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Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects
their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a
major symptom described in restrictive anorexia nervosa (AN) patients, and they also suf-
fer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN,
mostly observed in young women, is the third largest cause of chronic illness in teenagers
of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be
considered an adaptation that permits the endurance of reduced energy supply, involving
central and/or peripheral reprograming. The severe weight loss observed in AN patients
is accompanied by significant changes in hormones involved in energy balance, feeding
behavior, and bone formation, all of which can be replicated in animals models. Increas-
ing evidence suggests that AN could be an addictive behavior disorder, potentially linking
defects in the reward mechanism with suppressed food intake, heightened physical activ-
ity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone
that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels
seems paradoxical in light of the restrained eating adopted by AN patients, and may rather
result from an adaptation to the disease.The aim of this review is to describe the role played
by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent
AN models, chronic food restriction induces profound alterations in the « ghrelin »signaling
that leads to the development of inappropriate behaviors like hyperactivity or addiction to
food starvation and therefore a greater depletion in energy reserves. The question of a
transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in
regard of new clinical treatments currently investigated.

Keywords: ghrelin, anorexia, food intake, energy balance, central alterations, peripheral alterations, reward, animal
models

INTRODUCTION
Feeding is a behavior that ensures an adequate and varied sup-
ply of nutritional substrates essential to maintain energy levels for
basal metabolism, physical activity, growth, and reproduction and
hence, for survival of every living organism on Earth. In the case
of mammals, that must maintain a stable body temperature, the
maintenance of a high metabolic rate requires constant availability
of a sufficient amount of energy stores. The tight balance between
energy demand and expenditure is fine-tuned by an adapted dialog
between homeostatic and hedonic brain systems that are regulated
by peripheral signals involved in feeding behavior and energy
homeostasis. Mechanisms for feeding control remain a current
and crucial scientific subject for understanding the etiology and
potential therapeutic approaches for the treatment of food intake
disorders that include obesity, on one hand, and severe forms of
anorexia nervosa (AN) on the other.

Voluntary anorexia is a disease not unique to man and has even
been described in many vertebrate species that favor migration
activity (Wang et al., 2006). In this case, surviving food depri-
vation involves an adaptation of metabolism, such that internal
energy stores available at the onset of fasting are used to main-
tain basal metabolism and physical activity. The biochemical and
physiological adaptations that result from a lack of food help to
preserve physiological function in order to maintain behaviors like
food seeking or predator avoidance and also, to resume all meta-
bolic processes necessary when food becomes available. However,
absolute or long term food deprivation observed in nature or in
restrictive AN proceeds in stages in which the individual/organism
tries to adapt its metabolism to energy costs but that culminates in
death, due to exhaustion of energy stores. As clearly described
by Wang et al. (2006), the different stages progress from fast-
ing to starvation, but “The demarcation between these two states
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is rarely appreciated, perhaps owing to lack of definition. In humans,
fasting often refers to abstinence from food, whereas starvation is
used for a state of extreme hunger resulting from a prolonged lack
of essential nutrients. In other words, starving is a state in which
an animal, having depleted energy stores, normally would feed to
continue normal physiological processes.” Briefly, three metabolic
phases are described during food deprivation (Wang et al., 2006)
where energy metabolic adaptations occur to allow supply of fuel
in the different parts of the organism, especially the brain (see
Table 1). In regard to these metabolic stages, the transition from
fasting to starvation occurs by the end of phase II or the beginning
of phase III. Thus, voluntary anorexia as seen in restrictive AN
should correspond to phases I and II.

Restrictive AN is a feeding behavior disorder for which severe
chronic food restriction causes dramatic physiological and psy-
chological effects that are detrimental for health. AN is most
prevalent in women aged of 25 years old or younger (whose BMI
reaches values largely below 18.5 kg/m2) and is currently the third
largest cause of chronic illness in teenagers (Lucas et al., 1991).
The prevalence of AN has drastically increased within recent
decades. It leads to central and/or peripheral reprograming that
permits the individual/organism to endure a reduced energy sup-
ply. These drastic conditions not only induce severe weight loss and
metabolic disturbance, but also infertility, osteopenia, and osteo-
porosis. Moreover, AN is increasingly recognized as an addictive
behavior disorder. ∗-Indeed, many of its common primary char-
acteristics – food obsession coupled with food restriction, weight
loss, heightened physical activity, and the strong association with
mood disorder (such as anxiety or depression), strongly suggest a
potential alteration of the central (dopaminergic) reward system.

Anorexia nervosa patients exhibit significant changes in the
release of key hormones involved in energy balance and feeding
control (Hasan and Hasan, 2011). For example, the plasma lev-
els of ghrelin, an orexigenic hormone mostly released from the
empty stomach, are increased in AN patients along all the day (Ger-
main et al., 2009, 2010). This hormone acts centrally to increase
food intake (Wren et al., 2001a,b) and food-motivated behavior
(Skibicka et al., 2012), but has also been suggested to be required
for the maintenance of blood glucose homeostasis during severe
calorie restriction (Zhao et al., 2010). The increases in plasma
ghrelin levels in AN seem paradoxical in light of the restrained
eating adopted by these patients and suggest an adaptive response
to the disease. In regard to the metabolic deficiencies occurring
in restrictive AN (see infra), the aim of this review is to highlight
the impact of ghrelin in the adaptation of the organism to chronic
food restriction until it falls into exhaustion and death. A better
understanding of the role of this gastric hormone in dysfunctional
AN like feeding behavior is important when evaluating its thera-
peutic potential for the treatment of AN, envisaged to be used
alongside mainstay psychiatric and nutritional therapies.

PHYSIOLOGICAL ALTERATIONS IN ANOREXIA NERVOSA
TYPES AND SUBTYPES OF ANOREXIA NERVOSA: NEW DSM-V
CLASSIFICATION
Chronic food restriction is linked to several disorders classi-
fied in DSM-V (Diagnostic and Statistical Manuel of Mental
Disorders). In the provisional version of DSM-V (of spring

Table 1 | Different metabolic phases occurring during food restriction

and permitting distinction between fasting and starvation (see Wang

et al., 2006).

All the metabolic changes aim to deliver sufficient amount of glucose for different

organs and especially for the brain.

2012; http://www.dsm5.org/meetus/pages/eatingdisorders.aspx),
the Feeding and Eating Disorders category includes three dis-
orders as manifested by persistent failure to meet appropriate
nutritional and/or energy needs and significant weight loss, AN,
avoidant/restrictive food intake disorder (ARFIDO), and atypi-
cal AN.

Diagnostic criteria for AN includes the restriction of energy
intake relative to requirements, a drastic significant loss of body
weight, an intense fear of gaining weight, body image disturbance,
and/or a persistent lack of recognition of the seriousness of the cur-
rent low body weight. In a recent review (Garcia et al., 2011), the
lifetime prevalence of AN was estimated to be 1.9% in female adults
to 2.6% in female adolescents in industrialized countries. In the
binge eating/purging subtype, the individual engages in recurrent
episodes of binge eating or purging behavior while such episodes
do not occur in the restricting subtype. Patients from these two
subtypes also exhibit differences in eating disorder symptom indi-
cators (Olatunji et al., 2012). However, the subtype determination
at the time of the diagnosis should be considered carefully since,

Frontiers in Endocrinology | Neuroendocrine Science February 2013 | Volume 4 | Article 15 | 2

http://www.dsm5.org/meetus/pages/eatingdisorders.aspx
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Méquinion et al. Ghrelin and chronic food restriction

over a 7-year period, the majority of women with AN were found to
cross over to the restricting and binge eating/purging AN subtypes
(Eddy et al., 2008). In a 21-year follow-up study, Löwe et al. (2001)
showed that 16% of AN patients deceased due to consequences
of their illness: about 50% died because of somatic complica-
tions leading to heart attack and the remainder committed suicide.
Moreover, mortality is significantly more common among inpa-
tients with somatic comorbidity (like renal, cardiac, bone, and
digestive pathologies) than among inpatients without a somatic
disease (Erdur et al., 2012). Finally, among the psychiatric comor-
bidities, AN is often associated with depression, anxiety, obsessive
compulsive or personality disorders, and drug abuse (Erdur et al.,
2012). Whether AN resembles an addiction behavior disorder
remains one major question for physicians and researchers alike.
The criteria proposed by Goodman (1990) to identify addictive
disorder (Table 2) are found in AN patients. Indeed, Speranza et al.
(2012) showed that 35% of the restrictive AN subtype patients,
48% of the binge eating/purging AN subtype patients and 60%
of the patients have substance-use disorders and hence, exhibit an
addictive disorder according to Goodman’s criteria. From these
criteria, an emerging hypothesis of AN implicates neurobiologi-
cal mechanisms (and hence, investigation strategies for treatments
and diagnostic markers) that are based on a reward deficit and on
the recognition as an addictive behavior disorder (Alguacil et al.,
2011). In fact, among the different theories linking AN and addic-
tion, interestingly, the “auto-addiction opioid model” proposes
that this chronic eating disorder could represent an addiction to
the body’s endogenous opioids, especially β-endorphins (see Davis
and Claridge, 1998). Starvation and excessive exercise, that con-
cern a high percentage of AN patients (Davis et al., 1997; Kohl
et al., 2004), are associated with increased levels of β-endorphin,
known to further stimulate dopamine in the mesolimbic reward
centers (Bergh and Södersten, 1996; Casper, 1998). This mesolim-
bic pathway plays a pivotal role in addictive behaviors related to
drugs and dietary behaviors (Avena and Bocarsly, 2012; Perelló
and Zigman, 2012). Importantly, this mesolimbic dopamine path-
way is activated by ghrelin (Abizaid et al., 2006; Jerlhag et al., 2006;
see infra) and, since AN patients have high plasma ghrelin lev-
els (Germain et al., 2009, 2010), it follows that there may be a
dysfunctional ghrelin-(dopamine) reward signal in these patients.
However, as discussed by Barbarich-Marsteller et al. (2011), there
are fundamental differences between AN and addiction. Indeed,
the main goal of an individual suffering from a substance abuse
disorder is to pursue the immediate effects of the drug on mood
and/or behavior (alleviation of anxiety, for example), whereas the
goals of an AN patient are both immediate and long term. In
these patients, dieting and starvation produce immediate feelings
of hunger that may induce a sense of control over one’s body and
thereby a sense of control over one’s life while, in the long term,
it produces sustained weight loss and thinness that take on an
irrationally important value.

In the ARFIDO, insufficient food intake is associated with sig-
nificant weight loss, nutritional deficiency, dependence on enteral
feeding, or nutritional supplements and/or a marked psychoso-
cial dysfunction. In these patients, the eating disturbance does
not occur exclusively during the course of AN, and is not associ-
ated with body image disturbances. ARFIDO is a new recognized

Table 2 | Addictive disorder criteria according to Goodman (1990).

A. Recurrent failure to resist impulses to engage in a specified behavior

B. Increasing sense of tension immediately prior the initiation of behavior

C. Pleasure or relief at the time of engaging in the behavior

D. A feeling of a lack of control while engaging in the behavior

E. At least five of the following:

1. Frequent preoccupation with the behavior or preparatory activities

2. Frequent engaging in the behavior to a greater extent or over a longer

period than intended

3. Repeated efforts to reduce, control, or stop the behavior

4. A great deal of time spent in activities necessary for the behavior,

engaging in the behavior, or recovering from its effects

5. Frequent engaging in the behavior when expected to fulfill

occupational, academic, domestic, or social obligations

6. Important social, occupational, or recreational activities given up or

reduced because of the behavior

7. Continuation of the behavior despite knowledge of having a persistent

or recurrent social, financial, psychological, or physical problem that is

caused or exacerbated by the behavior

8. Tolerance: need to increase the intensity or frequency of the behavior

in order to achieve the desired effect or diminished effect with

continued behavior of the same intensity

9. Restlessness or irritability if unable to engage in the behavior

F. Some symptoms of the disturbance have persisted for at least 1 month

or have occurred repeatedly over a longer period of time

To reach the categorical diagnosis of addictive disorder according to Goodman

(1990), criteria A–D plus criterion E (five among nine symptoms) must be met for

at least 1 month.

eating disorder previously classified in the left over category Eat-
ing Disorder Not Otherwise Specified (EDNOS) corresponding to
the majority of in-and-out patients treated for eating disorders.
Its prevalence remains to be determined.

