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Abstract: In this paper, we propose a novel approach to undertake the colorimetric camera
characterization procedure based on a Gaussian process (GP). GPs are powerful and flexible
nonparametric models for multivariate nonlinear functions. To validate the GP model, we compare
the results achieved with a second-order polynomial model, which is the most widely used regression
model for characterization purposes. We applied the methodology on a set of raw images of rock art
scenes collected with two different Single Lens Reflex (SLR) cameras. A leave-one-out cross-validation
(LOOCV) procedure was used to assess the predictive performance of the models in terms of CIE
XYZ residuals and ∆E∗ab color differences. Values of less than 3 CIELAB units were achieved for
∆E∗ab. The output sRGB characterized images show that both regression models are suitable for
practical applications in cultural heritage documentation. However, the results show that colorimetric
characterization based on the Gaussian process provides significantly better results, with lower values
for residuals and ∆E∗ab. We also analyzed the induced noise into the output image after applying the
camera characterization. As the noise depends on the specific camera, proper camera selection is
essential for the photogrammetric work.

Keywords: cultural heritage; camera characterization; polynomial regression; Gaussian processes;
colorimetry; CIE color spaces; noise analysis

1. Introduction

Accurate recording of color is one of the fundamental tasks in many scientific disciplines, such as
chemistry, industry, medicine, or geosciences to name just a few. Color measurement is a crucial aspect
in archaeology and specifically in rock art documentation [1,2]. The correct measurement of color
allows researchers to study, diagnose, and describe rock art specimens and detect chromatic changes
or alterations over time. High-precision metric models together with reliable color information data
sets provide essential information in modern conservation and preservation works.

The appropriate description of color is not a trivial issue in cultural heritage documentation [3,4].
Color is a matter of perception, which largely depends on the subjectivity of the observer.
Therefore, correct color registration requires objective colorimetric measurement described in rigorous
color spaces. Usually, color spaces defined by the CIE are used as the standard reference framework
for colorimetric measurement and management.

To avoid damage into the pigment, direct contact measurements with colorimeters or
spectrophotometers on painted rock art panels are not allowed. Instead, indirect and noninvasive
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methods for color determination are required. Thus, the use of digitization techniques with
conventional digital cameras to support rock art documentation is becoming more and more
frequent [5–8].

The color information obtained from digital images can be easily captured, stored, and processed.
The drawback of such color information lays on the response recorded by the sensor, which is not
strictly colorimetric. The RGB responses do not satisfy the Luther–Ives condition so that RGB
data are not a linear combination of CIE XYZ coordinates [9]. If the values recorded in the RGB
channels were proportional to the input energy, a simple linear relationship between the RGB data
acquired by the digital camera and the CIE XYZ tristimulus values would exist. However, in general,
the spectral sensitivities of the three RGB channels are not linear combinations of the color-matching
functions [10]. The signals generated by digital cameras are indeed referred to as “device dependent”.
Thus, a transformation to convert the input RGB data into device-independent color spaces is necessary.

A widely accepted approach to establish the mathematical relationships between the original RGB
data and well-defined independent color spaces is the procedure of digital camera characterization [10].
Different techniques are used for colorimetric camera characterization. Numerous papers have
been written regarding common techniques, such as polynomial transformation with least-squares
regressions [9,10], interpolation from look-up tables [11], artificial neural networks [12], and principal
component analysis [13]. Further studies have focused on optimizing characterization, including the
use of pattern search optimization [14], multiple regression [15], root-polynomial regression [16],
or spectral reflectance reconstruction [17–19].

The colorimetric characterization of digital cameras based on polynomial models is an appropriate
starting point; they are widely accepted, mathematically simpler and require smaller training sets
and less computing time [20,21]. Previous experiments using second-order polynomials applied in
rock art paintings gave also good results [22]. However, they tend to be rigid models and suffer from
overestimation or underestimation when many or few data are provided. Furthermore, it is known the
lack of reliable generalization of predictions in polynomial models, especially when extrapolating or in
the case of modeling wiggly functions [23]. Therefore, it is desirable to improve the results by means
of flexible, robust and more accurate models.

