviour through the control of transcription in
response to environmental sensing [162]. GRN may be employed as natural modules such
as the lac operon to construct synthetic biology circuits such as toggle switches and ring
oscillators (repressilator) [163]. In essence, signals are mapped onto GRN with computation
performed through the rates of transcription factor binding to DNA [164]. A component
library of logic gates may be constructed from a biochemical inverter based on transcrip-
tion/translation repressor proteins [165]. Logic processing in genetic circuits involve
promoters which recruit RNA polymerase to transcribe downstream genes—promoters
are either activated or repressed by transcription factors. A biological NAND gate can be
constructed from two parallel inverters connected to a downstream inverter. The implica-
tion function uses an inducer to bind the repressor. A genetically encoded universal NOR
gate is more straightforward to implement than NAND [166]. A GRN implementing a
biological half-adder has been constructed from an AND and an EXOR gate [167]. From
these logic gates, the toggle switch and repressilator can be constructed. A genetic toggle
switch implemented through two repressors and two promoters in a mutually inhibitory
gene regulatory network offers a memory cell [168]. The genetic memory cell can po-
tentially implement epigenetic inheritance. The repressilator comprises a daisy chain of
promoter-repressor pairs to create a negative feedback loop. The Lac and Ntr systems
were employed to construct multi-module genetic circuits with damped oscillatory or
toggle switch behaviours [169]. An activator module was common to both circuits but
the oscillator also incorporated a repressor module. A transient pulse-generating network
integrated positive and negative regulation of gene expression through a feedforward
circuit in response to a long-lasting signal [170]. An engineered gene circuit can implement
a synchronised oscillation (clock) for coordinating activity through a multicellular popula-
tion based on quorum sensing when that population is large enough [171,172]. From these
basic functions, more complex genetic circuits can be constructed [173].

The more sophisticated cell protein signalling networks of eukaryotes have a mod-
ular regulatory organisation which offers the prospect for rewiring [174]. Evolutionary
programming is one approach to evolving biological networks in silico implementing sim-
ple filters from modules based on Michaelis–Menten reaction kinetics in protein/protein
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networks and Hill equations in gene/protein networks [175]. However, challenges in
predicting genetic circuit performance (e.g., molecular stability, binding strength, and
rate constants) requires the employment of in vivo directed evolution rather than model-
based evolutionary programming to construct more complex circuits [176]. Although
we have focussed on transcription factors, biological genetic regulation is multi-faceted
including non-transcriptional regulation [177], e.g., trans-acting RNA molecules such as
microRNAs rather than proteins. RNA regulation is more stable but with slower response
than transcription factor regulation in synthetic feedback control circuits [178]. RNA-only
post-transcriptional ribocomputing circuits of combinatorial logic gates implemented in
bacteria offer high predictability of base-pairing rules to permit the use of in silico mod-
elling [179]. However, constructing engineered biological systems remains challenging due
to replication errors [180]. This makes synthetic biological cells unstable. Synthetic circuits
are lost over accumulated cell doublings but there are a few strategies to minimise syn-
thetic circuit loss [181]—minimise repeated sequences which are rapidly excised; decrease
expression levels and so metabolic load; design inducers rather than promoters to increase
metabolic load; reduce genome size by eliminating insertion sequences to reduce mutation
rate. However, some of these strategies are difficult to implement. A further possibility is
to supplement synthetic biological circuits with in silico circuits such as employing an in
silico feedback control algorithm outside of the cell to respond to an external signal [182].
Small modules with basic functionalities such as oscillators or switches have been evolved
in silico for the formation of larger genetic regulatory networks [183]. A further step in hy-
bridising electronic signalling between biological and nonbiological systems is to introduce
a biocompatible electron transfer conduit from the cell interior through the insulating cell
membrane to extracellular electron acceptors [184]. A chemical kinetic implementation of
a McCulloch–Pitts neuron has been achieved through a cyclic enzyme reaction in which
high/low concentrations were dependent on the concentration of a catalyst through either
excitatory or inhibitory enzymes [185]. The McCulloch–Pitts neuron can construct AND,
OR, NAND and NOR gates. An oscillating catalyst imposed a discrete timing mechanism.
This was extended to a network of McCulloch–Pitts neurons with chemically weighted
connections to form a variety of finite-state machines including a binary adder and a stack
memory [186]. In principle, a chemical universal Turing machine could be constructed
from two chemical memory stacks and a clocked neural network.