The last disorder, atypical AN, is in the EDNOS category. It
includes all the criteria for AN diagnosis except that, despite sig-
nificant weight loss, the individual’s weight is within or above the
normal range. The lifetime prevalence of atypical AN ranges from
2.4% in female adults to 7.7% in female adolescents (Garcia et al.,
2011).

Considering this recent classification, in this review we focus
on restrictive AN in which the individual is subjected to chronic
food restriction that may or may not be associated with intense
physical exercise. In fact, the course of AN is extremely variable,
with approximately 50–60% of individuals recovering, 20–30%
partially recovering, and 10–20% remain chronically ill (Löwe
et al., 2001; Fisher, 2003). The unknown etiology of AN ren-
ders this complex psychiatric disease difficult to treat and current
pharmacological treatments have little efficacy during the acute
phase of illness or in preventing relapse (Barbarich-Marsteller,
2007). However, the physiological alterations induced by severe
chronic food restriction impact on peripheral compartments (fat,
bone, reproductive axis, energy balance) and on central path-
ways (reward, food intake, mood regulation, etc.) for which the
outcome is usually similar whatever the initial cause (personal his-
tory, infancy trauma, socio-cultural pressions, personality traits,
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neurobiological, genetic background, etc.). Some authors even
support the view that the physiological mechanisms involved in
the regulation of feeding behavior in AN might, in many neuro-
biological effects, parallel those of obesity. As recently suggested
by Jacquemont et al. (2011): “abnormal eating behaviors, such as
hyperphagia and anorexia, could represent opposite pathological
manifestations of a common energy balance mechanism, although
the precise relationships between these mirror phenotypes remain to
be determined.” Thus, the development of effective/new pharma-
cological treatments for this disease area would be enhanced if the
mechanisms maintaining the abnormal behaviors characteristic of
AN are better understood.

CENTRAL AND PERIPHERAL ALTERATIONS IN ANOREXIA NERVOSA
Whatever the initial and causal factors leading to AN, all patients
display similar energy metabolic deficits and are unable to adapt
their feeding behavior to energy demand and costs. In this state,
survival requires the development of physiological changes that
drive the individual/animal to adapt itself to these drastic con-
ditions. Among all of the variations induced by chronic food
restriction, the endocrine, immune, bone, and metabolic changes
first allow adaptations to starvation, and are subsequently often
directly involved in the complications of the disease (Estour et al.,
2010). In addition, some of the feeding-regulatory factors are also
involved directly (or not) in the modulation of reward-related

and motivational processes, as well as in cognition and emotions
associated with the disease. It should be noted that some of these
endocrine changes persist after recovery and might contribute to
susceptibility for AN recurrence (Lawson and Klibanski, 2008).

Among the biological factors whose levels are altered in AN
patients, neurotransmitters and neuropeptides regulating appetite
and feeding may contribute to some of the occurring central
perturbations (Table 3). Overall, a high degree of heterogeneity
has been observed between studies, for most of the assayed fac-
tors (plasma and cerebrospinal fluid samples). This heterogeneity
could be explained by differences in the clinical characteristics of
the samples (as severity and duration of the illness or subtype)
and/or the increasing reliability of the methods used to ascertain
factor concentrations over the last two decades. Consequentially,
it is impossible to link any tendency in changes of levels and/or
sensitivity to (an)orexigenic factors to AN, necessitating further
investigation.

Systemic hormones directly regulating food intake have been
widely studied in AN patients (Table 4). However, some anorexi-
genic hormones such as leptin decrease while others, such as pep-
tide YY3–36 (PYY3–36), increase. The same pattern is also observed
for the orexigenic hormone, ghrelin (see infra). There exists sparse
and contradictory data about the anorexigenic factors cholecys-
tokinin (CKK) and glucagon-like peptide 1 (GLP1) in relation
to this disease area rendering, it difficult to interpret observed

Table 3 | Compared levels of neuropeptides regulating food intake in AN patients and healthy matched population.

Neuropeptides regulating food intake* AN/CT Reference

NeuropeptideY

CSF NPY ↑ Kaye et al. (1990), Kaye (1996), Baranowska et al. (1997)

Blood NPY →↓↑ Nedvidkova et al. (2000), Baranowska et al. (2001), Sedlackova et al. (2012)

Blood agouti-related protein ↑ Moriya et al. (2006), Merle et al. (2011)

Blood 26RFa ↑ Galusca et al. (2012)

Opioid peptides

CSF b-endorphins →↓ Gerner and Sharp (1982a), Baranowska (1990), Kaye (1996)

CSF dynorphins → Lesem et al. (1991), Kaye (1996)

Blood b-endorphins ↓↑ Baranowska (1990), Brambilla et al. (1991), Tepper et al. (1992)

Galanin

CSF or plasma galanin → Berrettini et al. (1988), Baranowska et al. (1997, 2001)

Blood a-MSH → Moriya et al. (2006)

CSF corticotropin-releasing hormone ↑ Gerner and Gwirtsman (1981), Hotta et al. (1986), Kaye et al. (1987), Baranowska (1990)

CSF thyrotropin releasing hormone ↓ Lesem et al. (1994)

CSF neurotensin → Nemeroff et al. (1989)

Somatostatin (SRIF)

CSF SRIF ↓→ Gerner and Yamada (1982b), Kaye et al. (1988)

Blood SRIF ↑↓ Pirke et al. (1994), Baranowska et al. (2000), Valevski et al. (2000)

CSF oxytocin ↓ Demitrack et al. (1990)

Blood oxytocin →↓↑ Chiodera et al. (1991), Lawson et al. (2011a, 2012)

Brain-derived neurotrophic factor (BDNF)

Serum BDNF ↓ Nakazato et al. (2003, 2006, 2009), Monteleone et al. (2004, 2005), Ehrlich et al. (2009),

Saito et al. (2009)
Blood BDNF ↑ Mercader et al. (2007)

Adapted from Monteleone (2011).

*Neuropeptides inhibiting food intake are on a gray background.
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Table 4 | Compared levels of hormones regulating food intake in AN patients and healthy matched population.

Hormones regulating food intake* AN/CT Reference

Ghrelin-related

Blood total ghrelin ↑ Otto et al. (2001, 2005), Krsek et al. (2003), Nedvidkova et al. (2003), Tanaka et al. (2003a,b,c, 2004),

Tolle et al. (2003), Broglio et al. (2004a), Hotta et al. (2004), Misra et al. (2004c, 2005b, 2007, 2008),

Soriano-Guillen et al. (2004), Tanaka et al. (2004), Bosy-Westphal et al. (2005), Stock et al. (2005), Troisi

et al. (2005), Uehara et al. (2005), Germain et al. (2007, 2009, 2010), Janas-Kozik et al. (2007), Nakahara

et al. (2007, 2008), Støving et al. (2007), Lawson et al. (2011b), Sedlackova et al. (2012)

Blood acyl ghrelin (active) ↑ Nakai et al. (2003), Hotta et al. (2004), Uehara et al. (2005), Nakahara et al. (2008), Germain et al.

(2009, 2010)

Blood des-acyl ghrelin ↑ Hotta et al. (2004), Nakahara et al. (2008)

Blood obestatin ↑ Nakahara et al. (2008), Germain et al. (2009, 2010), Sedlackova et al. (2012)

Plasma insulin Leptin (→)↓1 Uhe et al. (1992), Tamai et al. (1993), Støving et al. (1999), Gianotti et al. (2000), Gniuli et al. (2001),

Delporte et al. (2003), Tanaka et al. (2003a), Weinbrenner et al. (2003), Misra et al. (2004a,b, 2007),

Tagami et al. (2004), Bosy-Westphal et al. (2005), Housova et al. (2005), Misra et al. (2005c), Stock et al.

(2005), Tomasik et al. (2005), Dolezalova et al. (2007), Dostalova et al. (2007), Kinzig et al. (2007), Naka-

hara et al. (2007), Støving et al. (2007), Haluzíková et al. (2009), Brick et al. (2010), Fazeli et al. (2010b),

Karczewska-Kupczewska et al. (2010, 2012)
Leptin

CSF leptin ↓ Mantzoros et al. (1997), Gendall et al. (1999)

Blood leptin ↓ Ferron et al. (1997), Hebebrand et al. (1997), Mantzoros et al. (1997), Balligand et al. (1998), Gendall et al.

(1999), Støving et al. (1999), Monteleone et al. (2000, 2002a,b), Nedvidkova et al. (2000), Di Carlo et al.

(2002), Krizova et al. (2002), Delporte et al. (2003), Holtkamp et al. (2003a,b, 2004), Misra et al. (2003,

2004a,b, 2005a,c, 2006, 2007, 2008), Pannacciulli et al. (2003), Tolle et al. (2003), Weinbrenner et al.

(2003), Djurovic et al. (2004), Heer et al. (2004), Popovic et al. (2004), Tagami et al. (2004), Dostalova

et al. (2005, 2007), Haas et al. (2005), Miljic et al. (2006), Ohwada et al. (2006, 2007), Dolezalova et al.

(2007), Germain et al. (2007), Mika et al. (2007), Modan-Moses et al. (2007), Muñoz-Calvo et al. (2007),

Nakahara et al. (2007), Haluzíková et al. (2009), Arimura et al. (2010), Estour et al. (2010), Fazeli et al.

(2010b), Nogueira et al. (2010), Lawson et al. (2011b), Faje et al. (2012)
Total blood adiponectin (→↓)↑2 Delporte et al. (2003), Iwahashi et al. (2003), Pannacciulli et al. (2003), Misra et al. (2004a), Tagami et al.

(2004), Bosy-Westphal et al. (2005), Housova et al. (2005), Dolezalova et al. (2007), Dostalova et al.

(2007), Modan-Moses et al. (2007), Nakahara et al. (2007), Støving et al. (2007), Haluzíková et al.

(2009), Karczewska-Kupczewska et al. (2010, 2012), Nogueira et al. (2010)

Cholecystokinin (CKK)

CSF or blood CCK →↓ Phillipp et al. (1991), Geracioti et al. (1992),Tamai et al. (1993), Fujimoto et al. (1997),Tomasik et al. (2004,

2005)
Blood glucagon-like peptide 1 →↓ Tomasik et al. (2002, 2004, 2005)

Blood peptide YY (→)↑3 Stock et al. (2005), Misra et al. (2006, 2007, 2008), Germain et al. (2007), Nakahara et al. (2007), Otto

et al. (2007), Lawson et al. (2011b), Sedlackova et al. (2012)

1Most of the studies found decreased insulin levels.
2Only three studies found no significant differences when compared to control group, and one found a decrease, while all the other found increased adiponectin

levels.
3Most of the studies found increased PYY levels.