In this work, we introduce a novel approach for documenting rock art paintings based on a
Gaussian process (GP) model. GPs are natural, flexible nonparametric models for N-dimensional
functions, with multivariate predictors (input variables) in each dimension [24,25]. The defining
property of a GP model is that any finite set of values is jointly distributed as a multivariate Gaussian
function. A GP is completely defined by its mean and covariance function. The covariance function is
the crucial ingredient in a Gaussian process as it encodes correlation structure which characterizes the
relationships between function values at different inputs. GP allows not only nonlinear effects and
handling implicit interactions between covariates, but also improves generalization of function values
for both interpolation and extrapolation purposes. Due to their generality and flexibility, GPs are of
broad interest across machine learning and statistics [25,26].

GP models are formulated and estimated within a Bayesian framework, and all inference is based
on the multivariate posterior distribution. Computing the posterior distribution is often difficult,
and for this reason, different computation approaches can be used. The Markov chain Monte Carlo
(MCMC) is a sampling method that provides a sample of the joint posterior distribution of the
parameters [27,28].

The GP model results were compared to the common approach based on polynomial regression
models. The main advantage of nonparametric over parametric models is their flexibility [29,30].
In a parametric framework, the shape of the functional relationship is a prespecified, either linear or
nonlinear, function, limiting the flexibility of the modeling. In a nonparametric framework, the shape
of the functional relationship is completely determined by the data, allowing for a higher degree
of adaptability.
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The goodness of fit and predictive performance of the models are assessed by analyzing the
adjustment residuals and the leave-one-out cross-validation (LOOCV) residuals. The quality of the
characterized image is also evaluated in terms of colorimetric accuracy by means of color differences
among observed and fitted colors using the CIE framework. In addition, we evaluate the induced
noise into the output image after the characterization which is recognized as a drawback for some
image applications such as image matching or pattern recognition. The induced noise is evaluated
by computing and comparing the coefficients of variation of digital values between the original and
output images.

2. Materials and Methods

2.1. Case Study: Cova dels Cavalls

The working area is a rock art scene located in Shelter II of the Cova dels Cavalls site in the county
of Tirig, province of Castelló (Spain). This cave is part of one of the most singular rock art sites of the
Mediterranean Basin in the Iberian Peninsula, which is listed by UNESCO as a World Heritage since
1998 [31] .

The images were taken using two different SLR digital cameras, a Sigma SD15 and a Fujifilm
IS PRO. The images contain the hunting scene located in the central part of this emblematic
archaeological site. Parameters such as focal, exposure time, aperture, and ISO were controlled
during the photographic sessions for both cameras. Photographs were taken in the raw format under
homogeneous illumination conditions.

The main difference between the Fujifilm IS PRO and the Sigma SD15 cameras is their integrated
sensors. The Fujifilm incorporates a 12 megapixels Super CCD imaging sensor, with resolution of
4256 × 2848 pixels and a color filter array (CFA) with a Bayer pattern. The use of CFA implies that
the color registered in every individual pixel is not acquired directly but as a result of interpolation
between channels. On the other hand, the Sigma carries a three-layer CMOS Foveon R©X3 sensor of
2640 × 1760 pixels, which makes it a true trichromatic digital camera [32]. The main advantage of this
sensor is its ability to capture color without any interpolation.

2.2. Image-Based Camera Characterization Methodology

The output RGB digital values registered by the camera depend on three main factors: the sensor
architecture, the lighting conditions, and the object being imaged. Even assuming the same object and
lighting conditions, other factors can still produce different RGB responses within and across scenes.
Some elements such as the internal color filters or user settings (exposure time, aperture, white balance,
and so on) can modify the output digital values. As a result, the original RGB data registered by the
sensor cannot be used rigorously for the quantitative determination of color, and native RGB camera
color spaces are said to be device dependent. A way to transform the signal captured by the camera
sensor into a physicaly-based, device-independent color space is by means of camera characterization
(See workflow in Figure 1).

