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Simple Summary: Low oxygen tension (hypoxia) caused by high demand of cancer cell prolif-
eration or standard of care therapy is a prevalent feature of solid tumors and is often associated
with malignancy. The hypoxia-inducible transcription factor (HIF) family is the critical mediator
driving the hypoxia signaling. HIF activity has diverse effects in tumor cells and on tumor stroma,
including tumor vasculature, extracellular matrix, fibroblasts and immune cells. In this review, we
focus on the effects of HIF in tumor stromal components and discuss essential functions of HIF
regulating angiogenesis, collagen deposition and anti-tumor immunity. We also provide a brief
overview of the current state of clinical studies targeting tumor hypoxia and provide insights on the
limitation of hypoxia-targeted therapies. We believe, with comprehensive knowledge of hypoxia in
the tumor microenvironment, challenges of hypoxia-targeted therapies might be better understood
and addressed.

Abstract: Hypoxia is a well-known characteristic of solid tumors that contributes to tumor pro-
gression and metastasis. Oxygen deprivation due to high demand of proliferating cancer cells and
standard of care therapies induce hypoxia. Hypoxia signaling, mainly mediated by the hypoxia-
inducible transcription factor (HIF) family, results in tumor cell migration, proliferation, metabolic
changes, and resistance to therapy. Additionally, the hypoxic tumor microenvironment impacts
multiple cellular and non-cellular compartments in the tumor stroma, including disordered tumor
vasculature, homeostasis of ECM. Hypoxia also has a multifaceted and often contradictory influence
on immune cell function, which contributes to an immunosuppressive environment. Here, we review
the important function of HIF in tumor stromal components and summarize current clinical trials
targeting hypoxia. We provide an overview of hypoxia signaling in tumor stroma that might help
address some of the challenges associated with hypoxia-targeted therapies.
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1. Introduction

Low oxygen tension (hypoxia) is prevalent in solid tumors and is associated with
disease progression [1]. The growth of cancer cells often exceeds the capacity of the
vasculature, and the resulting inadequacy of blood vessel function creates heterogeneous
hypoxic areas within the tumor [2]. Hypoxic signaling and the downstream effects are
mainly mediated by the hypoxia-inducible transcription factor (HIF) family, which consists
of two subunits, HIF-α and HIF-β (also known as the aryl hydrocarbon nuclear translocator,
ARNT), of which HIF-β is stably expressed [3]. There are three isoforms of HIF-α—HIF-1α,
HIF-2α and HIF-3α, with HIF-1α and HIF-2α having high similarity in structure and being
widely studied [4]. HIF-1α is expressed ubiquitously, while HIF-2α and HIF-3α have a
more restricted expression pattern [5]. Under normoxic conditions, HIF-α subunits are
hydroxylated at proline residues within oxygen-dependent degradation domain (ODD).
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This prolyl hydroxylation is mediated by prolyl hydroxylase domain-containing enzymes
(PHDs) [2,6]. The hydroxylated proline residues (Pro-402/564 in human HIF-α) within
ODD domain can be recognized by the Von Hippel–Lindau (VHL) E3 ubiquitin ligase
complex, thus mediating HIF-α ubiquitination and proteasomal degradation [6,7]. Under
hypoxic conditions, the activity of PHDs is diminished due to lack of oxygen resulting in
stabilized HIF-α. Stabilized HIF-α binds to HIF-β to form a heterodimer, which specifically
binds hypoxia response elements that drive downstream target gene transcription and
facilitate cellular adaptation to hypoxic conditions [8].

In addition to the oxygen deprivation caused by high metabolic demand of cancer cell
proliferation, standard of care anticancer therapies can also induce or further exacerbate
tumor hypoxia. For example, anti-angiogenic therapy has been reported to increase tumor
aggressiveness or lead to therapy resistance in multiple models of cancer [9–11]. Antibody-
mediated inhibition of vascular endothelial growth factor (VEGF) has been shown to
elevate hypoxia in pancreatic tumors and increase collagen deposition, which contributes
to tumor aggressiveness [12]. Tyrosine kinase inhibitor BIBF 1120, which targets VEGF
receptors, platelet-derived growth factor receptor, and fibroblast growth factor receptor,
has also been reported to induce hypoxia in preclinical models of lung and pancreatic
cancer [13]. Similar elevations in hypoxia were observed with sorafenib, a standard therapy
for hepatocellular carcinoma [14]. In addition, bevacizumab (monoclonal antibody specific
for VEGF) in combination with chemotherapy, the current standard of care therapy for
metastatic colorectal cancer results in tumor hypoxia, which drives extracellular matrix
(ECM) remodeling involved in acquired therapy resistance [15].

Hypoxia in tumors can induce abnormal angiogenesis and desmoplasia, and con-
tribute to the immunosuppressive tumor microenvironment [3]. As a consequence, HIF-1α
and HIF-2α expression have been reported to be associated with poor prognosis and
metastasis of multiple human cancers [5]. Tumor cells have developed multiple advan-
tages under hypoxic conditions, including increased cell proliferation and migration [16],
metabolic changes [17], enhanced cancer cell stemness and resistance to radiotherapies
and chemotherapies [18], which have been summarized in multiple reviews [8,19,20]. In
addition to cancer cells, hypoxia impacts multiple features of the tumor microenvironment
including tumor vasculature, ECM deposition and remodeling and other stromal cells,
which may enhance immunosuppression and diminish the efficacy of immunotherapy
(Figure 1) [2].

In this review, we will focus on the complex effects of hypoxia and HIF signaling on
different cellular and non-cellular compartments in the tumor stroma, including tumor
vasculature, ECM, and adaptive and innate immune cells. A current understanding of the
hypoxic response of tumor stroma will be provided and current strategies in clinical trials
to alleviate tumor hypoxia and the limitation of hypoxia targeted therapy will be discussed.
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Figure 1. Hypoxia affects the tumor stroma. In addition to multiple effects of hypoxia on cancer cells, hypoxia through 
HIF-1α signaling regulates the tumor stroma, including tumor vasculature, ECM, CAFs, and immune cells. HIF signaling 
Figure 1. Hypoxia affects the tumor stroma. In addition to multiple effects of hypoxia on cancer cells, hypoxia through
HIF-1α signaling regulates the tumor stroma, including tumor vasculature, ECM, CAFs, and immune cells. HIF signaling is
essential for vessel growth and maturation. Hypoxia also regulates CAF functions and leads to increased secretion of ECM
components. However, the effects of hypoxia on each type of immune cell are complex and, in some cases, controversial. In
general, hypoxia results in infiltration of immunosuppressive cells such as TAMs and Tregs and regulates the differentiation,
phenotype polarization, as well as the cytotoxic function of immune cells to create an immunosuppressive environment.
Hypoxia contributes to tumor progression, metastasis, and compromises the efficacy of standard of care therapy and
immunotherapy in numbers of indications. Green arrow pointing down, decreased; red arrow pointing up, increased.