*Hormones inhibiting food intake are on gray background.

variations in the context of AN. Concerning PYY3–36, most stud-
ies reported increased levels; although an anorexigenic peptide,
this increase is difficult to explain as PYY3–36 is normally released
in response to food intake. On the contrary, around 50 studies
relate a very low leptin blood level in AN patients compared to a
healthy matched control population (Table 4). This endogenous
signal of energy stores is positively correlated to body mass index.
Leptin is considered to be a good predictor of growth hormone
(GH) burst, cortisol, estradiol, and thyroid hormone levels and its
receptor is widely distributed throughout the body suggesting a

pivotal role in mediating the hormonal adaptation to chronic star-
vation. Furthermore, AN patients display high plasma levels of
adiponectin, another adipose-derived circulating cytokine. This
anorexigenic hormone plays an important role in energy home-
ostasis and insulin sensitivity. The high levels of adiponectin in AN
might contribute to the higher insulin sensitivity found in these
patients. Indeed, insulin levels are usually strongly decreased that
could be related to the hypoglycemia observed in AN patients.

More than 90% of adult women with AN are osteopenic, and
almost 40% are osteoporotic at one or more sites (Grinspoon et al.,
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2000). Osteopenia and osteoporosis are frequent consequences of
AN, that very often persist after weight gain. Moreover, as syn-
thesized by Confavreux et al. (2009), “bone can now be considered
as a true endocrine organ secreting osteocalcin, a hormone pharma-
cologically active on glucose and fat metabolism. Indeed osteocalcin
stimulates insulin secretion and β-cell proliferation. Simultaneously,
osteocalcin acts on adipocytes to induce adiponectin, which secondar-
ily reduce insulin resistance.” For these reasons, studies comparing
bone turnover markers in AN patients with healthy control are
presented in Table 5. Anorectic patients display increased levels of
bone resorption markers and decreased bone formation markers.
We may conclude that the bone mass alteration in patients with AN
is dual: an increase of resorption and a decrease of bone formation.
Moreover, the decrease in osteocalcin level could also contribute to
the hypoinsulinemia and hypoadiponectinemia usually described.

A number of other endocrine disturbances have also been
described in AN patients (Table 6). Hypothalamic-pituitary-
adrenal axis deregulation is commonly suggested in AN. Indeed,
AN is characterized by hypercortisolemia (Table 6) and, as men-
tioned by Miller (2011):“overnight blood cortisol levels are inversely
associated with bone mineral density and positively associated with
severity of depression and anxiety symptoms in women with anorexia
nervosa (Lawson et al., 2009). Therefore, hypercortisolemia may also
contribute to the severe bone loss incurred and the highly prevalent
psychiatric comorbidities in women with anorexia nervosa.” Hypo-
thalamic amenorrhea is another characteristic feature of AN, and
has been attributed to a state of severe energy deficit from restricted
energy intake, increased energy expenditure or both. Women and
adolescent girls with AN have lower levels of estradiol, luteiniz-
ing hormone (LH), and for some of them follicle stimulating

hormone (FSH; Table 6). The low levels of insulin-like growth
factor-1 (IGF-1) and insulin may also contribute to this hypogo-
nadal state and impact on bone turnover. The GH/IGF-1 axis is
also altered in most of the studies (Table 6). Indeed, AN is asso-
ciated with a nutritionally acquired hepatic resistance to GH with
decreased production of IGF-1 and increased GH levels. Such an
increase is due to a reduced feedback at the level of the pituitary
and hypothalamus from low IGF-1 levels, and high levels of ghre-
lin (Table 4, see infra). Most studies report low levels of T3 and/or
T4 thyroid hormones in patients with AN (Table 6). T3 and T4
plasma levels are enhanced by leptin administration in women
with AN, and the levels of these three hormones are positively
associated (Haas et al., 2005; Misra et al., 2005a). Moreover, ghre-
lin is known to inhibit the release of pituitary thyroid stimulating
hormone (Wren et al., 2000), and studies indicate negative correla-
tions between ghrelin and thyroid hormones plasma levels in AN
(Misra et al., 2005c). These data suggest that low leptin and high
ghrelin levels may contribute to lower thyroid hormone levels in
AN. Finally, inflammatory cytokines were assayed in AN patients
and matched healthy controls (Corcos et al., 2003). Data did not
show significant variations suggesting that AN might not have an
inflammatory component.

ANIMAL MODELS OF CHRONIC FOOD RESTRICTION: A WAY TO
DECIPHER THE PHYSIOLOGICAL MECHANISMS OF ANOREXIA
NERVOSA
The use of appropriate animal models mimicking most of the
physiological changes occurring in AN might help to determine
more precisely the potential mechanisms, central and/or periph-
eral, involved in the early adaptive state that precedes exhaustion

Table 5 | Compared levels of bone turnover markers in AN patients and healthy matched population.

Bone turnover markers* AN/CT Reference

Blood OC (→)↓1 Calero et al. (1999), Grinspoon et al. (1999), Caillot-Augusseau et al. (2000),

Gordon et al. (2002), Misra et al. (2003, 2004b, 2006, 2007, 2008),

Weinbrenner et al. (2003), Galusca et al. (2006), Legroux-Gérot et al. (2007),

Ohwada et al. (2007), Viapiana et al. (2007), Estour et al. (2010), Ostrowska

et al. (2010, 2012a,b)

Blood procollagen type 1 N-terminal propeptide (PINP) →↓ Calero et al. (1999), Faje et al. (2012)

Blood procollagen type 1 C-terminal propeptide (PICP) ↓ Misra et al. (2003, 2004b, 2006, 2007), Heer et al. (2004), Mika et al. (2007)

Blood bone specific alkaline phosphatase (BSAP) (→)↓2 Calero et al. (1999), Gordon et al. (2002), Misra et al. (2003, 2006), Heer et al.

(2004), Bolton et al. (2005), Galusca et al. (2006), Legroux-Gérot et al. (2007),

Mika et al. (2007), Ohwada et al. (2007), Viapiana et al. (2007)

Blood or urinary c-terminal cross-linking telopeptide of type 1

collagen (CTX)

↑↓
3 Caillot-Augusseau et al. (2000), Weinbrenner et al. (2003), Galusca et al. (2006),

Mika et al. (2007), Estour et al. (2010), Ostrowska et al. (2010, 2012a,b), Faje

et al. (2012)
Blood cross-linked N-telopeptides of type 1 collagen (NTX) ↑↓ Gordon et al. (2002), Dominguez et al. (2007)

Urinary NTX/creatinine ↑↓
4 Grinspoon et al. (1999), Misra et al. (2003, 2006, 2007, 2008), Dominguez et al.

(2007)

1All but three studies found significant or non-significant decreased OC levels.
2All but three studies found significant or non-significant decreased BSAP levels
3Increased CTX found by Caillot-Augusseau et al. (2000), Weinbrenner et al. (2003), Galusca et al. (2006), Ohwada et al. (2007), and Estour et al. (2010).
4Only Grinspoon found increased urinary NTX/creatinine levels.

*Bone resorption markers are on gray background.
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Table 6 | Compared levels of other factors altered in AN patients.

Other factors AN/CT Reference

Growth factors

Blood GH (→)↑1 Gianotti et al. (2000), Misra et al. (2003, 2004a,c, 2005c, 2006, 2007), Støving et al. (2003), Tolle et al.

(2003), Broglio et al. (2004a), Tanaka et al. (2004), Miljic et al. (2006), Germain et al. (2007), Polli et al.

(2008), Arimura et al. (2010), Estour et al. (2010)

Blood IGF-1 ↓ Grinspoon et al. (1999), Støving et al. (1999, 2003, 2007), Gianotti et al. (2000), Nedvidkova et al. (2000),

Di Carlo et al. (2002), Gordon et al. (2002), Misra et al. (2003, 2004a, 2005c, 2006, 2007, 2008), Tolle et al.

(2003), Broglio et al. (2004a), Heer et al. (2004), Ohwada et al. (2006, 2007), Germain et al. (2007),

Legroux-Gérot et al. (2007), Mika et al. (2007), Polli et al. (2008), Haas et al. (2009), Arimura et al. (2010),

Brick et al. (2010), Estour et al. (2010), Fazeli et al. (2010b), Faje et al. (2012)

Steroid and sexual hormones

Blood LH ↓ Støving et al. (1999, 2007), Di Carlo et al. (2002), Holtkamp et al. (2003b), Popovic et al. (2004), Misra

et al. (2005c), Dominguez et al. (2007), Germain et al. (2007), Oswiecimska et al. (2007), Tomova et al.

(2007), Nogal et al. (2008), Arimura et al. (2010), Estour et al. (2010), Ziora et al. (2011)

Blood FSH (→)↓2 Støving et al. (1999, 2007), Di Carlo et al. (2002), Holtkamp et al. (2003b), Popovic et al. (2004),

Dominguez et al. (2007), Germain et al. (2007), Oswiecimska et al. (2007), Tomova et al. (2007), Nogal

et al. (2008), Arimura et al. (2010), Estour et al. (2010), Ziora et al. (2011)

Estrogens (→)↑3 Grinspoon et al. (1999), Støving et al. (1999, 2007), Monteleone et al. (2000, 2001), Di Carlo et al. (2002),

Holtkamp et al. (2003b), Misra et al. (2003, 2004a,b, 2005c, 2006, 2007, 2008), Tolle et al. (2003), Heer

et al. (2004), Popovic et al. (2004), Bolton et al. (2005), Dominguez et al. (2007), Germain et al. (2007),

Mika et al. (2007), Ohwada et al. (2007), Oswiecimska et al. (2007), Haas et al. (2009), Arimura et al.

(2010), Brick et al. (2010), Estour et al. (2010), Buehren et al. (2011), Ziora et al. (2011), Faje et al. (2012)

Cortisol (→)↑4 Grinspoon et al. (1999), Støving et al. (1999), Monteleone et al. (2000, 2001), Putignano et al. (2001),

Misra et al. (2003, 2004b, 2005c, 2006, 2007, 2008), Tolle et al. (2003), Weinbrenner et al. (2003), Heer

et al. (2004), Troisi et al. (2005), Miljic et al. (2006), Germain et al. (2007), Oswiecimska et al. (2007), Nogal

et al. (2008), Haas et al. (2009), Arimura et al. (2010), Estour et al. (2010), Buehren et al. (2011), Ziora et al.

(2011), Faje et al. (2012)

Thyroid hormones (→)↓5 Nedvidkova et al. (2000), Di Carlo et al. (2002), Holtkamp et al. (2003b), Weinbrenner et al. (2003), Onur

et al. (2005), Troisi et al. (2005), Brambilla et al. (2006), Ohwada et al. (2006, 2007), Oswiecimska et al.

