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Objectives.The pathophysiology of preeclampsia is characterized by abnormal placentation, an exaggerated inflammatory response,
and generalized dysfunction of the maternal endothelium. We investigated the effects of preeclampsia serum on the expression of
inflammation-related genes by adipose tissue.Materials and Methods. Visceral adipose tissue was obtained from the omentum of
patients with early ovarian cancer without metastasis. Adipose tissue was incubated with sera obtained from either five women
affected with severe preeclampsia or five women from control pregnant women at 37∘C in a humidified incubator at 5% CO

2

for
24 hours. 370 genes in total mRNA were analyzed with quantitative RT-PCR (Inflammatory Response & Autoimmunity gene set).
Results. Gene expression analysis revealed changes in the expression levels of 30 genes in adipose tissue treated with preeclampsia
sera. Some genes are related to immune response, oxidative stress, insulin resistance, and adipogenesis, which plays a central role in
excessive systemic inflammatory response of preeclampsia. In contrast, other genes have shown beneficial effects in the regulation of
Th2 predominance, antioxidative stress, and insulin sensitivity. Conclusion. In conclusion, visceral adipose tissue offers protection
against inflammation, oxidative insults, and other forms of cellular stress that are central to the pathogenesis of preeclampsia.

1. Introduction

Preeclampsia is the leading cause of pregnancy-associated
maternal and perinatal mortality and morbidity worldwide.
This disorder affects approximately 5% of all pregnancies.
Several mechanisms have been proposed in preeclamp-
sia, including (1) genetics and epigenetic imprinting; (2)
increased uteroplacental ischemia/hypoxia; (3) angiogenic
imbalances characterized by an excess of antiangiogenic
factors; (4) increased trophoblast apoptosis/necrosis; (5) an
exaggerated maternal inflammatory response to injured tro-
phoblast cells; and (6) immune maladaptation [1]. Shallow
trophoblast invasion and inadequate artery remodeling early
in pregnancy may underlie subsequent placental hypoperfu-
sion, hypoxia, or ischemia, which are critical components in
the pathogenesis of preeclampsia [2]. Maternal responses are
associatedwith release of placenta-derived circulating antian-
giogenic molecules such as soluble fms-like tyrosine kinase 1
(sFlt-1 or the soluble VEGF receptor-1), soluble endoglin

(sEng), the angiotensin II type-1 receptor autoantibody (AT1-
AA), and proinflammatory cytokines such as tumor necrosis
factor- (TNF-) alpha and interleukin- (IL-) 6 [3]. The loss of
endothelial control of vascular development by these factors
in turn acts in concert to cause hypertension and decrease
renal function during pregnancy [3]. Placenta-derived cir-
culating factors could also stimulate proinflammatory cells
to produce cytokines and chemokines, including IL-1beta,
IL-2, IL-10, IL-12, IL-13, IL-18, granulocyte-colony stimu-
lating factor (G-CSF), interferon- (IFN-) gamma, mono-
cyte chemoattractant protein-1 (MCP-1), and TNF-alpha,
demonstrating that preeclampsia is associated with an overall
proinflammatory systemic environment [4–6]. Although a
normal pregnancy enhances a state of the T helper 2 (Th2)
type anti-inflammatory responses, preeclampsia exhibits a
shift towards Th1 [4, 7] andTh17 [8] type immunity.

The discovery of biologically functional numerous proin-
flammatory, anti-inflammatory, and immunomodulating
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Table 1: Characteristics of the study population of the sera.

Normal pregnancy Preeclampsia
𝑛 5 5
Maternal age at sampling (years) 31.8 ± 2.1 31.5 ± 2.9
Gestational age at sampling (weeks+days, range) 28+0 (27+1–28+4) 29+1 (26+5–31+3)
BMI at sampling (kg/m2) 24.1 ± 1.6 23.5 ± 0.5
BMI before pregnancy (kg/m2) 22.7 ± 2.3 20.6 ± 0.4
Blood pressure (mm/Hg)

Systolic 121.2 ± 1.9 182.8 ± 5.7∗

Diastolic 67.8 ± 1.9 117.2 ± 3.4∗

MAP 85.6 ± 1.7 139.1 ± 3.9∗

BMI: body mass index; MAP: mean arterial pressure. All patients in preeclampsia group showed urine protein over 2 g/day. Data has shown as mean ± S.E.M.
unless indicated.
∗

𝑃 < 0.05 versus normal pregnancy.

proteins, cytokines, and chemokines in adipocytes empha-
sizes the role of the adipose tissue as a highly active
immune response, endocrine and metabolically important
organ that modulates energy expenditure, insulin resistance,
and glucose homeostasis [9, 10]. Adipose tissue is capable of
contributing to this inflammation by its production of inflam-
matorymediators, which appears to be a key step in the devel-
opment of the preeclampsia-associated inflammatory state.