2. Hypoxic Response of Tumor Vasculature

The tumor vasculature is critical for oxygen and nutrient delivery to the cells that make
up the tumor microenvironment. However, the tumor vasculature is often dysfunctional,
leaky, irregular, and abnormal with aberrant pericytes, which lead to inefficient vessel
perfusion [21]. In addition, rapid oxygen consumption in the tumor microenvironment
contributes to stabilization of HIF and upregulation of proangiogenic factors such as
VEGF secreted from cancer cells and stromal cells, which fuel disorganized new vessel
formation [22]. The abnormal tumor vasculature in response to hypoxia can also limit drug
delivery and enhance tumor progression and metastasis [22].

Accordingly, multiple studies have been conducted to determine the function of HIF-
1α and HIF-2α in endothelial cells. There is a universal switch from HIF-1 to HIF-2 in
endothelial cells during the response to hypoxia. HIF-1 activity is initiated in the acute
phase of hypoxia while HIF-2 governs the adaptation to prolonged hypoxia [23]. Many
factors have been identified that participate in this switch of HIF isoforms, including
mRNA stability differences [23,24]. Loss of HIF-1α in Tie2+ endothelial cells affects various
parameters of endothelial cells, including proliferation, chemotaxis, and wound healing,
and causes inhibition of tumor vessel density as well as reduction in tumor growth in a
model of lung cancer (Lewis Lung carcinoma (LLC)) [25]. It has been demonstrated that
hypoxia induces VEGF, VEGFR1, and VEGFR2 expression on endothelial cells while loss of
HIF-1α can block the induction of these genes, thus disrupting the hypoxia-induced VEGF
autocrine loop [25]. Consistently, endothelial cell-specific deletion of HIF-1α reduces lung
metastasis in a genetic model of breast cancer, MMTV-PyMT, and leads to a reduction of
circulating tumor cells in mice bearing LLC tumors [26]. Similarly, HIF-2α deficiency in
endothelial cells alters vascular function under physiological conditions and suppresses
tumor angiogenesis associated with enhanced hypoxia and increases tumor cell apoptosis
in LLC tumors [27]. In addition, in a skin carcinogenesis model, tumors with HIF-2α-
deficient endothelial cells exhibit increased numbers of capillaries while reduced numbers
of large vessels. However, these small vessels fail to mature into functional blood vessels
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and lead to perfusion defects, indicating an essential function of HIF-2α in vessel sprouting
and remodeling [28]. In summary, these studies indicate compensatory effects of HIF-1α
and HIF-2α on tumor angiogenesis, with HIF-1α contributing to vessel growth while
HIF-2α responsible for vessel maturation [29].

On the other hand, global heterozygous deficiency of PHD2, the oxygen sensor medi-
ating HIF α subunit hydroxylation and degradation, results in reduced tumor intravasation
and metastasis in B16 melanoma, Panc02 pancreatic cancer, and LLC models [30]. These
effects were also found in a spontaneous genetic breast cancer model and found to be
associated with improved vessel function and maturation [30,31]. These findings indicate
the essential functions of HIF signaling in endothelial cells in regulating angiogenesis and
highlight some of the potential challenges in targeting HIF activity as an anticancer strategy.

3. Hypoxic Response of ECM and CAFs

The extracellular matrix (ECM) is a dynamic collection of noncellular components
within tissues including the tumor microenvironment. The ECM consists of collagens,
fibronectin, laminin, and other proteoglycans and glycoproteins that contribute to tumor
progression [32]. The ECM provides architectural support and tensile strength essential
for tissue integrity [33]. In addition, ECM proteins bind to receptors on cancer cells or
stromal cells to facilitate cell–ECM adhesion, which can regulate cancer cell proliferation,
migration and metastasis [34]. Extensive ECM deposition is generally associated with
malignancy of tumor progression as well as impaired drug delivery [35,36]. ECM is also
a barrier for T cell infiltration which leads to tumors with a dense ECM typically being
T cell-deficient [37]. Collagens, which are mainly produced by fibroblasts, are one of the
major components of ECM [34]. Fibroblasts can be activated by cytokines such as TGF-β
in the tumor microenvironment and become cancer-associated fibroblasts (CAFs) that
gain enhanced capacity to produce and remodel the ECM and are generally considered
to promote cancer progression [38,39]. However, a recent study showed that genetic
depletion of α-smooth muscle actin (αSMA)-positive CAFs in pancreatic cancer model
led to increased immunosuppression and accelerated tumor progression emphasizing
the complexity of CAF biology [40,41]. Recently, evidence of CAFs heterogeneity with
differential expression of specific markers in distinct subsets of CAFs has emerged, which
may help dissect specific functions of CAFs subtypes in tumorigenesis [42–45].

Hypoxia regulates the homeostasis of ECM through HIF activity as several genes
involved in collagen synthesis, modification, and degradation are targets of HIF [46,47].
For example, collagen prolyl 4-hydroxylases (P4Hs), essential enzymes in the synthesis
of collagens and collagen lysyl hydroxylases (PLOD2) required for ECM stiffness, are
induced in cancer cells by exposure to hypoxia, which is dependent on HIF-1α, but not
HIF-2α [48,49]. Elevated expression of P4Hs and PLOD2 correlate with increased cancer
cell adhesion to ECM and increased migration [50,51]. Knockdown of PLOD2 in pancreatic
stellate cells limits the parallel-patterned fiber architecture formation and suppresses cancer
cell directional migration in pancreatic cancer [52]. In non-small cell lung cancer (NSCLC)
cell lines, HIF-1α has been shown to form complex with mutant p53 resulting in the specific
transcription of ECM genes [53]. Hypoxia has also been shown to elevate the rate of
collagen synthesis and deposition in vitro and in vivo [46]. In addition, hypoxia has been
shown to induce lysyl oxidase (LOX) and LOX-like proteins (LOXL) secretion by breast
cancer cells. LOX and LOXL are amine oxidases that cross-link and stabilize collagen; these
enzymes are implicated in remodeling the ECM in metastatic sites to promote metastasis
niche formation. LOX/LOXL expression remodels ECM at metastatic sites to facilitate
recruitment of bone marrow-derived cells, an effect dependent on HIF-1α and HIF-2α
activity in tumor cells [54,55]. As a result, LOX inhibitors are being investigated as potential
agents that might overcome chemoresistance and reduce metastasis in triple negative breast
cancer [56].