To carry out the characterization, various training and test datasets are required. An important
aspect on the camera characterization process is the establishment of the working color spaces. Some of
the most common color spaces used are the input RGB data and the output tristimulus coordinates [10].
In the preliminary stages of the study four different transformations, between color spaces were tested,
including RGB–CIE XYZ, RGB-CIELAB, LMS–CIE XYZ, and LMS–CIELAB. The transformation that
worked the best was the RGB–CIE XYZ, whose results are reported in the rest of the paper.

On the other hand, the digital RGB values are available after a complex process driven by
the built-in software and electronics of the camera [33]. Usually, a set of preprocessing operations,
e.g., demosaicing, white balance, gamut mapping, color enhancement, or compression, are applied
automatically to the raw image (Figure 2). It is thus preferable to work with raw data versus RGB
processed or compressed image files.
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Figure 1. Schematic diagram designed for the camera characterization.

Figure 2. Raw images versus processed images workflow.

The raw RGB training and test sample data were extracted from the images using our software
pyColourimetry which was developed in previous research. This software was written in the Python
programming language following the CIE recommendations. It allows raw RGB data extraction from
conventional camera formats and implements other colorimetric functions such as transformation
among color spaces, color difference calculation, or spectral data treatment [34].

Also, the data acquisition includes the direct measurement of the tristimulus values of the patches
present in the color chart and the raw RGB data extraction from the digital image. Thus, a color
chart has to be included as a colorimetric reference in the photographic shot to carry out the camera
characterization. For this experiment, we used an X-Rite ColorChecker SG Digital Color Chart as a
color standard. This chart is routinely used in digital photography for color calibration. It consists of
an array of 140 color patches. The number of patches is supposedly enough to cover the color domain
present in the scene as well as to provide training and test data sets to analyze the results after the
camera characterization.

CIE XYZ values for the ColorChecker patches have to be known prior to undertake the camera
characterization. An accepted option is to use those tristimulus values provided by the manufacturer.
Nevertheless, it is highly recommended to carry out a new measurement, preferably by means
of a colorimeter or spectrophotometer, using the setup of the specific experiment. The spectral
reflectance data were acquired using the spectrophotometer Konica Minolta CM-600d, following CIE
recommendations (2o standard observer under D65 illuminant). CIE XYZ coordinates can be obtained
by transforming the spectral data using well-known CIE formulae [35].

To visualize the tristimulus coordinates, it is necessary to perform a final transformation of
the CIE XYZ values into the sRGB color space, which is compatible with most digital devices.
This transformation is carried out based on the technical recommendations published by the
International Electrotechnical Commission [36]. Thus, the final outcome of the characterization
consists of an sRGB output image for each regression model.
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Once the digital camera is colorimetrically characterized, it can be used for the rigorous
measurement of color simulating a colorimeter [37]. Using a characterized camera, we can obtain
accurate color information over complete scenes, which is a very important requirement to properly
analyze rock art. The use of conventional cameras for color measurement allows researchers to take
pictures with low-cost recording devices, suitable for carrying out heritage documentation tasks using
noninvasive methodologies [22].

2.3. Gaussian Processes for Camera Characterization

The main aim of camera characterization is to find the mapping function between the RGB color
values and the CIE XYZ tristimulus coordinates:

f : RGB ∈ IR3 → XYZ ∈ IR3 (1)

Commonly, this multivariate mapping function is divided into independent functions for each
each single XYZ tristimulus value. In this paper, we propose a Gaussian process (GP) to estimate these
functions, with different model parameters, θ1, θ2, and θ3, for each mapping function:

f1 : RGB ∈ IR3 GP(θ1)−−−−→ X ∈ IR

f2 : RGB ∈ IR3 GP(θ2)−−−−→ Y ∈ IR (2)

f3 : RGB ∈ IR3 GP(θ3)−−−−→ Z ∈ IR

2.3.1. Gaussian Process Model

A GP is a stochastic process which defines the distribution over a collection of random
variables [24,25]. The defining property of a GP is that any finite set of random variables is jointly
distributed as a multivariate normal distribution. A GP is completely characterized by its mean
and covariance functions that control the a priori behavior of the function. GP can be used as prior
probability distributions for latent functions in generalized linear models [38]. However, in this paper,
we focus on GP in linear models (a normal outcome), as we can assume that the CIE XYZ color
coordinates are normally distributed.