11. Conclusions

Our lunar industrial ecology represents a sustainable approach to ISRU which feeds
into a manufacturing system. Although multiple machines that must be coordinated are
characteristic of manufacturing, this is not so in chemical processing plants. The lunar
industrial ecology, however, involves multiple chemical processors that must be coor-
dinated with extensive recycling loops. The design and architecture of manufacturing
factories may be applied to the lunar industrial ecology and these approaches have been
reviewed. Although these approaches are appropriate throughout the processing chain
from mining to final product, a central facet of any ISRU system will involve exploration
of the planetary environment and the acquisition of physical resources [187]. This will
require complex strategies involving coordination of multiple roving robots. We believe
that the holonic architecture is most appropriate for organising the lunar industrial ecology.
Biological systems through the use of inducer-repressor systems implement a system of
double negative logic rather than positive logic adopted in engineering. This generates
subtleties to biological systems. Within this framework, GRNs appear promising but are
complex—Bayesian networks offer an approach for emulating GRN behaviours with cer-
tain provisos. More encouragingly, there are direct relationships between biological control
systems and those employed in engineering, and indeed, synthetic biology demonstrates
that engineered systems can be implemented in biological cells. They also provide the
basis for checkpointing in the cell cycle. Although this addresses the basic mechanisms of
metabolic control, the application of metabolic networks, however, may be more promising.
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An artificial chemistry with self-maintaining chemical reactions represented as graphical
rewrite rules has been subjected to dynamic programming (energy) constraints with fitness
determined by metabolic yield to simulate the evolution of simple metabolic networks [188].
Genetic regulatory networks have been evolved in silico using genetic programs acting on
a set of master reactions (translation, transcription, dimerization and degradation) with os-
cillatory dynamics [189]. The expression dynamics of an artificial genome may be modelled
graphically as a Boolean network encoded through promoters with evolution implemented
through a genetic algorithm selecting according to gene number and connectivity [190].
This simulates the evolution of a genetic regulatory network indicating that the construc-
tion of more complex networks is more rapid from simpler cyclic network precursors. This
correlates with the synthetic evolution of small genetic regulatory networks to bootstrap
more complex, modular genetic regulatory networks [191]. A technique of aggressive
pruning in directed synthetic biological evolution generated genetic regulatory networks
for a bistable toggle switch and an oscillatory circuit which were used as modules to evolve
more complex genetic regulatory networks. Engineered-by-design circuits are much noisier
and unreliable than such evolved circuits due to stringent selection by the fitness function.
The introduction of ontogenetic development into an artificial evolutionary system can
evolve modular genetic regulatory networks with low pleiotropy [192]. Phenotypic novelty
has been demonstrated in simulated evolution of multicellular organisms to be a product
of diversity of evolved developmental gene regulation modelled as Boolean networks
rather than structural genes [101]. Genetic regulatory networks in bacteria appear to have
evolved in much the same fashion through the emergence of hierarchical modules with
increasing complexity [192]. Novel regulatory pathways arose rarely through horizon-
tal gene transfer with traditional mutational mechanisms—duplication, point mutation
and inversion—providing the main engine of evolutionary reorganisation of regulatory
pathways. Horizontal gene transfer is enabled through a library of genes (metagenome
of diverse gene cassettes) in bacterial communities that generate new pathway modules.
Far more frequent is the rearrangement of the “wiring” of more complex functions from
existing modules, e.g., CtrA protein is a master regulator in cell cycles but it is applied to
different functions across species. The bacterial flagellum has common features of design
and hierarchical assembly but mechanisms for integrating flagella into bacterial cells varies
across species, e.g., distribution of flagella. The evolution of bacterial genetic regulatory
networks appears to be an adaptive response to dynamically changing environmental
stresses. These findings suggest that perhaps a promising approach might be to adopt
genetic algorithms or genetic programs to evolve genetic regulatory networks for the lunar
industrial ecology in a hierarchical manner. This remains to be explored. Nevertheless,
it seems reasonable that some aspects of biological control systems can be implemented
in engineered systems. However, the high complexity of GRNs and difficulties in mod-
elling and prediction of their behaviours render them an unlikely biomimetic candidate for
engineering implementation in the near term unless evolutionary methods are explored.
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45. Gerkey, B.P.; Matarić, M.J. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Int. J. Robot. Res. 2004,

23, 939–954. [CrossRef]
46. Gen, M.; Lin, L. Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. J. Intell.