(2007), Nogal et al. (2008), Arimura et al. (2010), Estour et al. (2010), Buehren et al. (2011), Ziora et al. (2011)

1All but two studies found increased GH levels.
2All but one study found decreased FSH.
3Most of the studies found decreased estrogen levels.
4Most of the studies found increased Cortisol levels.
5All but two studies found decreased T3 and/or T4 levels.

of the individual/animal. However, developing and using animal
models of psychiatric disorders is inherently difficult due to the
complex nature of these illnesses. In the literature, numerous mod-
els of genetic deficient mice for one or multiple genes involved
in the regulation of feeding behavior/reward/energy balance have
been developed (for review, see Siegfried et al., 2003; Kim, 2012).
These genetic models give essential mechanistic data related to
one specific pathway but do not completely mirror the symp-
toms observed in human disease (Willner, 1984; Smith, 1989).
Indeed, the use of more “environmental models” that mimic most
of the physiological symptoms of AN are preferred as they provide
insight regarding how the disease might progress toward exhaus-
tion. Initially, the most widely used animal model, whatever the
species, is the chronic food restriction model (for review, see Kim,
2012). However, it does not take into account several conditions

observed in AN patients that are self-starvation, hyperactivity, and
chronic stress. The rat model of self-starvation developed by Rout-
tenberg and Kuznesof (1967) consists in housing one rat in a cage
equipped with a running wheel and submitting the animal to a
food restriction (1 h-feeding per day). This model later coined
the term “the activity-based anorexia (ABA) model.” It produces
a rapid decrease in body weight and food intake, hyperactivity,
hypothermia, loss of estrus, and an increase in HPA axis activity
(Hall and Hanford,1954; Routtenberg and Kuznesof,1967; Burden
et al., 1993). Moreover, in this model, the rats eat less than inactive
rats fed with the same schedule, and can even starve themselves
to death. In the ABA model, the long term exposure (few days) to
low leptin and high ghrelin levels, induced a tissue-specific expres-
sion pattern of ghrelin and leptin receptors (Pardo et al., 2010).
Furthermore, Verhagen et al. (2011) found that plasma ghrelin
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levels are highly associated with food anticipatory behavior, mea-
sured by running wheel activity in rats. This effect is dependent of
the central ghrelin signaling system via growth hormone secreta-
gogue receptor 1a (GHS-R1A). In many aspects this model mimics
numerous physiological alterations observed in AN. However, as
specified by Klenotich and Dulawa (2012), the ABA paradigm is
strongly dependent upon factors that amplify or reduce some
parts of the phenotype, i.e., the choice of rodent strain (more
or less resistant to ABA, Gelegen et al., 2007), the sex of animal
(female are more vulnerable to ABA), the age (younger animals
are more susceptible to ABA), the temperature (increasing the
temperature to 32˚C strongly reduces the ABA behavior, Cerrato
et al., 2012), the time of the day the animals receive food, and the
hydration/dryness of the food. In fact, Boakes and Juraskova, 2001;
Boakes, 2007) demonstrated that the “self-starvation” observed in
ABA rats might reflect both the reduced palatability of the dry
chow for a dehydrated animal and satiety signals from a stomach
full of water. Thus, giving hydrated food during the 1 h-feeding
schedule completely abolishes the ABA phenotype (rapid weight
loss, hyperactivity, etc.). Currently, we are developing an adapta-
tion of the ABA model in female mice that aims to follow the
long term (more than 2 weeks) physiological alterations induced
by a combination of physical activity and 50% food restriction.
Our recent results, involving a 2-week protocol, indicate that our
selected ABA model induces a rapid and stable loss of weight,
changes the circadian locomotor activity, alters energy balance
(corresponding to the passage from phase I to II; Table 1), induces
hypoglycemia, hypoleptinemia, hyperghrelinemia, and a central
alteration in the hypothalamic feeding centers (Méquinion, per-
sonal data). Thus, the combination of exercise (in running wheels)
and food deprivation following a certain schedule might be con-
sidered as two important chronic stress factors that could reinforce
the weight loss by modifying feeding behavior, as observed in our
study. Other models based on chronic stress that are associated
with food deprivation use tail pinching, cold swimming (Shimizu
et al., 1989; Wong et al., 1993), or separation. We choose this last
model, named “Separation-Based Anorexia” (SBA) to study the
impact of chronic stress associated with caloric insufficiency. In
our protocol, 8-week old female mice are separated and fed with a
time-restricted food access for up to 10 weeks. Our recent results
showed a 20–25% body weight loss with a cumulative food intake
just under that of the control group. Moreover, SBA mice displayed
reduced lean, fat, and bone masses associated with hypoleptine-
mia and alteration in GH/IGF-1 axis. Finally, an alteration of the
estrous cycle was also observed (Zgheib, personal data).

To date, these described “environmental animal models” (ABA
and SBA) remain the only models that enable long term studies of
how chronic food restriction impacts upon physiology at different
levels (energy balance, reproduction,bone/fat regulation,etc.), and
of the mechanisms responsible for the sustenance of these alter-
ations on different tissues often not available on patients (brain,
bones, fat, muscle, liver, etc.). They will also facilitate determi-
nation of whether the dramatic outcome of the patients might be
related to a specific dysregulation of one or many biological factors
that can be considered as a marker of the disease and potentially
also in its evolution. In addition, ABA and SBA models exhibit
good face validity for most of the physiological symptoms of AN.

GHRELIN A KEY ENERGY BALANCE HORMONE: ROLE IN
ANOREXIA NERVOSA
ORIGIN AND BIOSYNTHESIS OF GHRELIN
Ghrelin is a 28 amino acid, initially isolated from rat stomach
(Kojima et al., 1999). The preproghrelin messenger RNA (mRNA)
is mainly expressed in the X/A-like oxyntic gland cells of the gastric
fundus mucosa equivalent to P/D1 cells in humans (Bordi et al.,
2000). Ghrelin is also produced in other parts of the gastroin-
testinal tract, and it is expressed at lower levels in pancreas, kidney,
testis, placenta, and bone (Gnanapavan et al., 2002; González et al.,
2008) and hypothalamic neurons (Cowley et al., 2003). The 117
amino acid preproghrelin is processed by cleavage and results in
two peptides (Figure 1): obestatin and proghrelin (Jeffery et al.,
2005). Des-acyl ghrelin is then cleaved from the 94 amino acid
proghrelin precursor by enzymes like the prohormone convertase
1/3 (Zhu et al., 2006). This 28 amino acid peptide is modified
post-translationally in the active acylated form of ghrelin, capable
to bind to its receptor, the GHS-R1a. The octanoylation at the third
N-terminal amino acid, usually serine (Kojima et al., 1999), is cat-
alyzed the enzyme ghrelin octanoyl-acyltransferase (GOAT, Yang
et al., 2008), which is expressed predominantly in the stomach, gut,
and pancreas, but also at other sites (Kang et al., 2012). Ghrelin
concentrations in blood comprise principally des-acyl ghrelin (85–
90%) and in lesser amounts acyl ghrelin (10–15%) and C-terminal
proghrelin peptides (Pemberton and Richards, 2007).

GHRELIN RECEPTOR AND DISTRIBUTION
Ghrelin is the only known ligand to bind to GHS-R1a (Howard
et al., 1996; Gutierrez et al., 2008). This receptor belongs to the
G-protein coupled receptor family (GPCR; Holst and Schwartz,
2006) and has two variants, GHS-R1a and GHS-R1b, which are
splice variants of the same gene. Type 1a is the full length, seven-
transmembrane domain receptor, and the type 1b isoform is
a C-terminally truncated, five-transmembrane domain variant
(Kojima et al., 1999). Only the GHS-R1a is fully functional, bind-
ing mostly with acylated ghrelin on Gαq-protein, whereas the 1b
isoform is thought to be physiologically inactive. It should be
noted that des-acyl ghrelin does not compete with acyl ghrelin
for GHS-R1a to any significant extent. Indeed, supraphysiological
concentrations of des-acyl ghrelin are necessary to allow binding
and activation of GHS-R1a (Veldhuis and Bowers, 2010; Delhanty
et al., 2012). Although derived from the same precursor, obestatin
is a cognate ligand for the orphan receptor GPR39, another mem-
ber of the ghrelin receptor subfamily (McKee et al., 1997; Holst
et al., 2004).

Growth hormone secretagogue receptor 1a is abundantly
expressed within the CNS. Notably, a large population of GHS-
R1a-expressing neurons are located in the hypothalamic arcu-
ate nucleus (ARC), which has a crucial role in energy balance
control. Other hypothalamic areas expressing this receptor of
relevance for feeding control include the ventromedial hypo-
thalamus (VMH), paraventricular nucleus (PVN), anteroventral
preoptic nucleus, anterior hypothalamic area, lateral hypothal-
amic area (LHA), suprachiasmatic nucleus, supraoptic nucleus,
and the tuberomammillary nuclei (Guan et al., 1997; Gnanapa-
van et al., 2002; Camiña, 2006; Harrold et al., 2008). Moreover,
mRNA studies also demonstrate the presence of this receptor in
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FIGURE 1 | Principal peptide products obtained by post-translational
processing of preproghrelin peptide. Ghrelin and obestatin act on receptors
belonging to the GPCR family. Even if the exact role of obestatin remains
question of debate (see Hassouna et al., 2010), ghrelin has been first
described to be a GH-secretagogue. Beside an obvious role in the regulation

of food intake, ghrelin is also implicated in numerous biological function (see
Veldhuis and Bowers, 2010). The active form of ghrelin, acyl ghrelin, is
obtained by octanoylation of deacyl ghrelin. Its receptor is not yet identified
and its function is currently unclear even if some evidences support an
antagonistic effect to ghrelin (see Delhanty et al., 2012).

limbic and mesolimbic structures known to be involved in motor
control, emotional reactivity and reward/motivation systems such
as the hippocampus (dentate gyrus, CA2, and CA3 regions), pars
compacta of the substantia nigra, ventral tegmental area (VTA),
raphe nuclei, laterodorsal tegmental nucleus (Guan et al., 1997;
Zigman et al., 2006), and amygdala (Alvarez-Crespo et al., 2012).
In the periphery, GHS-R1a is expressed in different tissues and
organs implicated in energy balance, e.g., in the anterior lobe of the
pituitary on somatotroph cells (Briggs and Andrews, 2011), pan-
creas, spleen, stomach, intestine, heart, thyroid, gonads, adrenal,
liver, skeletal muscle, and adipose tissues (Papotti et al., 2000). The
truncated form is also found in various tissues but its exact role is
not well known (Gnanapavan et al., 2002; Camiña, 2006). Inter-
estingly, GHS-R1a is constitutively active even when unstimulated
by the afferent ghrelin signal (Petersen et al., 2009). Finally, ghrelin
receptors are able to interact with other receptors to form homo-
or hetero-dimers, like GHS-R1a/GHS-R1a and GHS-R1a/GHS-
R1b (Chow et al., 2012). Co-expression of the truncated variant
of ghrelin receptor with the full length variant attenuated the

constitutive signaling probably because the translocation of the
ghrelin receptor from the plasma membrane to the cell nucleus is
decreased (Mokrosinski and Holst, 2010). GHS-R1a also appears
to heterodimerize with other GPCRs, at least in in vitro test sys-
tems, and can explain the differential ghrelin signaling (review in
Schellekens et al., 2010). Heterodimerization of GHS-R1A with
the dopamine receptor D2 has recently been shown to occur in
mouse hypothalamic neurons that regulate appetite (Kern et al.,
2012) Since GHS-R1a acts as an allosteric modulator of D1 and D2
signaling, this finding implies a functional role for the expressed
GHS-R1a in brain areas that may be less accessible to peripherally
produced ghrelin and where there is no local production of ghrelin
(Jiang et al., 2006; Kern et al., 2012).

ROLES OF GHRELIN
In line with the broad expression of ghrelin and its recep-
tor, this hormone is involved in multiple biological functions,
many of which are linked to feeding control. Initially, this gut-
brain signal was shown to have direct pituitary GH-releasing
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effects, reproducing the known effects of the so-called growth
hormone secretagogues (GHS). This term refers a group of syn-
thetic GHS-R1a ligands, the first group of which was derived from
metenkephalin (described by Bowers et al., 1977) and included
the hexapeptide GHRP-6 (Bowers et al., 1984) that is now recog-
nized as a synthetic ghrelin mimetic. Both ghrelin and its receptor
have been strongly conserved during evolution, supporting the
notion that GHS-R1a and its natural ligand play a fundamentally
important role in biology (Palyha et al., 2000).

Ghrelin’s most characterized effects are: (i) its ability to stimu-
late GH secretion, likely of relevance for glucose homeostasis and
energy balance; (ii) its role as an orexigenic hormone acting at key
hypothalamic and midbrain circuits involved in feeding control;
(iii) its involvement in various other physiological functions like
gastrointestinal, cardiovascular,pulmonary and immune function,
sleep duration, learning, memory, and behavior, cellular prolifer-
ation, immunomodulation, reproduction, and bone physiology.
Most of these physiological functions are altered in AN indicating
a potential role for ghrelin in the pathogenesis of this disease.