Here, we aim to investigate whether preeclampsia sera
could modulate the inflammatory and adipogenic activities
in visceral adipose tissue, using new method of the tissue
culture. Our data suggest a revised paradigm for restoring
host defense and preventing inflammatory sequelae in adi-
pose tissue in women affected with preeclampsia.

2. Materials and Methods

2.1. Sample Collection. The study was approved by the Local
Ethics Committee at Nara Medical University, and all par-
ticipants provided written informed consent. Visceral fat
(omentum) was taken from two women at reproductive age
(36 years old and 40 years old) who underwent prophylactic
omentectomy on ovarian cancer operation. No metastasis
of cancer or inflammation was confirmed with pathological
search. The tissue was immediately suspended in cold sterile
saline, transported to the laboratory, washed several times in
sterile phosphate buffered saline to remove excess blood, and
dissected to twenty pieces of approximately 1.5 g.

Next, we included severe preeclampsia (PE) patients of
with a prepregnancy body mass index (BMI) before preg-
nancy was under less than 25 kg/m2 with gestational age-
matched normal pregnant women at 28 weeks gestation or
later. All subjects of them were Eastern Asian origin, and
none of the subjects were taking any medication or showed
evidence of any metabolic disease or other complications
beside PE. Severe PE was defined as new onset and diag-
nosed based on two consecutive measurements of diastolic
and systolic blood pressure measurements, diastolic blood
pressure greater than or equal to 110mmHg, or systolic blood
pressure ≥160mmHg, respectively, with urine protein over
2 g/day, occurring diagnosed after 20 weeks of gestation [11].

All subjects had provided serum samples available for anal-
ysis and did not have gestational diabetes mellitus, thy-
roid malfunction, or other complications. Briefly, 5 women
with severe preeclampsia with BMI ranging from 22.6 to
25.2 kg/m2 at test and 5 age- and BMI-matched control preg-
nant women were recruited.

Characteristics of the subjects serum taken were shown
in Table 1.

2.2. Whole Adipose Tissue Culture. In this study, we estab-
lished new method for bottom culture of whole adipose
tissue, not only adipocyte but other cells and connective
tissue as well. Dissected visceral fat was captured immedi-
ately on the bottom of the 24 well plastic plate (Becton,
Dickinson & Co., Franklin Lakes, NJ) with 99.5% medium-
containing hydrogel (PuraMatrix, Becton, Dickinson & Co.)
after provider’s manual. After enough fiber construction,
culture medium (Eagle’s minimal essential medium, Sigma-
AldrichCo., St. Louis,MO)without any serumwas added and
changed for three times to adjustmedium’s pHas homeostatic
range. The tissue was starved for 12 hours until next process.

Next day, serum from PE or healthy pregnant subjects
(𝑛 = 5 each) was added in 1 : 10 order in the wells in
duplicate. The human serum concentrations in the medium
were decided from former report for bovine serum concen-
trations in the culture medium treating mice adipose tissue
and separated cells [12]. After 24 hours of culture under
incubator of 37∘C/21% O

2
/5% CO

2
condition, medium and

the tissue were collected. All adipose tissues are stock-frozen
immediately with liquid nitrogen until mRNA extraction.

2.3. mRNA Extraction and Profiler Array. Total mRNA from
visceral fat was extracted at Genetic Lab Co., Ltd. (Sapporo,
Japan).The purity of mRNAwas confirmed with OD260/280
(range: 2.07–2.11) andRNA IntegrityNumber (range: 7.5–8.3).
And then, 370 genes in totalmRNAwere analyzedwith quan-
titative RT-PCR (Inflammatory Response & Autoimmunity
gene set, RT2 Profiler PCR Array, Qiagen Inc., Germany).