However, the contribution of HIF-1α, and hypoxia by association, in CAFs is less
clear. There is evidence that HIF-1α activity in CAFs can function as a tumor promoter. For
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example, a human fibroblast cell line with active HIF-1α promotes MDA-MB-231 tumor
growth when co-injected in vivo with tumor cells. This phenotype is associated with
decreased mitochondrial activity and a shift toward aerobic glycolysis [57]. A recent study
has confirmed the shift toward lactate and pyruvate production in CAFs isolated from
breast cancer patients compared to normal fibroblasts is due to epigenetic reprogramming
of HIF-1α and glycolytic enzymes [58]. Chronic hypoxia induces hypomethylation of HIF1A
promoter as well as promoters of rate-limiting glycolytic genes PKM and LDHA, which
lead to elevated transcript and protein levels and contribute to enhanced glycolytic activity
of CAFs derived from breast cancer patients [58]. Furthermore, hypoxic mammary CAFs
derived from triple-negative breast cancer patients promote angiogenesis and abnormal
vessel formation in a CAF-endothelial cell co-culture system [59]. On the contrary, loss
of HIF-1α specifically in FSP1+ CAFs was found to accelerate mammary tumor growth
and also contribute to decreased tumor vessel density [60]. In addition, global PHD2
haplodeficiency was reported to decrease CAF activation and impair CAF migration and
ECM deposition, which reduced metastasis in a spontaneous MMTV-PyMT breast cancer
model [31]. Interestingly, the effect on CAF activity relies on PHD2 deletion on tumor
cells, but not on CAFs as PHD2 deficiency in platelet-derived growth factor receptor α

(PDGFRα)-positive CAFs does not influence metastasis [31]. However, another study
provided evidence that depletion of PHD2 in human head and neck CAFs phenocopies
the response to hypoxia in a 3D collagen I/Matrigel culture system [61]. Furthermore,
a pan-PHD inhibitor (DMOG) reduces tumor stiffness and metastasis in mice bearing
4T1 breast cancer. Interestingly, this efficacy appears to be achieved by targeting PHD2
in CAFs [61]. These contradictory results highlight the complexity and heterogeneity of
CAF biology.

In general, the hypoxic tumor microenvironment directly effects collagen deposition
and ECM remodeling mainly through HIF activity, which typically enhances tumor pro-
gression and metastasis. However, the functions of HIF-1α and HIF signaling in CAFs are
more complicated given the heterogeneity of CAF subpopulations, which likely contributes
to the seemingly contradictory findings regarding CAF biology and hypoxia.

4. The Effect of Hypoxia on T Cells

Hypoxia has direct and complex effects on tumor-infiltrating T cells, including dif-
ferent subtypes of CD4+ T helper cells and CD8+ effector T cells, potentially resulting in
reduced efficacy of immunotherapies.

4.1. CD4+ T Helper Cells and Regulatory T Cells

There are several subtypes of CD4+ T cells, due to divergent differentiation of naïve
progenitor cells in response to different cytokine stimuli. The most commonly studied CD4+

T cells in the immune response to cancer are T helper (Th)1, Th2, Th17, and regulatory
T cell (Treg) [62]. Th1 cells characterized by secreting stimulatory cytokines IFN-γ and
TNF-α are considered as proinflammatory and they prime CD8+ T cells and are responsible
for driving an immune response against tumor cells or infection [63]. While Th2 and Th17
cells may promote tumor growth through expression of immunosuppressive cytokines
including IL-4, IL-5, IL-13, and IL-17A, although the contribution of these cells to the tumor
immune landscape is not completely clear [62,64–68]. CD4+ Tregs are characterized by
transcription factor FoxP3 expression and are predominantly immunosuppressive. Tregs
maintain peripheral tolerance under normal conditions. The recruitment and expansion
of Tregs is enhanced in most tumors and typically impedes antitumor activity of effector
cells [69].

Continuous stimulation of the T cell receptor (TCR) under normoxic conditions in-
duces HIF-1α expression through PI3K/mTOR signaling [70,71]. However, hypoxia in
tumors can elevate HIF-1α expression in T cells, which contributes to immunosuppression
and the differentiation of CD4+ T cells. Th1 cells cultured under hypoxia downregulate Th1
responses of IFN-γ production and demonstrate active phosphorylation of STAT3 which
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leads to further enhanced HIF-1α transcription [72]. In ovarian cancer cells, expression
of the chemokine CC-chemokine ligand 28 (CCL28) was reported to be upregulated by
hypoxia and correlated with HIF-1α expression. CCL28 promotes tumor growth through
the recruitment of CCR10+ Tregs [73]. In addition, HIF-1α directly influences the bal-
ance between the differentiation of Tregs and Th17 cells by promoting Th17 development
while attenuating Treg differentiation through binding FoxP3 resulting in proteasomal
degradation [74]. An insertional mutation of FoxP3 that interferes with HIF-1α binding
increases FoxP3 stability and Treg differentiation [75]. HIF-1α also contributes to T cell
metabolism and thereby promotes lineage choices towards Th17 cells rather than Tregs by
favoring glycolytic pathways that are highly active in Th17 cell-inducing conditions [76].
Consistently, another study illustrated the detrimental function of HIF-1α on Treg dif-
ferentiation by showing that Tregs deficient in VHL, the E3 ubiquitin ligase mediating
HIF-1α ubiquitination, lose their suppressive function to control inflammation but produce
massive IFN-γ and are converted to Th1-like effector T cells [77]. However, the exact effect
of HIF-1α on the differentiation and activity of Tregs remains controversial. Studies have
also demonstrated that HIF-1α can promote FoxP3 expression and abundance as well as
the suppressive activity of Tregs [78–80]. Treg-intrinsic HIF-1α is indispensable for optimal
Treg function and Tregs deficient in HIF-1α fail to control inflammation [79]. In addition
to studies on HIF-1α, a recent study has demonstrated a critical function of HIF-2α in
regulating Treg activity [81]. When HIF-2α was specifically knocked out in Tregs, the cells
lost their ability to inhibit effector T cell induced inflammation, which is due in part to
upregulated HIF-1α. In tumor settings, HIF-2α-KO Tregs contribute to suppression of
MC38 tumor growth and B16F10 melanoma metastasis [81].