Role of ghrelin in the regulation of appetite, food intake, and energy
balance
Ghrelin acts at different levels to stimulate GH secretion and thus
modulate hepatic IGF-1 production (Peino et al., 2000). GHS-
R1a is expressed by GHRH arcuate neurons but also by GH cells
in the anterior pituitary gland (Kojima et al., 1999). Ghrelin and
GHS activate ARC cells (Dickson et al., 1993; Hewson and Dick-
son, 2000) including neuroendocrine cells in this region (Dickson
et al., 1996), notably a sub-population of GHRH neurons (Dick-
son and Luckman, 1997; Osterstock et al., 2010). Indeed, these
compounds acts in synergy with GHRH to induce a greater GH
release than would be induced by GHRH alone (Bowers et al., 1984;
Arvat et al., 2001; Hataya et al., 2001). This ghrelin-stimulated GH
release is dose-dependent and could explain why AN patients have
elevated circulating GH levels (Kojima and Kangawa, 2005; Miljic
et al., 2006; Misra et al., 2006; Germain et al., 2007, 2010; Estour
et al., 2010). Chronic starvation is associated with GH resistance
and relatively low IGF-1 levels involving a feedback mechanism,
rather than body composition parameters or other circulating fac-
tors, e.g., free fatty acid or insulin levels (Støving et al., 1999; Brick
et al., 2010). Besides its role in growth, GH stimulates lipolysis
through a mechanism independent of IGF-1 (Fazeli et al., 2010a),
for which the effects are largely anabolic. The increased GH secre-
tion and the reduction of IGF-1 in starvation may be adaptive
since they respectively serve the function of mobilizing fat stores
in the setting of reduced energy availability and reduce anabolism.
However, the reduction of IGF-1 levels may also have deleterious
effects, contributing to bone, and muscle loss in AN women. Even
if the mechanisms underlying the development of GH resistance in
states of chronic undernutrition are not as well established, ghre-
lin might strongly participate to such endocrine dysregulation.
Studies conducted in rodents support a close link between ghrelin
signaling and altered GH/IGF-1 status. In rodents, fasting induced
higher expression of GHS-R1a and overexpression of GHS-R1a in
female mice provoked higher expression of GH and GHRH (Veld-
huis and Bowers, 2010). Furthermore, suppressed ghrelin signaling
(using antisense RNA knockdown against GHS-R1a or a GHS-R1a

antagonist, BIM-28163), caused a decrease in GH peak pulsatil-
ity with or without a decrease in plasma levels of IGF-1 (Zizzari
et al., 2005; Veldhuis and Bowers, 2010). Finally, plasma ghrelin
concentration is negatively correlated with body weight and sub-
cutaneous, visceral, and total adiposity (reviewed in Veldhuis and
Bowers, 2010), probably due to a long term effect on ghrelin in
driving pulsatile GH secretion, which is strongly lipolytic.

Ghrelin is perhaps best known as a circulating hunger signal
necessary for meal initiation and meal anticipation with a secre-
tion occurring in a pulsatile manner starting with a preprandial
rise and postprandial fall 1 h after food intake (Ariyasu et al., 2001;
Cummings et al., 2001; Tschöp et al., 2001; Zizzari et al., 2011;
Merkestein et al., 2012). Moreover, whatever the route of injec-
tion, ghrelin increases food intake both in humans and animals
(Wren et al., 2001a,b). In addition, prolonged food reduction or
severe caloric restriction causes an increase in plasma ghrelin con-
centration (Wren et al., 2001b; Méquinion, personal data). In AN
patients, ghrelin levels are increased up to twofold and return to
normal levels after weight restoration (Otto et al., 2001, 2005;
Tolle et al., 2003; Germain et al., 2009; Yi et al., 2011). However, it
appears that fluctuations in ghrelin are not always influenced by
food intake in AN (Germain et al., 2009) suggesting impairment in
its regulation, probably due to a chronic adaptation to long term
food restriction (Yi et al., 2011). Mice lacking the gene for ghrelin
or its receptor have normal food intake when fed chow, probably
due to compensatory adaptation during embryonic development,
but show a degree of protection from obesity when fed a high-fat
diet, especially from an early age (Sun et al., 2003, 2004; Wortley
et al., 2004, 2005).

Ghrelin also appears to be of importance in the regulation of
lipid and glucose metabolism. It has been attributed a role in the
maintenance of normal blood glucose levels (Grove and Cowley,
2005). There are indications that ghrelin’s effects on the GH axis
may have relevance for glucose homeostasis (and even survival)
during chronic food deprivation. Mice lacking acyl ghrelin (due
to knockout of GOAT) lose glycemic control and become mori-
bund by 1 week of 60% food deprivation, an effect that can be
circumvented by infusion of either acyl ghrelin or GH through-
out this 1-week period (Zhao et al., 2010). The work of Sun
et al. (2008) on ghrelin homeostasis in ghrelin KO and GHS-R
KO mice demonstrate that the ghrelin/GHS-R pathway appears
to play an important role in glucose homeostasis by regulating
insulin sensitivity and glucose sensing, particularly under con-
ditions of negative energy balance. However, data indicating an
action of ghrelin on plasma insulin levels are still controversial
(Castañeda et al., 2010; Sangiao-Alvarellos and Cordido, 2010).
Intravenous ghrelin injection leads to a decrease in plasma insulin
and an increase in blood glucose (Broglio et al., 2001). This result
is not found universally and it may be related to the physiological
vs. pharmacological doses used (Castañeda et al., 2010). Ghre-
lin could potentially decrease insulin secretion by altering insulin
sensitivity (Castañeda et al., 2010). This is in agreement with the
results obtained during insulin and glucose tolerance tests per-
formed in AN patients (Broglio et al., 2004a; Harada et al., 2008).
Moreover, under chronic food restriction, fatty acids are mobilized
and their oxidation could increase the production of octanoic acid,
thereafter used to octanoylate des-acyl ghrelin, leading to a global
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increase of plasma ghrelin levels. Thus, the greater levels of glucose
observed in ABA mice (Méquinion, personal data) or wild type
mice during the early phases of the chronic food restriction might
be driven by this increase in ghrelin. This might contribute to the
adaptive state in the first stages of AN,before a depletion of the sup-
ply of free fatty acids and induction of ketosis. Ghrelin acts directly
on the liver, to favor glycogenolysis but also on muscle and adipose
tissues. Indeed, subcutaneous injection of ghrelin in rats induces
an increase of hepatic triglycerides associated with an increase in
the gene expression of enzymes involved in lipogenesis like acetyl-
CoA carboxylase (ACC) and fatty acid synthase (FAS, Barazzoni
et al., 2005) as well as increased expression of ACC and FAS mRNA
in white visceral adipose tissue (Thompson et al., 2004; Barazzoni
et al., 2005). By contrast, subcutaneous ghrelin injection induces a
decrease of triglyceride content in muscle without modifying ACC
expression and AMPK phosphorylation (Barazzoni et al., 2005).
These effects are especially observed in the gastrocnemius muscle,
a fast-twitch muscle that is predominantly glycolytic. Similar vari-
ations are observed in the food-restricted condition (Samec et al.,
2002). Finally, Pardo et al. (2010) describe, in the ABA model,
a tissue-specific expression pattern of GHS-R1a receptors in vis-
ceral and subcutaneous fat and within the muscle. Indeed, the
oxidative-soleus type of muscle appears to be more susceptible to
circulating ghrelin levels than the glycolytic-gastrocnemius type
under exercise and food restriction situations. All of these modi-
fications could provide a defense mechanism to maintain energy
homeostasis in the unbalanced energy state that is found in AN
patients.

The central orexigenic effect of ghrelin
Appetite, food intake, and energy balance are finely tuned by
a complex intercommunication between neural networks and
peripheral tissues (Figure 2). Within the CNS, various hypo-
thalamic nuclei containing orexigenic and anorexigenic neurons
regulate the different facets of food intake. The ARC cells targeted
by ghrelin and its mimetics include the orexigenic neuropep-
tide Y (NPY) cells (Dickson and Luckman, 1997) that co-express
another orexigenic peptide, agouti-related peptide (AgRP). Fol-
lowing administration of ghrelin, these neurons are activated,
reflected by the induction of Fos-protein in discrete cell groups
(Hewson and Dickson, 2000; Wang et al., 2002), by increased
action potential firing (Cowley et al., 2003; Andrews et al., 2008)
and by an increased expression of NPY and AgRP mRNA (Kamegai
et al., 2000, 2001; Nakazato et al., 2001). Furthermore, the stimu-
latory effects of ghrelin on NPY/AgRP neurons are complemented
by a reduction of the ARC anorexigenic pro-opiomelanocortin
(POMC) neuronal activity via inhibitory GABA-ergic inputs from
NPY/AgRP neurons (Cowley et al., 2003). Interestingly, sensitivity
of the ARC cells to ghrelin appears to be nutritionally regulated as
the Fos response was increased up to threefold in fasting rats rela-
tive to fed animals (Hewson and Dickson, 2000) an effect that was
reversed once again upon refeeding (Luckman et al., 1999). Col-
lectively, these data indicate that ghrelin activates a key orexigenic
pathway in the hypothalamic ARC, the NPY/AgRP cells and that
this response is metabolically regulated. Consistent with this, stim-
ulation of hypothalamic GHS-R1a results in an anabolic response
characterized by an increase in food intake (Wren et al., 2000) and

a decrease in energy utilization (Tschöp et al., 2000). The feed-
ing effects ghrelin appear to require normal NPY/AgRP signaling
since ablation of NPY or AgRP neurons or the use of NPY recep-
tor antagonists abolish these effects (Chen et al., 2004; Luquet
et al., 2007). Conditional deletion of NPY/AgRP co-expressing
neurons in the ARC of adult mice (by targeting the human diph-
theria toxin to the AgRP locus) caused a rapid starvation to death
(Luquet et al., 2005). Moreover, mice homozygous for the anorexia
(anx) mutation, characterized by poor food intake and death by
3–5 weeks after birth (Maltais et al., 1984) display a lower den-
sity of hypothalamic neuropeptides. The data of Nilsson et al.
(2011) support the hypothesis of degeneration of hypothalamic
ARC neuron populations; the AgRP system appears to be the first
system affected and the POMC system being secondary in this
process. Finally, in our models of chronic food restriction (SBA
and ABA), we found an alteration of the AgRP signal with an
accumulation of this peptide in ARC neurons (Méquinion and
Nilsson, personal data). Thus, there are numerous lines of evi-
dence supporting the fact that in chronic food restriction (and
probably in AN), a dysregulation of the AgRP system occurs that
contributes to deficient ghrelin signaling at the level of the ARC.
Recent neuroimaging data obtained from AN patients differing
in disease duration showed a significant reduction of total white
matter volume and focal gray matter atrophy in various brain
areas such as the hypothalamus, especially in patients with shorter
food restriction. Collectively, these studies highlight the potential
role of endocrine and central (hypothalamic) dysfunction in the
altered homeostatic metabolic status in AN, as described in animal
models (Boghi et al., 2011).

At the hypothalamic level, ghrelin has also been reported to
act directly or indirectly on other nuclei linked to feeding control
such as theVMH, PVN, and LHA (López et al., 2008; Mano-Otagiri
et al., 2009; Lamont et al., 2012). Although not coupled to c-fos
expression, VMN cells exhibit a robust electrical response follow-
ing bath application of a ghrelin agonist (Hewson et al., 1999).
The elegant study of López et al. (2008) showed that, in fasted rats,
an elevated ghrelin tone was associated with an increased activa-
tion of hypothalamic AMPK and a decreased mRNA expression of
enzymes (like FAS) involved in the de novo fatty acid biosynthesis
only in the VMH. They concluded that the energy peripheral sig-
nals sensed to regulate fatty acid metabolism in the hypothalamus
and consequently the feeding behavior, may not be a nutrient, but
ghrelin through an action at the level of the VMH.