2.4. Statistical Analysis. Results of the quantitative RT-PCR
were shown as fold change on PE serum-added adipose tissue
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Figure 1: Genes identified with altered expression in adipose tissues treated with preeclampsia sera. Thirty genes showed alteration at least
2-fold or statistical significance (𝑃 < 0.05, unpaired 𝑡-test). Black diamond shows mean and open bars show 95% CI of respective genes.

against normal serum added tissue after being normalized
with internal control gene (beta-2-microglobulin (B2M),
hypoxanthine phosphoribosyltransferase 1 (HPRT1), ribo-
somal protein L13a (RPL13A), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), actin, beta (ACTB)) expression.
The criteria for selecting differentially expressed genes were
preset as at least 2-fold difference in either direction or
genes with statistical significance (𝑃 < 0.05, unpaired 𝑡-
test). Statistical calculations were performed using SPSS 15.0J
(SPSS Japan Inc., Japan) on each gene with Student’s 𝑡-test
comparing PE and the normal (𝑛 = 5 each), with 𝑃 < 0.05
indicating a statistically significant difference.

3. Results

3.1. Identification and Functional Classification of Differen-
tially Expressed Genes. Thirty genes were identified with
altered expression of at least 2-fold or statistical significance
(𝑃 < 0.05, unpaired 𝑡 test) in adipose tissues treated with
preeclampsia sera (Figure 1, Table 2). Among these genes,
the greatest up- or downregulation was observed in genes
involved in immune response, oxidative stress, and insulin
and lipid metabolism, any of which may contribute to the
molecular mechanisms underlying insulin resistance and
adipogenesis in preeclampsia (Table 3). Our results show that
exposure of preeclampsia sera increased or decreased the
expression of several genes and affected the functional path-
ways, including (1) energy balance, obesity, lipid metabolism,
and adipogenesis, (2) insulin resistance and glucose toler-
ance, (3) host defense, redox balance, detoxification, and
oxidative stress, and (4) inflammation, immune response,
and Th1/Th2 type cytokine balance. See Supplementary data

in Supplementary Material available online at http://dx.doi
.org/10.1155/2015/325932.

3.2. Genes Involved in Immune Response. Microarray analy-
sis identified 11 upregulated and 2 downregulated immune
response-related genes in preeclampsia sera-stimulated adi-
pose tissue. Interestingly,Th1/Th2 type cytokine and immune
responsive genes were significantly regulated. RT-qPCR con-
firmed changes in expression of Th1 type cytokine-related
genes (IL18, CXCL10, and IK) and Th2 type cytokine-related
genes (BCL6, CCL28, LTB4R, and IL27), with Th2/Th1 pre-
dominance. Differential expression of Th17-related cytokine
(IL36G) and other immune responsive genes (MEFV, PPBP,
CCL23, SIGLEC1, and CD97) was also confirmed by RT-
qPCR and independently validated.

3.3. Genes Involved in Oxidative Stress. Oxidative stress sig-
naling genes were also differentially expressed. Among oxi-
dative stress-related genes, 7 genes (PRDX5, MIF, CD74,
NFE2L1, CSF3R, TLR4, and TLR9) were induced while no
genes were suppressed. RT-qPCR confirmed aberrant expres-
sion of genes involved in inflammation and stress response
(TLR4 and TLR9) and also genes involved in host defense
(PRDX5, MIF, CD74, NFE2L1, and CSF3R), suggesting that
preeclampsia sera suppress the TLR4/9-dependent excess
oxidative stress in adipose tissue.

3.4. Genes Involved in Glucose and Lipid Metabolism. Our
results indicated that 6 upregulated genes (IFNGR2, NFX1,
IL10RA, SDCBP, EPOR, and CSF2RA) and 4 downregulated
genes (TLR3, FOS, PRL, and OSM) were involved in glucose
and lipid biosynthesis (Table 3). The amount of insulin
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Table 2: Genes identified with altered expression in adipose tissues
treated with preeclampsia sera.