Hypoxia is known to stimulate cytokine and chemokine secretion from cancer cells
and tumor-infiltrating myeloid cells that recruit Treg infiltration. However, more studies
are needed to address the controversial evidence of HIF signaling in determining the
differentiation of Tregs and Th17 cells and their subsequent functions.

4.2. CD8+ Effector T Cells

CD8+ effector T cells are the main cytotoxic cell type mediating antitumor immune re-
sponses. After antigen-presentation and appropriate co-stimulation from antigen-presenting
cells (APCs), CD8+ T cells undergo clonal expansion and migration into tumor sites, where
they recognize tumor-specific antigens and initiate cytotoxic effects by releasing perforin,
granzyme to induce tumor cell apoptosis [82]. The canonical tumor antigen recognition
is mainly mediated by αβ CD8+ T cells, while there is another distinct population γδ

CD8+ cells recognizing lipid antigens in an antigen presentation-independent manner [83].
During trafficking into the tumor microenvironment, CD8+ T cells encounter a low oxygen
tension [84], which can influence their phenotype and activity.

Studies have provided evidence of stimulatory and inhibitory effects of hypoxia on αβ

CD8+ T cells. Hypoxia can enhance the expression of CD137, a member of the TNF receptor
family that functions as costimulatory molecule on activated T cells and is present on tumor-
infiltrating lymphocytes (TILs) in multiple implanted and spontaneous tumor models. In
HIF-1α-knockout T cells, CD137 expression does not respond to hypoxia and remains
negative on those T cells [85]. Furthermore, T lymphocytes that develop under hypoxic
conditions are more sustained and lytic with elevated expression of activation markers and
enhanced cytokine production [86,87]. Consistently, a later study has demonstrated that
enhanced HIF activity by deleting VHL on CD8+ T cells increases granzyme B, perforin, and
TNF production as well as expression of costimulatory molecules, thus sustaining effector
functions that are critical for clearance of viral infection and tumors [84]. Hypoxic cytotoxic
T lymphocytes when transferred in vivo were reported to package more granzyme B
and be more efficient in controlling tumor growth and improve animal survival in a
B16-OVA tumor model [88]. However, loss of HIF-1α but not HIF-2α in CD8+ T cells
accelerates tumorigenesis [89]. Deletion of HIF-1α or one of it targets, VEGF-A specifically
in CD8+ T cells limits T cells migration and infiltration into tumor sites in LLC and B16-F10
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subcutaneous models [89]. Furthermore, the response of MC38 tumors to anti-PD-1 and
anti-CTLA-4 combinational immunotherapy is compromised in mice with HIF-1α loss
in CD8+ T cells [89]. HIF-1 regulated by mTORC1 is required for glucose metabolism in
effector T cells and controls expression of chemokines and adhesion molecules regulating
T cell migration [90]. In contrast, hypoxia has also been reported to suppress CD8+ T cells.
Hypoxia is known to decrease proinflammatory cytokine production from cytotoxic T
cells such as IL-2 and IFN-γ and delay T cell development in physiologic oxygen level
culture condition [91], which has been shown to be mediated by HIF-1α by specific deletion
of HIF-1α in T cells [92]. Hypoxia also increases expression of inhibitory molecules and
promotes T cell exhaustion by inducing mitochondrial defects [84,93]. In addition, hypoxia
caused by tumor deregulated oxidative metabolism is associated with decreased T cell
activity and response to anti-PD-1 therapy [94]. These contradictory results indicate that
there might be a balance of HIF-1α activity and the function of cytotoxic T cells in the tumor
microenvironment and highlight that these issues are ripe for additional investigation.

5. The Effect of Hypoxia on Myeloid Cells
5.1. Tumor-Associated Macrophages

As a major component in the tumor microenvironment, tumor-associated macrophages
(TAMs) are generally considered as immunosuppressive cells that promote tumor pro-
gression, metastasis and angiogenesis [95]. In response to different stimuli in the tumor
microenvironment, macrophages are known to exist on a spectrum of phenotypes rang-
ing from immunostimulatory to immunosuppressive. Th1 cell-associated cytokines or
LPS stimulation can polarize macrophages into a proinflammatory phenotype (M1-like
macrophages), while IL-4 or IL-13 from Th2 cells stimulate an immunosuppressive pheno-
type (M2-like macrophages) [96,97]. Tumor hypoxia is critical in determining the phenotype
of macrophages and hypoxic TAMs have been shown to release factors facilitating tumor
growth and immunosuppression [98]. In addition, hypoxia influences the spatial arrange-
ment of macrophages. In more hypoxic regions of a tumor, TAMs tend to be M2-like type
while M1-like macrophages are more commonly found in normoxic regions, typically in the
periphery of a tumor [98,99]. HIF-1α contributes to the recruitment of bone marrow-derived
CD45+ myeloid cells including macrophages and further regulates tumor angiogenesis
and invasion indirectly [100]. The infiltration of TAMs to hypoxic tumor areas is due to
various stimuli including Sema3A/Nrp1 signaling, VEGF, migratory stimulating factors
such as colony-stimulating factor 1 (CSF1), CCL2, CCL5 as well as upregulation of TGFβ
and M-CSFR [101–103]. In addition, a subset of M2-like TAMs (MRC1+TIE2HiCXCR4Hi)
were identified to accumulate around tumor vasculature in breast and lung tumors after
chemotherapy, which contributed to tumor relapse after therapy [104].