Ghrelin’s effects in the PVN are also likely linked to feeding
control as direct intra-PVN injection of ghrelin induces a robust
feeding response that is coupled to neuronal (c-fos) activation
(Olszewski et al., 2003). Consistent with this, a reduction of GHS-
R1a gene in the PVN using RNA interference in rats, significantly
reduced body weight and blood ghrelin levels without affecting
food intake (Shrestha et al., 2009). These data reflect a role for
ghrelin in the modulation of PVN neuron activity in that is linked
to energy homeostasis, but the mechanisms of action remains to
be elucidated.

In the LHA, ghrelin is thought to mediate hyperphagia through
orexin neurons. Indeed, central administration of ghrelin or a
ghrelin mimetic induces Fos expression in orexin-containing,
but not melanin-concentrating hormone-containing, neurons
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FIGURE 2 | Action of ghrelin in the brain. Ghrelin acts at different levels of
the brain to stimulate food intake via hypothalamus and meso-cortico-limbic
pathway. In the hypothalamus, ghrelin activates orexigenic neurons
(AgRP/NPY), which inhibit anorexigenic neurons (POMC/CART) via GABA
projections. They are connected to second order neurons like CRH and TRH
neurons located in the PVN and/or the orexin neurons found in the LHA.
POMC/CART neurons activate MCH neurons. Ghrelin acts also at different
levels of meso-cortico-limbic pathway: LDTg, VTA, and Acc. Ghrelin acts
directly on VTA to stimulate dopamine release in Acc. dopamine release is
controlled by cholinergic LDTg neurons. Ghrelin could also act on NTS to

stimulate the food intake via either vagal nerve or area postrema, see
Figure 4. Acc, accumbens nucleus; ACh, acétylcholine; AgRP, agouti-related
peptide; ARC, arcuate nucleus; CART, cocaine- and amphetamine-regulated
transcript; CRH, corticotropin-releasing hormone; DA, dopamine; DYN,
dynorphin; ENK, enkephalin; GABA, γ-aminobutyric acid; GHRH
growth-hormone-releasing hormone; GLU, glutamate; LDTg, laterodorsal
tegmental area; LHA, lateral hypothalamic area; MCH, melanin-concentrating
hormone; NPY, neuropeptide Y; NTS, nucleus tractus solitarius; POMC,
pro-opiomelanocortin; PVN, paraventricular nucleus; TRH, thyrotropin
releasing hormone; VMH, ventromedial nucleus; VTA, ventral tegmental area.

(Lawrence et al., 2002; Olszewski et al., 2003), and activates glucose
responding neurons (Chen et al., 2005a) in this area. Furthermore,
ghrelin-induced feeding is suppressed in orexin KO mice (Toshinai
et al., 2003). The role of orexin neurons to simulate feeding behav-
ior (appetite/metabolism) is now well established although they
are also especially important for sleep and wakefulness (España
and Scammell, 2011; Gao, 2012) and play important roles in the
stress response, in analgesia and reward/addiction (see Kukkonen,
2013). Moreover, ghrelin’s effects to increase the reward value of a
high-fat diet appear to involve a LHA-VTA orexin pathway (Perello
et al., 2010).

The action of ghrelin to increase food intake and associ-
ated appetitive behaviors involves an integrated neurobiological
response exerted at many levels,not only via the hypothalamus. For
example, structures located in the caudal brainstem also express
GHS-R1a. In particular, ghrelin receptors are found in all three
components of the dorsal vagal complex with a highest expression

within the area postrema, a moderately dense signal in the nucleus
of the solitary tract and a low density signal in the dorsal motor
nucleus of the vagus (Zigman et al., 2006). Peripheral injection of
ghrelin and, prior to its discover, ghrelin mimetics, induces c-Fos
induction in the nucleus of the solitary tract and area postrema
(Bailey et al., 2000; Lawrence et al., 2002). The effects of ghrelin
on food intake/behavior are similar when injected into the fourth
as for the third ventricle, in terms of the amount of food eaten,
the number of meals and meal size during the first few hours after
treatment (Faulconbridge et al., 2003). The effects of ghrelin in the
dorsal vagal complex might be more related to autonomic effects
such as on the cardiovascular system. However, since the hypo-
thalamus is strongly connected with the nucleus solitary tract,
we cannot exclude an indirect effect of the ghrelin to hypothala-
mic structures through an activation of brainstem areas, although
appears not to include a noradrenergic pathway (Bailey et al., 2000;
see infra).
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Ghrelin and the reward system
Besides the homeostatic ghrelin sensitive pathways, ghrelin also
appears to target mesolimbic circuits linked to reward. Hedonic
(non-homeostatic) brain pathways are also involved in feeding
control and are modulated by circulating energy balance signals
such as ghrelin, thereby influencing the evaluation of the pleasure
derived from the taste, smell, or texture of food. Many regions
of the corticolimbic and mesolimbic brain are thus involved in
learning, memory, emotion, and reward processing associated with
food. Among these complex feeding networks (for review, see
Van Vugt, 2010; Figure 3), the VTA-Acc (dopaminergic) path-
way plays a pivotal role in conferring reward from a wide range
of reinforcers, from chemical drugs of abuse to natural rewards

such as food (Nestler, 1996; Corwin et al., 2011). Using opto-
genetic techniques, Adamantidis et al. (2011) demonstrated that
phasic activation dopaminergic VTA neurons is associated with
reward-predicting cues and facilitates the development of positive
reinforcement during reward-seeking and behavioral flexibility.
As reviewed in Carr (2011), burst firing of VTA dopaminergic
neurons may operate as a “teaching signal.” For example, in the
case of food intake, when rats are presented with a highly palat-
able food for the first time, this triggers dopamine release in the
Acc (shell), whereas repeated exposure to the same palatable food
blunts the dopamine response despite avid consumption. Interest-
ingly, food restriction has been described to sustain the Acc (shell)
dopamine release in this model. Moreover, simply delivering cues

FIGURE 3 | Homeostatic brain vs. non-homeostatic (hedonic) brain.
Schematic representation of the potential interaction of homeostatic
hypothalamic and brainstem areas with non-homeostatic (hedonic) brain
structures to control food intake. The hedonic brain comprises mainly the
meso-cortico-limbic system, which includes the ventral tegmental area (VTA),
nucleus accumbens (Ac), prefrontal cortex (PFC), hippocampus (Hippo), and
amygdala (Amyg). Hormones from peripheral compartments like adipose

tissue, gastrointestinal tract or ovary reach these areas, directly or indirectly
to activate pathways controlling both energy balance (homeostatic brain) and
pleasure (hedonic brain) associated with eating (hunger level, palatability of
the food, past experiences, mood, level of stress). In anorexia nervosa
(restrictive type), a deregulation of one or more of these pathways as well as
the cross-talk between periphery and brain might be considered. Adapted
from Van Vugt (2010).
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linked previously to the food reward can be sufficient to reinstate
the Acc (shell) dopamine response, indicating transference of the
dopamine response from the reinforcer to the cue (for review,
see Volkov et al. (2011). Ghrelin has emerged as one important
modulator of the VTA-NAcc (dopaminergic) reward pathway (for
review, see Skibicka and Dickson, 2011). More than 50% of the
dopaminergic VTA neurons express GHS-R (Zigman et al., 2006),
although it is also expressed on other cell types in this area (Abizaid
et al., 2006). Whether administered peripherally, into the brain
ventricles or into the VTA, ghrelin administration triggers a robust
Acc dopamine response (Abizaid et al., 2006; Jerlhag et al., 2006,
2007) that is accompanied by an increased feeding response in
rodents (Naleid et al., 2005; Egecioglu et al., 2010) and an increase
in food-motivated behavior (Skibicka and Dickson, 2011; Skibicka
et al., 2012). Central ghrelin signaling, via GHS-R1A, appears to
be important not only for food reward (Egecioglu et al., 2010), but
also for the reward associated with artificial rewards like alcohol,
cocaine, and amphetamine (Wellman et al., 2005; Jerlhag et al.,
2009, 2010). As an example, the locomotor stimulating effect of
cocaine is decreased in ghrelin KO mice compared to their wild
type littermates (Abizaid et al., 2010). Furthermore, in rodents,
ghrelin elevates the motivation to obtain high-sugar or high-fat
reward (Perello et al., 2010; Skibicka and Dickson, 2011; Skibicka
et al., 2012). In particular, both peripheral and central injections
of ghrelin augment the food-motivated behavior of a satiated rat
to get sugar whereas blockade of ghrelin signaling reduces the
operant responding of an hungry rat to the level of a satiated rat
(Skibicka et al., 2012). These data strongly support the involve-
ment of ghrelin in behaviors related to food reward. Thereby one
can suggest that ghrelin could be considered as a key internal
cue, available during period of energy deficit to motivate ade-
quate food intake behavior (Skibicka and Dickson, 2011). These
data reinforce the now well-documented role of ghrelin in food
reward, considering that the shell region of the Acc is described to
process unpredicted rewards and motivational states to reinforce
food intake behaviors, but also use of drugs of abuse. However,
the action of circulating ghrelin upon GHS-R1A-expressing cells
in the VTA, located mostly on dopaminergic neurons, begs the
question of how this hormone reaches deep brain structures that
are far away from circumventricular organs (see infra). Finally, one
study shows that presence of food is necessary to induce dopamine
release (Kawahara et al., 2009). Chronic ghrelin treatment also
modifies the expression of dopaminergic receptors in Acc, more
specially D1 and D3 (Skibicka et al., 2012), which are described to
be involved in obesity, food reward (D1 receptors) and inhibition
of reward behavior (D3 receptors). Similar data were obtained
from human imaging studies that emphasize the role of ghrelin
in food reward. Indeed, intravenous ghrelin injection to human
subjects increases activity in brain areas involved in the evaluation
of the reward value attributed to food and food cues including the
striatum, amygdala, insula, and orbitofrontal cortex (Malik et al.,
2008).

Other functions
Almost 6000 articles have been published on ghrelin, since its
discovery in Kojima et al. (1999) and it is not surprising that
its biological effects extend beyond feeding and energy balance,

effects that may also be relevant for AN. These include peripheral
effects (e.g., gastric motility, bone homeostasis, cardiovascular sys-
tem, glucose homeostasis, reproduction, immune system) as well
as CNS effects (mood disorder, sleep disturbance).

There is now increasing evidence that ghrelin stimulates motor
activity in the gastrointestinal tract (gastric motility and empty-
ing). In fact, ghrelin shares high homology degree with motilin
(Kojima and Kangawa, 2005), a hormone released by endocrine
cells of duodenum and jejunum during fasting and which increases
gastric motility after feeding (Sanger, 2008). Ghrelin has been
described to use both central and local pathways to exert its effects
on the gut through receptors located on vagal afferents, in the
nodose ganglion and myenteric plexus. In fact in normal rodents,
central pathways are operational whereas after vagotomy, ghrelin is
able to exert effects via the myenteric plexus (see review of Peeters,
2003). Moreover, in mice, central administration of ghrelin accel-
erates gastric emptying (Asakawa et al., 2001) and changes the
excitability of neurons located in the PVN identified as receiving
ascending afferent signals from mechanoreceptors in the stomach
(Zhao et al., 2003). Clinically, it has been reported that the intra-
venous administration of ghrelin accelerates the rate of gastric
emptying and induces gastrointestinal contraction in healthy vol-
unteers (Fujitsuka et al., 2012). Since the plasma levels of ghrelin
are high in AN patients, one can hypothesize an alteration of the
signaling both at central and peripheral levels that may worsen the
outcome of the patients. These findings suggest that ghrelin could
provide a therapeutic target for disorders related to gastrointestinal
discomfort.