A GP for a normal outcome y = {y1, y2, . . . , yn ∈ IR} ∈ IRn, paired with a matrix of D inputs
variables (predictors) X = {x1, x2, . . . , x3 ∈ IRn} ∈ IRn×D, consists of defining a multivariate Gaussian
distribution over y conditioned on X:

y|X ∼ N (µ(X), K(X|θ) + σ2 I) (3)

where µ(X) is a n-vector, K(X|θ) is an n × n covariance matrix, σ2 is the noise variance, and I
the n × n diagonal identity matrix. The mean function µ : X ∈ IRn×D → IRn can be anything,
although it is usually recommended to be a linear model or even zero. The covariance function
K|θ : X ∈ IRn×D → IRn×n must be a positive semidefinite matrix [25,26]. In this work, we use the
square exponential covariance function, which is the most commonly used function of the Matérn class
of isotropic covariance functions [25]. The squared exponential covariance function for two observed
points i and j (i, j = 1, . . . , n) takes the form

K(X, θ)ij = α2exp

(
−1

2

D

∑
d=1

1
`2

d
(xdi − xdj)

2

)
(4)

where θ = {α, `}; α is the marginal variance parameter, which controls the overall scale or magnitude
of the range of values of the GP; and ` = {`d}D

d=1 are the lengthscale parameters, which control the
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smoothness of the function in the direction of the d-predictor, so that the larger the lengthscale the
smoother the function.

2.3.2. Bayesian Inference

Bayesian inference is based on the joint posterior distribution p(θ, σ2|y, X) of parameters given
the data, which is proportional to the product of the likelihood and prior distributions,

p(θ, σ2|y, X) ∝ p(y|θ, σ2, X)p(θ)p(σ2) (5)

In the previous equation,

p(y|θ, σ2, X) = ∏
i
N (yi|0, Kii(X|θ) + σ2)

is the likelihood of the model, where the mean function µ(X) has been set to zero for the sake of
simplicity, and

p(α) = N (α|0, 10)

p(`) =
D

∏
d=1

Gamma(`d|1, 0.1)

p(σ2) = N+(σ2|0, 10}

are the prior distributions of the parameters of the model. These correspond to weakly informative
prior distributions based on prior knowledge about the magnitude of the parameters.

Predictive inference for new function values ỹ for a new sequence of input values X̃ can be
computed by integrating over the joint posterior distribution

p(ỹ|y) =
∫

p(ỹ|θ, σ2, X̃)p(θ, σ2|y, X)dθdσ2 (6)

To estimate both the parameter posterior distribution and the posterior predictive distribution
for this model, simulation methods and/or distributional approximations methods [38] must be used.
Simulation methods based on MCMC [27] are general sampling methods to obtain samples from
the joint posterior distribution. For quick inferences and large data sets, where iterative simulation
algorithms are too slow, modal and distributional approximation methods can be more efficient and
approximate alternatives.

2.4. Second-Order Polynomial MOdel

This is the most extended model in practical camera characterization. The N-dimensional
collections of random observations X, Y , and Z are the CIE color variables, where Xi, Yi, and Zi
represent the color coordinates of the ith order observation i (i = 1, · · · , N). Each X, Y , and Z
N-dimensional variable is considered to follow a normal distribution depending on an underlying
second-order polynomial function f and noise variance σ2,

p(X| f x, σx) = N (X| f x, σ2
x I)

p(Y | f y, σy) = N (Y | f y, σ2
y I) (7)

p(Z| f z, σz) = N (Z| f z, σ2
z I)

where I is the N × N identity matrix. The latent second-order polynomials functions f x, f y, and f z
take the form
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f x = a0 + a1 · R + a2 ·G + a3 · B + a4 · R ·G + a5 · R · B + a6 ·G · B + a7 · R2 + a8 ·G2 + a9 · B2