TAMs in hypoxic regions of tumor tend to be immunosuppressive and have pro-tumor
function. Blocking the entry of TAMs into hypoxic regions inhibits their proangiogenic
functions and can reverse or reduce the immunosuppressive microenvironment [101].
Specific deletion of HIF-1α in myeloid cells in the MMTV-PyMT model of breast cancer
leads to increased tumor cell apoptosis, elevated IFN-γ production by TILs, and delayed
tumor progression [105]. In this study, macrophage-mediated T cell suppression under
hypoxia was demonstrated to be dependent on HIF-1α and inducible nitric oxide syn-
thetase (iNOS) [105]. In addition, co-culture of macrophages with hypoxic hepatoma cells
induces the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages, which also
contributes to T cell suppression and Treg expansion [106]. Similarly, loss of HIF-2α in
macrophages results in reduced TAM infiltration by reducing the expression of M-CSFR
and CXCR4 and improves tumor outcomes in hepatocellular and colon carcinoma mod-
els [107]. Besides the effects of hypoxia on TAM infiltration and T cell suppression, hypoxia
also induces macrophages to produce increased matrix metalloproteinases (MMPs) in-
cluding MMP2, 7, and 9, which remodel the ECM and contribute to tumor cell migration
and invasion [98,108]. Transcriptome analysis of primary human macrophages cultured
under hypoxic conditions identified upregulation of angiogenic factors such as VEGF,
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cyclooxygenase 2 (COX-2), angiopoietin, and fibroblast growth factor (FGF) [109] Con-
sistently, HIF-1α-deficient macrophages cocultured with tumor spheroids demonstrate
enhanced M2-type polarization with attenuated pro-angiogenic properties [110]. Studies
have also demonstrated that a small molecule HIF-inhibitor, YC-1 attenuates peritoneal
inflammation and proinflammatory M1-type macrophage polarization [111]. However, a
recent study has pointed out that bone marrow-derived macrophages from animals with
partial loss of the oxygen sensor PHD2 demonstrate more pronounced M2 polarization
upon IL-4 stimulation and thus inhibition of PHD2 induces would healing, which indicates
the complexity of hypoxia in regulating macrophage polarization [112].

In summary, TAMs tend to infiltrate into hypoxia/necrotic tumor regions, and the
hypoxic microenvironment entraps these TAMs and induces an immunosuppressive phe-
notype, contributing to vessel formation, tumor progression and therapy resistance. Thus,
full characterization of TAM plasticity within specific hypoxic and normoxic areas might
provide guidance for therapy development and outcome prediction.

5.2. Myeloid-Derived Suppressor Cells (MDSCs)

Myeloid-derived suppressor cells (MDSCs) are a group of bone-marrow derived pro-
genitor cells that are considered as precursors of macrophages, dendritic cells, granulocytes,
and other mature myeloid cells. MDSCs are generally considered to have immunosup-
pressive functions in tumors [113]. MDSCs accumulate significantly in tumors and exploit
multiple mechanisms to regulate innate and adaptive immune responses [114]. For exam-
ple, MDSCs promote Treg differentiation and expansion by secreting immunosuppressive
cytokines such as IL-10 and TGF-β [114,115]. MDSCs can also produce arginase-1, which
depletes arginine, an essential amino acid required for lymphocyte activity. MDSCs also
produce reactive oxygen species, which can directly inhibit cytotoxic T cell proliferation
and function [113,116].

Hypoxia supports the immunosuppressive function of MDSCs and is a driver of MDSC
recruitment [117]. Hypoxia sensing mainly via HIF-1α has been shown to differentiate
MDSCs into macrophages and dendritic cells (DCs), thus altering MDSCs function in the
tumor site. Similarly, exposure of splenic MDSCs to hypoxia showed similar conversion
of MDSCs [118]. In addition, hypoxia culture condition and hypoxic conditioning of liver
by cobalt chloride treatment dramatically increase programmed death-ligand 1 (PD-L1)
expression on splenic MDSCs isolated from multiple syngeneic tumor models. Mechanistic
studies revealed that the upregulation of PD-L1 is regulated by HIF-1α direct binding to the
hypoxia response elements (HREs) in the PD-L1 proximal promoter. As a consequence, the
suppressive capacity of MDSCs on T cell proliferation is enhanced by hypoxia and blocking
the increased PD-L1 expression abrogates MDSC-mediated T cell suppression [119]. HIF-1α
can also bind to a HRE in the miR-210 proximal promoter and elevate miR-210 expression,
which contributes to enhanced MDSC-mediated T cell suppression [120]. In a recent study
in colorectal cancer patients, HIF-1α activity was shown to be associated with V-domain Ig
suppressor of T cell activation (VISTA) expression, a negative checkpoint molecule in the
B7 family [121]. Subsequent studies in mouse models illustrated that in profound hypoxic
regions of tumors, HIF-1α upregulates VISTA expression on tumor-infiltrating MDSCs
by direct binding to the promoter, thus promoting the immune suppressive function of
MDSCs [121]. Interestingly, hyperoxia (60% oxygen) therapy in the 4T1 triple negative
breast cancer model decreases MDSCs expansion and PD-L1 expression in primary and
metastatic sites [122]. In general, these studies suggest the enhanced suppressive capacity
of MDSCs under hypoxia and demonstrate an additional mechanism by which hypoxia
signaling in stromal cells contributes to immunosuppression.

5.3. Dendritic Cells

Dendritic cells (DCs) originate from hematopoietic progenitor cells and are a group
of professional APCs responsible for T cells priming and initiation of antigen-specific
antitumor immune responses [123]. In the absence of environmental stimuli, DCs exist in
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their immature form with low expression of co-stimulatory molecules and limited capacity
for antigen presentation. However, after exposure to bacterial or viral products during
infection and proinflammatory cytokines in the tumor microenvironment, DCs undergo
maturation and are activated, which allows DCs to present antigens efficiently [123]. Acti-
vated DCs express higher levels of major histocompatibility complex (MHC) and costimu-
latory molecules as well as produce cytokines such as IL-12 and IFNα [124]. However, in
the tumor microenvironment, DC maturation and function can be disrupted by production
of VEGF, IL-10, IL-6, and decreased co-stimulatory molecule expression [125,126]. In addi-
tion, tumor cells are sufficient to convert a subset of immature DCs into TGF-β-secreting
regulatory cells that promote the proliferation of Tregs [127].

There are controversial reports regarding the effects of hypoxia on DCs. Hypoxia
has been shown to promote the differentiation and migration of DCs through HIF-1α and
PI3K/Akt signaling [128,129]. Hypoxia combined with LPS stimulation of DCs leads to
upregulated co-stimulatory molecules, enhanced proinflammatory cytokines production
and capacity of DCs to stimulate T cells proliferation, which are HIF-1α-dependent [130].
In particular, monocyte-derived DCs generated under hypoxic conditions upregulate
triggering receptor expressed on myeloid cells (TREM-1), a hypoxia-induced gene that is
responsible for upregulation of costimulatory molecules and secretion of proinflammatory
cytokines [131–133]. Accordingly, DCs deficient in HIF-1α, when co-cultured with T cells,
lead to decreased expression of CD278 and granzyme B in T cells.