Surprisingly, ghrelin is also involved in sleep-wakefulness regu-
lation. Indeed, experiments conducted in adult male rats demon-
strate that repeated intravenously administrations of ghrelin stim-
ulate wakefulness, decrease slow-wave sleep, and reduce the dura-
tion of rapid eye movement sleep (Tolle et al., 2002). This action
could involve a reduction in the release of acetylcholine from the
dorsal tegmental nucleus (LDTg) on neurons expressing soma-
totropin release-inhibiting factor known to indirectly regulate the
rapid eye movement sleep periods (Tolle et al., 2002). In fact,
among the various neurochemical systems involved in wakefulness
(acetylcholine, norepinephrine, dopamine, serotonin, histamine),
the hypothalamic orexigenic neurons are crucial promoters of
wakefulness since deficiency in the orexin system leads to dis-
orders such as narcolepsy (Modirrousta et al., 2005). The status
of activity in orexin neurons is closely related with the nutritional
and behavioral state of animals. Moreover, Lamont et al. (2012)
observed that both GHS-R and ghrelin KO mice had fewer orexin-
immunoreactive cells than their wild type littermates. Their data
support the synergistic relationship between ghrelin and orexin
in the coordination of metabolism, reward and arousal to adopt
the adapted behavior for food seeking and restoration of energy
deficiency. In humans, AN patients exhibit sleep disorders. As an
example, AN adolescents have an increase in wakefulness after
sleep onset, a fragmentation of sleep as well as a reduction of
slow-wave sleep and slow-wave activity during their total sleep
time (Lauer and Krieg, 2004; Nobili et al., 2004). Even if deep-
ening of nocturnal sleep follows a partial weight restoration, the
neurobiological mechanisms linking starvation, mood disorders,
and sleep disturbance remain to be elucidated.
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The impact of ghrelin on anxiety behaviors remains contro-
versial: studies show an anxiolytic effect under caloric restric-
tion or after subcutaneous ghrelin injection (Lutter et al., 2008)
while anxiogenic effects are observed in others (acute) studies
with intracerebroventricular or intraperitoneal ghrelin injection
(Asakawa et al., 2001; see review Chuang and Zigman, 2010). Inter-
estingly, chronic central ghrelin treatment was found to increase
anxiety-like behavior in rats (Hansson et al., 2011). Recently, one
study investigating the amygdala as a target for ghrelin found that
acute ghrelin injection at this site elicits behaviors consist with
a reduction in anxiety-like behavior, but only in rats that were
not allowed access to food during the initial hour after injection.
It was concluded that ghrelin, acting at the level of the amygdala,
may provide an especially important signal to suppress anxiety-like
behaviors that would otherwise prohibit the animal from finding
food (Alvarez-Crespo et al., 2012). It is not yet known whether the
ghrelin system regulates anxiety behavior associated with AN. One
study found that a SNP in the preproghrelin gene was associated
with panic disorder in a small patient group (Hansson et al., 2011).

Among the disorders described in AN, osteopenia/osteoporosis
is also one major problem that cause long term outcomes with in
particular a strong increase of the bone fracture incidence (Lucas
et al., 1999). Ghrelin has and ghrelin mimetics have been shown to
increase bone mineral density (Svensson et al., 2000; Fukushima
et al., 2005; Delhanty et al., 2006) by a mechanism that appears
to include the promotion of both proliferation and differentia-
tion of osteoblasts (cells involved in bone formation), involving
GHS-R1a and GHS-R1b receptors (Fukushima et al., 2005; Del-
hanty et al., 2006). The etiopathogenesis of bone disease in AN
is complex and multifaceted. Indeed, the low bone mineral den-
sity (Legroux-Gerot et al., 2005, 2008; Legroux-Gérot et al., 2007;
Estour et al., 2010) is usually linked with alteration of multiple
factors (Tables 3–6) that are thought to contribute to the “uncou-
pling” of bone turnover, leading to increased bone resorption, and
decreased bone formation (see Howgate et al., 2013). However,
it has been demonstrated that ghrelin affects bone metabolism
by operating in an autocrine/paracrine mode, independent of the
GH/IGF-1 axis (see Nikolopoulos et al., 2010). Weight recovery is
associated with partial recovery of bone mineral density. There is
currently no approved effective therapy that completely reverses
the bone mineral density deficit. The most convincing results were
obtained with a treatment of recombinant human IGF-1 alone or
in combination with the oral contraceptive pills (see Misra and
Klibanski, 2011). The link between ghrelin and estrogen on bone
metabolism is always matter of debate even if it is established that
ghrelin suppresses pulsatile LH and FSH pulsatility (Meczekalski
et al., 2008; Kluge et al., 2012).

Another criterion used to characterize AN patients is amen-
orrhea. Indeed, in negative energy balance conditions like in AN,
the increase of plasma ghrelin is associated with decrease of LH
secretion (Table 6). Evidence is mounting that ghrelin may operate
as a pleitropic modulator of gonadal function and reproduction
(Tena-Sempere, 2008; Muccioli et al., 2011; Repaci et al., 2011).
Notably, most of the actions of ghrelin upon the reproductive
axis reported to date are inhibitory. Ghrelin can suppress not only
LH, but also FSH secretion in male and female rats (Fernández-
Fernández et al., 2005; Martini et al., 2006). Such effects are also

described in humans (Kluge et al., 2012). Centrally, ghrelin exerts
a predominant action directly at the level of the GnRH pulse gen-
erator by inhibiting directly GnRH release (Fernández-Fernández
et al., 2005; Muccioli et al., 2011) or by an indirect modulation of
other neuronal pathways. For example,Forbes et al. (2009) recently
showed the ability of ghrelin to decrease Kiss1 mRNA expression in
the medial preoptic area. Given the importance of the kisspeptin
system to control the reproductive axis, these data provide new
hypothesis for ghrelin-induced suppression of pulsatile LH secre-
tion. Once again, in the AN, ghrelin might dynamically mediate the
suppressive effect of energy deficit on the onset of puberty, gonadal
function, and fertility. Here, the effects of ghrelin on the gonadal
axis might protect females in a condition of strong energy insuffi-
ciency to develop a reproductive behavior that can be deleterious
for her and her progeny.

Finally, ghrelin is also involved in other physiological functions
that are more or less affected in AN like cardiovascular function
or immune system. Among the cardiovascular effects, this hor-
mone improves left ventricular contractility and cardiac output in
healthy humans (Enomoto et al., 2003; Tesauro et al., 2010) and
lowers blood pressure in mice concomitantly with a decrease in
sympathetic nerve activity that is not caused by a direct action on
blood vessels (Callaghan et al., 2012). In AN, the neuroendocrine
alterations are also accompanied by autonomic dysfunctions like
lower blood pressure values, lack of circadian variation of blood
pressure and bradycardia (Oswiecimska et al., 2007). Thus, ghre-
lin might participate in AN to the cardiovascular complications
observed in AN (Casiero and Frishman, 2006; Jáuregui-Garrido
and Jáuregui-Lobera, 2012), but no studies currently display any
correlation between these cardiovascular risks and the high plasma
levels of ghrelin.

The role of ghrelin on the immune system remains unclear.
However, Taub (2008) describes its implication in the regulation
of immune factors, by inhibiting inflammatory cytokine produc-
tion, more specifically in mediating anti-inflammatory effects on
IL-1, TNF-α, and IL-6 cytokine expression by T-cells and mononu-
clear cells via GHS-R, and promoting thymic function. In AN,
data related to the evaluation of circulating pro-inflammatory
or inflammatory cytokines or in adipocytes are still a matter of
debate and, as underlined by Nova and Marcos (2006), “contro-
versial findings have been published regarding some aspects of the
immune system that are otherwise impaired in more typical types
of malnutrition.”

Des-acyl ghrelin and obestatin: a controversial metabolic function?
Concerning des-acyl ghrelin, its role in food intake has been
much debated. The recent paper of Delhanty et al. (2012) gives
numerous arguments supporting des-acyl ghrelin as an hormone
that can be metabolically active, when co-administrated with acyl
ghrelin, by counteracting the effects of acyl ghrelin on insulin
secretion and glucose metabolism. Des-acyl ghrelin appears to be
increased in AN patients (Harada et al., 2008; Germain et al., 2009).
Kojima et al. (1999) showed that des-acyl ghrelin was not able to
bind to GHS-R1a. Although the des-acyl ghrelin receptor remains
unknown, the increasing data suggesting that des-acyl ghrelin is
a biologically active molecular, indicate that a dedicated receptor
may exist.
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Several studies show controversial effects of des-acyl ghrelin on
food intake that are either inhibitory (Asakawa et al., 2005; Chen
et al., 2005b) or stimulatory (Toshinai et al., 2006) in rodents.
These results can be due to the different methods used like the
type of injection, the dose used, the time of injection (light or dark
period), the nutritional status, fed, or fasted. However, the overex-
pression of des-acyl ghrelin in a transgenic mouse model results
in a small phenotype, associated with a reduction of food intake
and body fat mass, reduced IGF-1 plasma levels without significant
changes in circulating GH and also higher des-acyl ghrelin with no
change in total ghrelin plasma levels (Ariyasu et al., 2005). In these
mice, no significant differences have been noticed for glycemia and
insulinemia (Ariyasu et al., 2005; Asakawa et al., 2005) while stud-
ies other studies have shown that des-acyl ghrelin inhibits glucose
release in vivo and in vitro (Broglio et al., 2004b; Gauna et al., 2005;
Qader et al., 2008). Moreover, it appears that ghrelin and des-acyl
ghrelin do not have the same blood concentration in systemic and
in portal circulations suggesting that liver could be involved in
ghrelin regulation (Goodyear et al., 2010).

Concerning lipid metabolism, in vivo studies showed that des-
acyl ghrelin as well as ghrelin increase bone marrow adipogenesis
in rat shinbone (Thompson et al., 2004) and both forms enhance
lipid accumulation in visceral tissue in humans (Rodríguez et al.,
2009). The mechanisms involved remain unclear. Similarly, acute
or chronic des-acyl ghrelin injections in adult male rats cause an
inhibition of LH secretion like ghrelin (Martini et al., 2006). By
contrast, transgenic mice overexpressing des-acyl ghrelin do not
display any changes in LH and FSH levels (Ariyasu et al., 2005).

Des-acyl ghrelin may also have a role in gastric motility.
Indeed, intracerebroventricular or intravenous injections alter
motor activity in the antrum with a decrease of antrum activ-
ity only in fasted rats (Chen et al., 2005b). Mice overexpressing
des-acyl ghrelin exhibit a decrease in gastric emptying (Asakawa
et al., 2005). Other studies are necessary to understand the mecha-
nisms involved since vagotomy does not disrupt the (intravenous)
des-acyl ghrelin effect (Chen et al., 2005b).

Studies about the effects of des-acyl ghrelin on the cardiovas-
cular system are rare. Nevertheless, like acyl ghrelin, it promotes
bradycardia and hypotension (Tsubota et al., 2005). Moreover,
ghrelin and des-acyl ghrelin display vasodilator effect and no
inotropic effects when they are applied on human artery in vitro
(Kleinz et al., 2006).