Symbol Fold change 95% CI 𝑃-value
TLR3 0.348 (0.06, 0.64) 0.016
OSM 0.353 (0.00001, 0.79) 0.019
IK 0.372 (0.00001, 1.09) 0.347
FOS 0.400 (0.00001, 1.31) 0.819
PRLR 0.461 (0.00001, 0.96) 0.318
CD97 0.814 (0.70, 0.93) 0.021
PRDX5 1.143 (1.02, 1.27) 0.041
MIF 1.202 (1.02, 1.38) 0.045
IFNGR2 1.225 (1.10, 1.35) 0.004
SDCBP 1.244 (1.01, 1.48) 0.043
NFX1 1.251 (1.07, 1.43) 0.016
CD74 1.258 (1.09, 1.43) 0.011
IL10RA 1.279 (1.12, 1.44) 0.007
BCL6 1.315 (1.00, 1.63) 0.049
CCL28 1.358 (1.00, 1.72) 0.049
NFE2L1 1.360 (1.17, 1.55) 0.003
EPOR 1.362 (1.04, 1.69) 0.042
LTB4R 1.382 (1.13, 1.63) 0.009
CSF3R 1.412 (1.12, 1.70) 0.013
TLR4 1.441 (1.19, 1.70) 0.004
CSF2RA 1.740 (1.26, 2.22) 0.005
IL18 1.961 (0.95, 2.97) 0.038
IL36G 2.064 (0.36, 3.76) 0.118
IL37 2.084 (0.00001, 4.50) 0.208
MEFV 2.134 (0.00001, 4.68) 0.275
PPBP 2.163 (0.81, 3.52) 0.087
CCL23 2.249 (0.29, 4.21) 0.139
CXCL10 2.447 (0.04, 4.85) 0.130
TLR9 3.076 (0.06, 6.09) 0.062
SIGLEC1 3.352 (0.00001, 6.98) 0.088
Thirty genes showed alteration at least 2-fold or statistical significance (𝑃 <
0.05, unpaired 𝑡-test).

resistance genes (IFNGR2 and NFX1) may correlate with the
preeclampsia syndrome, which is regarded as a key feature of
preeclampsia genesis. In contrast, four genes such as IL10RA,
TLR3, FOS, and PRL demonstrate strong inverse correlations
with insulin resistance.

We also identified four genes associated with adipoge-
nesis, indicating that the SDCBP and OSM genes stimulate
adipogenesis, while EPOR and CSF2RA significantly reduce
it. Adipose tissue produced several genes in the homeostasis
of glucose and lipid metabolism as well as adipogenesis.

On the one hand, preeclampsia sera expectedly enhance
inflammatory activities, including immune response, oxida-
tive stress, insulin resistance, and adipogenesis, in adipose tis-
sue. On the other hand, they can also suppress inflammation
through upregulation ofTh2 cytokine predominance, antiox-
idative stress, and insulin sensitivity. These data collectively
support that visceral fat in women affected with preeclampsia

Table 3:Genes differentially expressed in adipose tissue treatedwith
nonobese preeclampsia sera (𝑛 = 5) versus matched control sera
(𝑛 = 5).

Functional categories Genes Reference
Immune response

Th2 predominance

BCL6 [30–32]
CCL28 [33]
LTB4R [34–37]
IL37 [38]

Th1 predominance
IL18 [7, 39–43]

CXCL10 [44–47]
IK [9, 48]

Th17 predominance IL36G [49]

Others

MEFV [50]
PPBP [51, 52]
CCL23 [53–55]
SIGLEC1 [56]
CD97 [57]

Oxidative stress

Host defense

PRDX5 [58–64]
MIF [65–73]
CD74 [74–76]
NFE2L1 [77, 78]
CSF3R [5, 79, 80]

Stress response TLR4 [6, 16, 17, 28, 81–85]
TLR9 [18, 19, 86, 87]

Insulin resistance

Insulin sensitivity

IL10RA [88, 89]
TLR3 [89–94]
FOS [95, 96]
PRL [97]

Insulin resistance IFNGR2 [98, 99]
NFX1 [100]

Adipogenesis

Stimulation SDCBP [101–104]
OSM [25, 26, 105–107]

Reduction EPOR [21–23, 108]
CSF2RA [24, 109]

Microarray analyses indicated that 24 upregulated genes and 6 downreg-
ulated genes in preeclampsia sera-treated adipose tissue were involved in
immune response, oxidative stress, insulin resistance, and lipid metabolism.
Gene expression was confirmed by RT-qPCR and independently validated.

might promote and strongly suppress the inflammatory and
adipogenic activities.