In contrast, studies have also demonstrated that in a 3D culture system, hypoxia
suppresses maturation of monocyte-derived immature DCs, resulting in decreased motility
and phagocytosis [134]. In addition, chronic exposure to hypoxia can induce a cell death
program in DCs [135]. Hypoxia can also alter DC phenotype and skew a Th2 polarization
of T cells with immunosuppressive cytokine production by upregulating CD44 expression
on the surface of DCs [136]. A recent study has indicated that HIF-1α expression in DCs
promotes production of immune-inhibitory cytokines and conditional deletion of HIF-1α
in DCs enhances their capacity to stimulate T cell response [137]. Furthermore, inhibition
of HIF-1α was reported to improve the efficacy of a DC-based vaccine in 4T1 breast cancer
model. This was achieved by enhanced cytotoxic T cell proliferation, activity, and IFN-γ
production [138]. These contradictory effects of hypoxia on DCs indicate the importance of
physiologically appropriate levels of HIF signaling as short-term and prolonged exposure
to hypoxia might have different effects on migration and maturation of DCs [128,135].

The effects of HIF signaling in immune cell biology are summarized in Figure 2.
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promotes an immunosuppressive microenvironment. In TAMs and MDSCs, HIF-1α contributes to their infiltration and
enhanced suppressive capacity on effector T cells. HIF-1α can also stimulate a proangiogenic phenotype of TAMs and
TAM-mediated ECM remodeling. The hypoxic microenvironment stimulates the secretion of cytokines and chemokines
from tumor cells or TAMs to recruit Tregs, further limiting effector T cell function. There is conflicting evidence of HIF
signaling in determining T cell fate. HIF-1α has been demonstrated to induce or inhibit differentiation of naïve CD4+ T cells
into Th17 T cells or Tregs. HIF-1α signaling also exhibits controversial effects on effector T cell function and the migration
and maturation of DCs. The effect of hypoxia on DC and T cell interaction is an area ripe for further investigation. Green
arrow pointing down, decreased; red arrow pointing up, increased.

6. Targeting Hypoxia and HIFs in Cancer

There are multiple strategies for therapeutically targeting tumor hypoxia including
hypoxia activated prodrugs (HAPs), inhibitors of HIF-1, HIF-2, and inhibitors of the
associated signaling pathways.

6.1. Hypoxia Activated Prodrugs (HAPs)

HAPs are designed to be specifically activated in hypoxic environments and un-
dergo electron reduction to generate an active cytotoxic effector leading to cell death.
HAPs are classified by chemical structure and separated into five classes: nitroimida-
zoles/nitroaromatics, quinones, aromatic n-oxides, aliphatic n-oxides and transition met-
als [139]. Although there are numerous HAPs that exhibited promising pre-clinical out-
comes, the efficacy in clinical trials has been limited, thus far.

Tirapazamine was the first HAP that was developed and tested in clinical trials [140].
It is an aromatic n-oxide compound that is activated to a transient oxidizing radical under
hypoxia inducing DNA damage via topoisomerase II [139]. It has been investigated in
numerous clinical trials in combination with radiotherapy or cytotoxic chemotherapy
for solid tumors including cervical, head and neck, NSCLC, advanced pediatric cancers
(NCT00262821, NCT00094081, NCT00006484, NCT00003288) [141]. Overall, the results of
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phase III studies have been disappointing, and no consistent therapeutic benefit has been
identified [142].

TH-302 (evofosfamide), a nitroimidazole, crosslinks DNA in hypoxic tissues, inhibit-
ing cell proliferation and inducing apoptosis [141]. There are extensive preclinical data
showing the efficacy of TH-302 as a monotherapy and in combination with standard chemo-
or radiotherapy in pancreatic adenocarcinoma, sarcoma, neuroblastoma, and renal cell
carcinoma mouse models [143–148]. Unfortunately, three phase III clinical trials for pancre-
atic adenocarcinoma (NCT01746979), soft tissue sarcoma (NCT01440088), and esophageal
carcinoma (NCT02598687) were discontinued as no effects were seen [149,150].

There are several additional HAPs (TH-4000, apaziquone, banoxantrone, PR-104) that
have been developed and advanced to clinical trials but unfortunately have had similar
discouraging results. There are many reviews detailing the preclinical and clinical results
of HAPs [141,151].

6.2. Inhibitors of HIF

Given that HIF-1 and HIF-2 are highly expressed in a majority of malignancies, in-
hibitors targeting HIF and HIF signaling are being evaluated widely preclinically and
clinically [152].

NLG207 (formerly named CRLX101) is a nanoparticle drug conjugate containing
camptothecin, a potent topoisomerase I and HIF-1α inhibitor that accumulates in solid
tumors and is slowly released over an extended period of time [153]. NLG207 has demon-
strated effective targeting of HIF-1α and angiogenesis in models of breast, prostate cancer,
and glioblastoma, as monotherapy or in combination with standard therapies, resulting in
inhibition of tumor growth and improved animal survival [154–157]. In preclinical prostate
cancer models, it has recently been demonstrated to improve effects of enzalutamide on
previously resistant tumors [158]. It is currently in phase II clinical trials in combination
with bevacizumab in ovarian and peritoneal cancer (NCT01652079) [159] and enzalutamide
in prostate cancer (NCT03531827) [158].

PT2385 is a direct small molecule inhibitor of HIF-2α. The compound prevents
dimerization with HIF-β, inhibiting downstream signaling effects [160]. In preclinical
renal cell carcinoma mouse models and patient-derived xenografts, treatment with PT2385
and its analog, PT2399, displays significant suppression of tumor growth, invasion, and
angiogenesis [160,161]. It is currently being evaluated in clinical trials for glioblastoma and
clear cell renal cell carcinoma (NCT03216499, NCT03108066) [162,163].

Indirect inhibition of HIF can also be achieved through the blockade of associated sig-
naling pathways, such as PI3K/AKT/mTOR and MAPK/ERK pathways. These signaling
cascades further activate or enhance HIF-1α synthesis [152]. For example, sirolimus, an
mTOR inhibitor has shown encouraging results in preclinical and clinical studies in prostate
cancer [164,165]. Furthermore, metformin indirectly inhibits mTORC1 through activation
of the AMPK pathway and has also demonstrated promising results [166]. Furthermore,
in preclinical models, metformin has been linked to increased T cell activation, working
synergistically with checkpoint blockade [167]. It is currently being studied in several
ongoing trials for breast, endometrial, colorectal, prostate, and oral cancers (NCT01101438,
NCT01697566, NCT02614339, NCT01864096, NCT03685409, NCT02581137) [149]. In ad-
dition, Minnelide by targeting p300 and heat shock protein 70 inhibits the transcriptional
activity of HIF-1α. Minnelide has shown promising effects in reduction of tumor burden
and metastasis in preclinical models and is currently under investigation in a phase II
clinical trial for refractory pancreatic cancer (NCT03117920) [168].