Similarly, concerning obestatin, it remains again an open ques-
tion whether this peptide is a physiologically relevant peptide
to regulate energy homeostasis, food intake and gastric motility
(Gourcerol et al., 2007). Obestatin binds to GRP 39, a receptor of
the same subfamily than ghrelin receptor, to decrease food intake
and body weight in an opposite manner to ghrelin (Stengel et al.,
2009; Hassouna et al., 2010; Mokrosinski and Holst, 2010; Veldhuis
and Bowers, 2010). Subsequent studies failed to show activation of
this receptor and only few studies have reproduced the obestatin
effects under specific conditions. Such results should be inter-
preted with caution since variations are observed according to the
kits and conditions applied for obestatin assays (Hassouna et al.,
2010). Due to their potential functions, it should be interesting to
measure ghrelin/obestatin ratio to better understand their roles in
the alteration of energy balance. It seems that AN affects obestatin

blood levels with a lower ghrelin/obestatin ratio in AN patients
of restrictive type compared to constitutional thin women (Ger-
main et al., 2009, 2010). Moreover, other functions are attributed
to this hormone such as the inhibition of thirst, gastric motility,
cell survival, pancreatic hormone secretion, sleep, thermoregula-
tion, memory, and anxiety (Szentirmai et al., 2009; Hassouna et al.,
2010; Veldhuis and Bowers, 2010).

ACCESS OF GHRELIN TO ITS NEURONAL TARGETS
To dynamically report energy homeostasis alterations and ensure
an appropriate neuronal response, blood-borne ghrelin must
rapidly access the central nervous system. Intriguingly, the physio-
logical mechanisms controlling the access of ghrelin to its neuronal
target remain currently debated. Indeed, although a central ori-
gin of ghrelin has been described (Cowley et al., 2003), it is now
recognized that blood-derived ghrelin is able to target neuronal
networks within the central nervous system to regulate energy
homeostasis. However, it remains unclear how this key energy
status-signaling hormone can rapidly access sensory neurons to
alter feeding responses. Ghrelin mainly targets neurons located
in the ARC where different blood/brain interfaces have been
described. The blood–brain barrier is one such interface and one
of the best described in the hypothalamic nuclei as in all other
regions of the brain. The blood–brain barrier is located on brain
capillaries where endothelial cells are tightly apposed by contin-
uous tight junctions that prevent the free passage of molecules
through the paracellular pathway. For circulating factors to access
to the brain through the blood–brain barrier endothelium requires
transcellular transport. Many studies have investigated the trans-
port of circulating ghrelin across the blood–brain barrier. Banks
et al. (2002) demonstrated the existence of ghrelin saturable trans-
port system in mice from the brain to the blood but transport into
the brain was much less pronounced. Remarkably, human ghrelin,
which differs from mouse ghrelin by 2 amino acids, can be trans-
ported in both directions in mice. So, although receptor-mediated
transport of ghrelin cannot be excluded, uptake mechanisms of
this peptide remain unclear. Moreover, the efficiency of this blood–
brain barrier remains to be studied in a chronic caloric restriction
context. Improved CNS penetration during fating is one possible
mechanism to explain the threefold increase in the number of cells
expressing fos after peripheral ghrelin injection in fasted vs. fed rats
(Hewson and Dickson, 2000). The role of another blood/brain
interface that is materialized by fenestrated vessels is also to con-
sider. Indeed, these vessels are part of the blood-CSF barrier that
is mostly described in the median eminence, the circumventric-
ular organ adjacent to the ARC (Mullier et al., 2010). Median
eminence vasculature differs from typical brain vessels as they
harbor a fenestrated endothelium that lacks tight junction com-
plexes. These structural characteristics and the presence of various
blood-derived molecules in the median eminence and the other
circumventricular organs parenchyma suggest high permeability
of this specific vasculature (Broadwell et al., 1983; Ciofi, 2011;
Morita and Miyata, 2012). Permeable vasculature can be found
in the external part of the median eminence forming pituitary
portal capillary plexus that displays some long intrainfundibular
loops spreading into the median eminence parenchyma. Interest-
ingly, fenestrated vessels are also found within the ARC with a
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higher density into the ventromedial ARC where they are bor-
dered by NPY expressing neurons (Ciofi et al., 2009). These data
give support to the access of ghrelin from the circulation to the ven-
tromedial sensory neurons via median eminence/ARC fenestrated
vasculature (Figure 4).

The action of ghrelin on food intake may not be only due
to its action on hypothalamus. Indeed, an indirect role of ghre-
lin on hypothalamic structures through an activation of brain-
stem areas has been suggested. Indirect pathway may occur
through the binding of ghrelin to gastric vagal afferent neu-
rons (Date et al., 2002). However, the expression of GHS-R1a
within the dorsal vagal complex supports a direct action of

ghrelin to brain parenchyma. Among this complex, the area
postrema is a circumventricular organ that characteristically
present fenestrated vasculature. These vessels may be responsi-
ble for the diffusion of ghrelin and its delivery to the dorsal vagal
complex that communicates with hypothalamic control centers
(Figure 4).

Fenestrated vasculature could represent a direct vascular route
while allowing passive diffusion of peripheral molecules into the
hypothalamus and the area postrema. This route may be respon-
sible of acute regulation and complete chronic feedback accom-
plished by uptake of circulating molecules via receptor-mediated
transport across the blood–brain barrier.

FIGURE 4 | Access of ghrelin signal to its neuronal targets. This schema
summarizes the three hypothetic access routes of ghrelin toward its
neuronal targets (cf Figure 2). First, ghrelin would be able to target neuronal
networks thanks to specific transcellular transports at the level of
blood–brain barrier (BBB) located on brain capillaries (purple arrows). Most
ghrelin sensitive areas present blood–brain barrier vasculature and this route
represent the main one described in all regions of the brain. However
free-BBB regions, called the median eminence and the area postrema, are
recorded in the hypothalamus and the brainstem respectively. These areas
contain a rich fenestrated vasculature, which could represent a direct
vascular route while allowing passive diffusion of peripheral ghrelin (red
arrows). This route may be responsible of acute regulation and complete
chronic feedback accomplished by uptake of circulating molecules via

receptor-mediated transport across the blood–brain barrier. Finally, activation
of brainstem areas by ghrelin may occur without the entrance of ghrelin in
the brain, but through its binding to gastric vagal afferent neurons (orange).
Acc, accumbens nucleus; ACh, acétylcholine; AgRP, agouti-related peptide;
AP, area postrema; ARC, arcuate nucleus; CART, cocaine- and
amphetamine-regulated transcript; CRH, corticotropin-releasing hormone;
DA, dopamine; DYN, dynorphin; ENK, enkephalin; GABA, γ-aminobutyric
acid; GHRH, growth-hormone-releasing hormone; GLU, glutamate; LDTg,
laterodorsal tegmental area; LHA, lateral hypothalamic area; MCH,
melanin-concentrating hormone; ME, median eminence; NPY, neuropeptide
Y; NTS, nucleus of the solitary tract; POMC, pro-opiomelanocortin; PVN,
paraventricular nucleus; TRH, thyrotropin releasing hormone; VMH,
ventromedial nucleus; VTA, ventral tegmental area.
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The transport of ghrelin through the blood/brain interfaces has
been poorly investigated in metabolic disorders excepted in obesity
where few data are available. Banks et al. (2008) showed an inverse
relation between body weight and ghrelin access to the brain sug-
gesting that physiological states influence the rate at which ghrelin
is transported across the blood/brain interfaces. A better under-
standing of the access of ghrelin to its neuronal target may leads
to novel therapeutic interventions.

CONCLUSION: GHRELIN AS A POTENTIAL TREATMENT FOR
ANOREXIA NERVOSA
In restrictive AN, the high plasma levels of ghrelin, even adaptive
in view of its main role in meal initiation, let us to hypothesize
a potential insensitivity to this endocrine signal both peripher-
ally and centrally in association with this disease. It should be also
mentioned that AN patients often cannot increase their food intake
not only because of fear of obesity, but also because of chronic or
recurrent abdominal discomfort, fullness, and chronic constipa-
tion, functions in which efficient ghrelin participation is required.
Injections of exogenous ghrelin have been shown to increase the
adiposity and to stimulate appetite in healthy individuals and can-
cer patients (Peino et al., 2000; Wren et al., 2001a; Neary et al.,
2004).

For AN patients, only a few preliminary studies have been per-
formed to examine the effects of ghrelin administration (Miljic
et al., 2006; Hotta et al., 2009; Ogiso et al., 2011). In these clin-
ical studies, the mode of administration was different leading to
different outcomes. In the study of Miljic et al. (2006), a single-
dose continuous administration of ghrelin for 5 h failed to affect
appetite in all AN patients treated. Hotta et al. (2009) report that
intravenous administration of ghrelin in anorectic patients twice
a day for 14 days improves epigastric discomfort or constipation
and increases the hunger score, which is related to gastric emp-
tying. An increase of the body weight was obtained, from 1.5 to
2.4 kg, and daily energy intake during ghrelin infusion increased
by 12–36% compared with the pretreatment period. Nutritional
parameters such as total protein and triglyceride levels improved.
These findings suggest that ghrelin may have therapeutic potentials
in AN patients who cannot gain weight because of gastrointestinal
dysfunction. Further studies are need to elucidate the potential
impact of ghrelin by itself or agonists to ameliorate the outcomes
of the AN patients.

In animals, several attempts have been made (see the other
chapter submitted by Hassouna et al. “Actions of agonists and
antagonists of the ghrelin/GHS-R pathway on GH secretion,
appetite, and c-Fos activity”). Recently, Costantini et al. (2011)
detailed an unexpected effect of GSK1614343, a novel ghre-
lin receptor antagonist with no partial agonist properties, that

induced both in rats and dogs an increase of food intake, body
weight, and reduced the POMC mRNA levels in the hypothala-
mus of rats chronically treated with the compound. Although it
may seem counterintuitive to consider the use of ghrelin antag-
onists in this disease area, one study in rodents suggested that
suppressed ghrelin signaling reduces (food anticipatory) hyper-
locomotor activity in the ABA model (Verhagen et al., 2011).
Barnett et al. (2010) demonstrated that the administration of a
GOAT inhibitor improved glucose tolerance and decreased weight
gain in wild type mice but not in ghrelin KO mice. Such treatment
also led to decreased serum levels of acyl ghrelin without any effect
on serum levels of des-acyl ghrelin. Even if this GOAT inhibitor
might be expected to pave the way for clinical targeting of GOAT
in metabolic diseases such as obesity and diabetes mellitus, one
can suggest that, a GOAT activator, which has not been reported
yet, may be a potential new treatment of AN if it improves food
intake and body weight gain in patients with AN.

Finally, in the future it will be possible to assess more precisely
the exact contribution of ghrelin, des-acyl ghrelin, and obestatin
in the evolution of the AN both in humans and adequate animal
models (Cardona Cano et al., 2012). The roles played by these
peptides in feeding behavior, adaptation to starvation, reward
mechanisms, emotional behavior, and stress responses in animals
and humans led them to be potential therapeutic targets for AN
treatments. The way and the mode of administration remain to
be further determined and clarified. Neuroimaging studies have
reported reduced brain volumes affecting both ventral and dorsal
neural circuit dysfunctions in AN patients, with altered metab-
olisms of serotonin and dopamine that are closely associated to
ghrelin, contributing to their puzzling symptoms (Kaye et al.,
2009; Brooks et al., 2011). It will be important to determine
whether the ghrelin signal reaches its central targets leading, as
it is observed for leptin in obesity, to a « ghrelin-resistance »or a
« transient ghrelin-insensitivity ». More investigations are needed
to better suppress the neuronal activity of ghrelin signaling and
to identify the specific pathways that may underlie the deleteri-
ous behaviors in patients suffering from AN. Investigation of the
ghrelin peptide system will open up a new window of research
for tackling psychosomatic disorders beyond the gastrointestinal
tract, particularly restrictive AN and obesity/metabolic syndrome,
two disorders at the extreme of the body weight continuum.
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