4. Discussion

Preeclampsia is strongly associated with abnormal placen-
tation characterized by shallow trophoblast invasion and
incomplete spiral artery remodeling, which causes elevated
amounts of proinflammatory cytokines, chemokines, adhe-
sion molecules, and growth factors [4]. Chronic inflam-
mation and endothelial injury might play a central role in
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the pathogenesis of preeclampsia, but the underlying patho-
physiology is still unclear. We demonstrate significant dif-
ferences in gene expression of adipose tissue treated with
sera from nonobese preeclampsia patients and age- and BMI-
matched controls. Adipose tissue might be contributing to
modulation of the potential functional genes for inflamma-
tion and immune response (Th1/Th2 predominance), oxida-
tive stress, insulin resistance, and adipogenesis (Table 3). The
altered gene products in adipose tissue lead to suppression
of preeclampsia-associated inflammation which in turn is
responsible for excessive production of Th2 type cytokines
and host defense molecules, as well as modulation of adipo-
genesis and insulin resistance.

These data allow us to hypothesize that when chronic
inflammation is consistently present, anti-inflammation
remains active in adipose tissue. In an early event of placental
dysfunction, newly synthesized inflammatory cytokines and
chemokines drive association of inflammation and oxidative
stress, leading to insulin resistance and adipogenesis. The
second wave of preeclampsia supports sustained expression
of a subset of inhibition of oxidative stress, insulin resistance,
and adipogenesis in adipose tissue, several of which play
important roles in preeclampsia. This study reveals new
aspects of preeclampsia and adipocyte biology.

Firstly, RT-qPCR data demonstrated significant differ-
ences in immune response gene expression. These genes are
immunomodulators induced under stressful or pathological
conditions such as preeclampsia. Pregnancy is associated
with Th2 type cytokine predominance or downregulation of
the Th1 response, which is more pronounced at the maternal
fetal interface [13].Th1 cells produce an array of proinflamma-
tory cytokines including IFN-gamma, IL-2, and TNF-alpha.
Th2 cells produce IL-4, IL-5, and IL-10.Themajority of publi-
cations report on aberrantTh1/Th2 balance and upregulation
of the Th17 immune response in preeclampsia [14]. We for
the first time confirmed that preeclampsia sera could induce
changes of Th1/Th2 cytokine balance with a predominance
of Th2 immunity in adipose tissue, suggesting the role of
immunological mechanisms engaged in preeclampsia. After
the establishment of preeclampsia, predominance might be
shifted fromTh1 cells to Th2 cells in adipose tissue.

Secondly, altered expression was observed in several
defense and stress response genes associated with oxidative
stress, which is involved in regulating host defense. It appears
that preeclampsia is a disease of exaggerated innate immu-
nity that may be mediated by Toll-like receptors (TLRs).
Previous studies have also identified immune-system alter-
ations associated with the origin of preeclampsia as well as
genetic associations between TLRs and preeclampsia: TLR2
and TLR4 SNPs appear to alter susceptibility to developing
preeclampsia [15]. This study showed that preeclampsia sera
stimulate expression of TLR4 and TLR9 in adipose tissue.
TLR4 generates local and systemic inflammatory and oxida-
tive stress responses in preeclampsia [16]. Oxidative stress
can in turn induce and maintain inflammatory responses
mainly through a TLR4-dependent nuclear factor- (NF-)
kappaB pathway [17]. Exaggerated placental cell injury and
death result in the release of mitochondrial DNA, which
activates TLR9 to produce systemic maternal inflammation

from adipocytes, and subsequent vascular dysfunction that
may in turn lead to preeclampsia [18]. TLR9 and IFN-gamma
were located in differentiated and mature adipocytes [19].
The TLR4 and TLR9 activation in adipose tissue may worsen
the situation of patients with preeclampsia. In contrast, we
identified increased expression levels of 5 genes such as
PRDX5, MIF, CD74, NFE2L1, and CSF3R, which play an
essential role in the host immune response or the host defense
against several pathogens or oxidative stress. It is possible
that increased expression of these genes in adipose tissue
could strengthen host defense by protecting host cells from
oxidative insults.