6.3. Combination with Immune Checkpoint Inhibitors

Although hypoxia targeted therapies have not elicited significant response as a
monotherapy and efficacy in combination with standard chemo- and radiotherapy is still
under investigation, there are growing evidence to support the combination of hypoxia-
targeted strategies with immunotherapy. As previously described, hypoxia induces an
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immunosuppressive microenvironment by creating dense stroma, inducing barriers to
T cell infiltration, increasing MDSCs, and other immunosuppressive myeloid cells [169].
Hypoxic tumors demonstrate few, if any, T cells, and therefore cannot exhibit a robust
response to immune checkpoint blockade [170]. Therefore, inhibiting hypoxia might alter
the immunosuppressive tumor microenvironment to improve cytotoxic T cell infiltration
and function [170]. In transgenic mice bearing prostate adenocarcinoma, combination
of TH-302 (evofosfamide) with anti-PD-1/anti-CTLA-4 achieved an 80% cure rate and
resulted in an adaptive antitumor response with immune memory [170]. Meanwhile, this
combination also increased T cell proliferation, cytotoxic potential and effector cytokine pro-
duction while mice without evofosfamide were completely resistant to immune checkpoint
blockade [170]. Based on these promising results, a phase I trial of TH-302 and ipilimumab
(NCT03098160) for advanced solid malignancies is underway [170]. In addition, the effects
of hypoxia on the efficacy of immune checkpoint inhibitors, nivolumab and ipilimumab,
are being explored in a clinical trial (NCT03003637) [171]. This trial will exploit the use of
F-HX4, a hypoxia-specific PET scan radiotracer, to guide biopsies of hypoxic and normoxic
tumor tissue. T cell infiltration and effector function pre- and post-immune checkpoint
blockade will be compared amongst tumor tissues with varied oxygenation status [171].

6.4. Combination with Anti-Angiogenesis Therapy

In addition to combination with immune checkpoint blockade, there is increasing
interest in the combination of anti-angiogenic therapies with hypoxia targeted treatments.
One mechanism of resistance to anti-angiogenic therapy is through the induction of hypoxia
and upregulation of HIF-1α and HIF-2α [172]. Studies have suggested that by adding low
dose anti-angiogenic agents, the tumor vasculature could be normalized which should
enhance drug delivery [173]. However, it is critical to maintain anti-angiogenic agents at a
fine balance as high doses may lead to avascularization of the tumor bed, worsening tumor
hypoxia. The combination of TH-302 with anti-angiogenic agents (pazopanib, sunitinib,
and DC101) have been evaluated in melanoma, sarcoma, and neuroblastoma mouse models
resulting in consistent improved outcomes and decreased tumor growth [174–176], leading
to the development of phase I/II clinical trials. Furthermore, the combination of TH-302
with bevacizumab is being studied in glioblastoma and high-grade glioma. In a phase II
clinical trial, this combination therapy lengthened progression free survival to 4 months in
31% of patients with glioblastoma (NCT02342379) [177]. Another upcoming development
is a nanoparticle drug to combine TH-302 (evofosfamide) with an anti-angiogenic/vascular
disrupting agent (combretastatin). Combretastatin is bound to the external layer of the
nanoparticle and TH-302 is enveloped inside. By releasing combretastatin first from the
surface, the tumor vasculature can be normalized, facilitating nanoparticle delivery to the
tumor, potentially releasing TH-302 with greater efficacy [178].

Ongoing clinical trials targeting tumor hypoxia have been summarized in Table 1.
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Table 1. Ongoing clinical trials targeting and evaluating hypoxia in the tumor microenvironment.

Clinical Trial Trial Phase Drug Mechanism Disease References

Hypoxia activated prodrug

NCT03224182 III Apaziquone Indolequinone Non-muscle invasive bladder cancer Clinicaltrials.gov

NCT02174549 I/II Tirapazamine + transarterial
embolization Aromatic n-oxide Liver cancer Clinicaltrials.gov

NCT01880359
NCT02661152 III Nimorazole + chemoradiotherapy 5-nitroimidazoles,

radiosensitizer
Locally advanced head and neck squamous

cell cancer Clinicaltrials.gov

HIF inhibitors

NCT03531827 II NLG207 + enzalutamide HIF-1α/topoisomerase I
inhibitor + antiandrogen Metastatic prostate cancer [158]

NCT02769962
NCT04669002 I/II EP0057 + olaparib HIF-1α/topoisomerase I

inhibitor + PARP inhibitor
Relapsed/refractory small cell lung cancer

Ovarian cancer Clinicaltrials.gov

NCT03108066
NCT03216499 II PT2385 HIF-2α inhibitor

Von Hippel-Lindau associated clear cell
renal carcinoma

Glioblastoma
Clinicaltrials.gov

NCT02974738 I Belzutifan (PT2977) HIF-2α inhibitor Advanced solid tumors Clinicaltrials.gov

NCT04195750 III Belzutifan (MK-6482) HIF-2α inhibitor Advanced renal cell carcinoma Clinicaltrials.gov

Targeting Associated pathways

NCT01101438
NCT01864096
NCT01697566
NCT03685409

III Metformin Decreases HIF-1α
accumulation

Early-stage breast cancer
Low risk prostate cancer

Chemoprevention study in endometrial and
oral cancer

[149]

NCT02614339 III Metformin + traditional
chemotherapy

Decreases HIF-1α
accumulation Recurrent colorectal cancer [149]

NCT04275713 II Metformin + cisplatin Decreases HIF-1α
accumulation Locally advanced cervical cancer [179]

Clinicaltrials.gov

NCT03117920 II Minnelide HSP70, p300 inhibitors Refractory pancreatic cancer [149]

NCT03450018 I/II SLC0111+ gemcitabine CAIX Metastatic pancreatic cancer [180]

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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Table 1. Cont.