Manuf. 2014, 25, 849–866. [CrossRef]
47. Prokopenko, M.; Gerasimov, V.; Tanev, I. Evolving Spatiotemporal Coordination in a Modular Robotic System. Trans. Petri Nets

Other Models Concurr. XV 2006, 4095, 558–569.
48. Valckenaers, P.; Van Brussel, H.; Hadeli; Bochmann, O.; Germain, B.S.; Zamfirescu, C.-B. On the design of emergent systems: An

investigation of integration and interoperability issues. Eng. Appl. Artif. Intell. 2003, 16, 377–393. [CrossRef]
49. Di Marzo Sergendo, G.; Fleizes, M.-P.; Karageorgos, A. Self-organising systems. In Self-Organising Software: From Natural to

Artificial Adaptation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 7–32.
50. Mehrabi, M.G.; Ulsoy, A.G.; Koren, Y.; Heytler, P. Trends and perspectives in flexible and reconfigurable manufacturing systems.

J. Intell. Manuf. 2002, 13, 135–146. [CrossRef]
51. Katz, R. Design principles of reconfigurable machines. Int. J. Adv. Manuf. Technol. 2007, 34, 430–439. [CrossRef]
52. Jennings, N. An agent-based approach for building complex software systems. Commun. ACM 2001, 44, 35–41. [CrossRef]
53. Mehrabi, M.G.; Ulsoy, A.G.; Koren, Y. Reconfigurable manufacturing systems: Key to future manufacturing. J. Intell. Manuf. 2000,

11, 403–419. [CrossRef]
54. Malhotra, V.; Raj, T.; Arora, A. Reconfigurable manufacturing: An overview. Int. J. Mach. Intell. 2009, 1, 38–46.
55. Schmenner, R.W.; Tatikonda, M.V. Manufacturing process flexibility revisited. Int. J. Oper. Prod. Manag. 2005, 25, 1183–1189.

[CrossRef]
56. Sanchez, L.M.; Nagi, R. A review of agile manufacturing systems. Int. J. Prod. Res. 2001, 39, 3561–3600. [CrossRef]
57. Setchi, R.M.; Lagos, N. Reconfigurability and reconfigurable manufacturing systems state-of-the-art review. In Proceedings of the

2nd IEEE International Conference on Industrial Informatics, 2004. INDIN ’04, Berlin, Germany, 24–26 June 2004; pp. 529–535.
58. Bi, Z.M.; Lang, S.Y.T.; Shen, W.; Wang, L. Reconfigurable manufacturing systems: The state of the art. Int. J. Prod. Res. 2008, 46,

967–992. [CrossRef]
59. He, D.; Kusiak, A. Design of assembly systems for modular products. IEEE Trans. Robot. Autom. 1997, 13, 646–655. [CrossRef]
60. Brezocnik, M.; Balic, J. Genetics-based approach to simulation of self-organising assembly. Robot. Comput. Integr. Manuf. 2001, 17,

113–120. [CrossRef]
61. Tharumarajah, A.; Wells, A.; Nemes, L. Comparison of emerging manufacturing concepts. In Proceedings of the SMC’98 Conference

Proceedings, the 1998 IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 14 October 1998.
62. Ryu, K.; Jung, M. Agent-based fractal architecture and modelling for developing distributed manufacturing systems. Int. J. Prod.

Res. 2003, 41, 4233–4255. [CrossRef]
63. Mun, J.; Shin, M.; Jung, M. Architecture for the fractal generation and evolution process in the fractal manufacturing system.

In Proceedings of the 5th Asia Pacific Industrial Engineering & Management Systems Conference, Gold Coast, Australia,
30 November 2004; pp. 3.2.1–3.2.10.

64. Shin, M.; Mun, J.; Jung, M. Self-evolution framework of manufacturing systems based on fractal organization. Comput. Ind. Eng.
2009, 56, 1029–1039. [CrossRef]

65. Heragu, S.; Graves, R.; Kim, B.-I.; Onge, A.S. Intelligent agent based framework for manufacturing systems control. IEEE Trans.
Syst. Man Cybern. Part A Syst. Hum. 2002, 32, 560–573. [CrossRef]
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