Thirdly, genes involved in insulin resistance are differen-
tially expressed in adipose tissue stimulated with preeclamp-
sia sera. It has been established thatwomenwith preeclampsia
have an increased risk of developing diabetes [20]. Although
insulin resistance is a key pathophysiology of preeclampsia,
the mechanisms remain unclear. Our data demonstrated
significant increases in the expression levels of several lipid
metabolism-related genes, including IFNGR2 and NFX1,
which modulate lipid metabolism to promote insulin resis-
tance. In contrast, we identified decreased expression of
selected genes involved in insulin resistance in adipose
tissue, including TLR3, FOS, and PRL, which could induce
insulin sensitivity. IL10RA is also negatively involved in
insulin resistance. Thus, preeclampsia sera might contribute
to insulin sensitivity by positive and negative regulation of the
expression of diverse genes.

Finally, adipose tissue is a highly active endocrine and
metabolically important organ, with the ability to modulate
glucose homeostasis, energy expenditure, lipid metabolism,
andperipheral inflammation.Our results identified increased
expression of selected genes involved in lipid metabolism,
including SDCBP, EPOR, and CSF2RA. Increased expression
of SDCBP in adipocytes likely contributes to adipogenesis,
whereas EPOR and CSF2RA are negatively involved in
adipogenesis [21–23]. EPOR regulates energy homeostasis
and mitigates adipogenesis via the metabolism coregulators
peroxisome proliferator-activated receptor alpha (PPARal-
pha) and sirtuin 1 (Sirt1) [21–23]. Furthermore, CSF2RA is a
receptor for CRF2, also known asGM-CSF, which is related to
a central action to reduce food intake and body weight, since
knockout mice are more obese and hyperphagic than wild-
type mice [24]. OSM inhibits the terminal differentiation
of adipocytes through the Ras/extracellular signal-regulated
kinase (ERK) and signal transducer and activator of tran-
scription (STAT) 5 signaling pathways [25, 26]. Preeclampsia
sera inhibited the OSM gene expression in adipose tissue.
Therefore, preeclampsia sera could relieve insulin resistance
and adipogenesis in adipose tissue.

Over the last decade preeclampsia biology revealed that
the early molecular changes affect inflammation, immune
response, angiogenesis, oxidative stress, matrix remodeling,
and lipid biosynthesis [27]. The TLR signaling pathway
induces inflammation, which in turn modulates insulin
resistance and adipogenesis [28, 29]. Inflammation, oxidative
stress, insulin resistance, and adipogenesis, secondary to the
influx of proinflammatory cytokines and chemokines during
placental dysfunction, are involved in the progression of
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preeclampsia. Preeclampsia serum priming in adipose tissue
leads to enhanced Th1 inflammation, oxidative stress, and
insulin resistance, and simultaneously antiadipogenic induc-
tionmay result in enhanced expression ofTh2predominance,
antioxidative stress, and insulin sensitivity.

This study limits the ability to ascribe causality to the
association between adipocytes and their gene expression.
Adipose tissue used in this study contains adipocytes, macro-
phages, T lymphocytes, other immune cells, vasculature, and
stromal cells. Further study will be conducted to confirm
the anti-inflammatory effects of preeclampsia serum and to
elucidate its mechanism of action in adipocytes in culture.

In conclusion, this study supports the hypothesis that
there are at least two distinct phases of preeclampsia devel-
opment: the initial wave of inflammatory activation in mod-
ulating immune response, oxidative stress, insulin resistance,
and adipogenesis would be followed by the second big wave
of anti-inflammation in adipose tissue. Finally, adipose tissue
may have an ability to suppress inflammation, immune
response, oxidative stress, and metabolic signals to protect
host from excessive inflammation.

5. Conclusions

The primary event in the molecular sequence leading to
chronic inflammation is placental dysfunction in preeclamp-
sia. Increased inflammation likely contributes to adipokine
dysregulation, adipogenesis, and insulin resistance in adipose
tissue. This initial wave of the systemic inflammation would
be followed by the second big wave of subsequent production
of anti-inflammatorymediators by adipose tissue, which then
suppresses oxidative stress, insulin resistance, and metabolic
dysfunction. Adipose tissue may protect host from excessive
inflammation in preeclampsia.
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