Clinical Trial Trial Phase Drug Mechanism Disease References

NCT04648033
NCT02628080 I Atovaquone + chemoradiotherapy

Antimalarial drug; Hypoxia
modifier via inhibition of
mitochondrial complex III

Locally advanced non-small cell lung cancer [180]
Clinicaltrials.gov

Combination with immunotherapy
or anti-angiogenesis therapy

NCT03098160 I TH-302 + ipilimumab HAP + anti-CTLA4 Ab Advanced solid malignancies [170]

NCT01652079 II NLG207 + bevacizumab HIF-1α/topoisomerase I
inhibitor + anti-VEGF Ab Ovarian/peritoneal cancer [158]

NCT03634540 II Belzutifan (PT2977) + cabozantinib HIF-2α + VEGFR2 inhibitors Advanced clear cell renal carcinoma Clinicaltrials.gov

NCT04895748 I/Ib DFF332 + everolimus +
spartalizumab

HIF-2α inhibitor + mTOR
inhibitor + anti-PD-1 Ab

Relapsed renal cell carcinoma, advanced
malignancies with HIF stabilizing mutations Clinicaltrials.gov

NCT04114136 II Metformin or rosiglitazone +
nivolumab or pembrolizumab

Decreases HIF-1α
accumulation Advanced solid tumor malignancies Clinicaltrials.gov

Assessment of hypoxia

NCT03003637 IB/II 18F-FDG PET-CT Pre and post nivolumab +/-
ipilimumab

Advanced/recurrent head and neck
carcinoma [171]

NCT03373994 18F-FDG PET-CT Evaluate tumor perfusion
and hypoxia Solid tumors Clinicaltrials.gov

NCT03646747 Oxygen enhanced MRI measurement Pre and post radiotherapy Head and neck cancer Clinicaltrials.gov

NCT04309552 FMISO, FLT PET
Compare FMISO, FLT PET vs.

molecular biomarkers of
hypoxia and cell proliferation

High grade glioma Clinicaltrials.gov

NCT02095249 Pimonidazole followed by
prostatectomy

Measure tumor hypoxia via
immunohistochemical

staining
Prostate cancer Clinicaltrials.gov

NCT04001023 18F-EF5 PET-CT and targeted tumor
sampling

Identify molecular
differences between hypoxic

and non-hypoxic tumors
Advanced ovarian cancer Clinicaltrials.gov

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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Table 1. Cont.

Clinical Trial Trial Phase Drug Mechanism Disease References

NCT00568490
Osteopontin, lysyl oxidase,

macrophage inhibiting factor and
proteomic technology

Identify hypoxic biomarkers
in blood and tumors

Head and neck cancer
Lung cancer Clinicaltrials.gov

NCT03054792 18F-FAZA/BOLD PET-MRI
Measure hypoxia between

start and completion of
treatment

Pediatric sarcomas Clinicaltrials.gov

Hypoxia assessment + radiotherapy

NCT04846309 I FMISO PET + radiation Hypoxic tumors receive
higher dose of radiation Esophageal cancer Clinicaltrials.gov

NCT02352792 II FMISO PET + radiation Hypoxic tumors receive 10%
higher dose of radiation Head and neck squamous cell carcinoma Clinicaltrials.gov

HAP: hypoxia activated prodrug; CAIX: carbonic anhydrase IX; FDG: fluorodeoxyglucose; PET: positron emission tomography; FMISO: fluorine-18 fluoromisonidazole; FLT: fluorine-18 fluorothymidine; 18F EF5:
fluorine-18 EF5; 18F-FAZA/BOLD: F18-fluoroazomycin arabinoside/blood oxygen level dependent; MRI: magnetic resonance imaging.

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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7. Conclusions

Hypoxia is a common feature of solid tumors and has profound effects on cancer
cells and stromal components. Due to tumor heterogeneity, different cell types and tumor
components respond differently to hypoxia, highlighting the complexity of this field.
Stabilization of HIF under hypoxic conditions upregulates proangiogenic factors and
modulates vessel maturation, further contributing to tumor angiogenesis and progression.
Hypoxia also promotes ECM remodeling and regulates CAF activation that support tumor
growth and metastasis. In addition, hypoxia drives recruitment of immune suppressor
cells and modulates phenotype or paracrine factors secretion of immune cells, thereby
promoting an immunosuppressive microenvironment which compromises the effects of
immunotherapy. However, multiple issues remain to be clarified regarding the specific
function of the main sensors of hypoxia. For example, HIF-1α exhibits effects in CAFs,
T cells, and DCs in a context-dependent manner, reinforcing the difficulty of targeting
hypoxia globally and the importance of developing combination therapies or strategies
to overcome the challenges associated with therapeutic targeting of an environmental
condition. Combination with immune checkpoint inhibitors and anti-angiogenic therapy
is an active investigation and that has potential efficacy in early clinical trials. Moreover,
pharmacologic inhibition of PHD enzyme function upregulates HIF signaling and the
expression of HIF target genes, which could be applied to treat patients with anemia due
to chronic kidney disease and other fibrotic diseases [181]. However, short-term treatment
with PHD inhibitors did not show favorable effects on tumor initiation and progression in
clinical trials [182]. Interestingly, in a spontaneous breast cancer model, chronic treatment
with PHD inhibitors induced erythropoiesis but did not show effects on tumor initiation,
progression and metastasis [183]. Further, a pan-PHD inhibitor (DMOG) was reported to
limit metastasis in 4T1 breast tumor model [61]. These studies complicated the field of
targeting hypoxia. Timing, length of treatment and appropriate disease models are worth
considering for optimizing hypoxia-targeted therapies or PHD inhibitors.

Although hypoxia-targeted therapies have achieved efficacy in preclinical models,
rare success has been reported in clinical trials. A challenge to this class of targeted therapy
is thought to be secondary to narrow therapeutic windows. One strategy being explored to
improve treatment response is the development of nanoparticles to allow time-controlled
release and drive synergistic effects with other therapies. Another challenge contributing to
the failure of prior clinical studies is the fact that the extent of tumor hypoxia has not been
evaluated pre or post treatment [171]. Furthermore, previous clinical trials have not strati-
fied patients based on hypoxia status and therefore inadvertently included malignancies
that do not exhibit targetable hypoxic conditions. A critical step in improving the efficacy
of hypoxia targeted therapies involves optimizing the assessment of hypoxia of individual
tumors. There are direct and indirect ways to measure hypoxia (i.e., the placement of
electrodes directly in the tumor bed, immunohistochemical staining). However, these
modalities have numerous limitations [184]. The most feasible hypoxia assessments are
oxygen-enhanced MRI or PET imaging with hypoxia-induced tracers [184]. There are
current clinical trials evaluating the sensitivity and specificity of hypoxia targeted imaging
(summarized in Table 1). With the challenge of significant intra-tumor heterogeneity, there
is a clear unmet need for effective biomarkers to characterize tumor hypoxia. Improved un-
derstanding of intratumor heterogeneity of oxygenation and vascularization status would
facilitate anti-hypoxia therapy that is tailored based on individual tumor characteristics.
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