f y = b0 + b1 · R + b2 ·G + b3 · B + b4 · R ·G + b5 · R · B + b6 ·G · B + b7 · R2 + b8 ·G2 + b9 · B2 (8)

f z = c0 + c1 · R + c2 ·G + c3 · B + c4 · R ·G + c5 · R · B + c6 ·G · B + c7 · R2 + c8 ·G2 + c9 · B2

where the vectors a = a1, . . . , a9, b = b1, . . . , b9 and c = c1, . . . , c9 represent the polynomial coefficients,
and R, G, and B are the N-dimensional variables in the input RGB space.

The likelihood functions of the variables X, Y and Z (given the coefficients a, b, c), the variance
parameters σ2 = σ2

x , σ2
y , σ2

z , and the variables R, G and B, take the form

p(X|a, σx, R, G, B) =
N

∏
i
N (Xi|a, σ2

x , Ri, Gi, Bi)

p(Y |b, σy, R, G, B) =
N

∏
i
N (Yi|b, σ2

y , Ri, Gi, Bi) (9)

p(Z|c, σz, R, G, B) =
N

∏
i
N (Zi|c, σ2

z , Ri, Gi, Bi)

where the subscript i represents the ith observed value.

Bayesian Inference

The joint posterior distributions are proportional to the product of the likelihood and
prior distributions:

p(a, σ2
x |X) ∝ p(X|a, σ2

x , R, G, B)p(a)p(σ2
x)

p(b, σ2
y |Y) ∝ p(Y |b, σ2

y , R, G, B)p(b)p(σ2
y )

p(c, σ2
z |Z) ∝ p(Z|c, σ2

z , R, G, B)p(c)p(σ2
z )

We set vague prior distributions p(a) = N (a|0, 1000), p(b) = N (b|0, 1000), p(c) = N (c|0, 1000),
and p(σ) = N+(σ|0, 1) for the hyperparameters a, b, c, and σ, respectively, based on prior knowledge
about the magnitude of the parameters.

Predictive inference for new function values X̃, Ỹ , and Z̃ for a new sequence of input values R̃, G̃,
and B̃ can be computed by integrating over the joint posterior distributions

p(X̃|X) =
∫

p(X̃|a, σ2
x , R̃, G̃, B̃)p(a, σ2

x |X)dadσ2
x

p(Ỹ |Y) =
∫

p(Ỹ |b, σ2
y , R̃, G̃, B̃)p(b, σ2

y |Y)dbdσ2
y

p(Z̃|Z) =
∫

p(Z̃|c, σ2
z , R̃, G̃, B̃)p(c, σ2

z |Z)dcdσ2
z

Simulation methods based on MCMC are used for estimating both the parameter posterior
distribution and the posterior predictive distribution of these models.

2.5. Model Checking and Comparison

For model assessment, common checking procedures of normality, magnitude and tendencies
on the fitted and predicted residuals are used. Fitted residuals can be useful for identifying outliers
or misspecified models and give us the goodness of the fit for the sampling patches. Furthermore,
the performance of each model was assessed using the LOOCV approach [39]. The LOOCV procedure
has been previously used in color science multiple times [40–43], although its origins can be traced back
to early practical statistics methods [39] and is routinely used in modern data science applications [44].



Sensors 2019, 19, 4610 8 of 22

In our study, the LOOCV consists of setting aside an individual patch and calculating the
prediction model. Then, the predicted value is compared to its observed value which gives a measure
of the model predictive accuracy. This allows obtaining an average of the predictive accuracy for
unobserved patches as well as individual quality indicators for each color patch.

In addition to the residual analysis, it is required the assessment of the models using colorimetry
metrics [1]. Also, a LOOCV procedure was conducted to assess the predictive performance in terms
of color differences. In classical colorimetry, color difference metrics are determined using formulas
based on the CIELAB color space, such as ∆E∗ab, also known as the CIE76 color difference [35].

The CIE XYZ color space is not uniform, that is, equal distances in this space do not represent
equally perceptible differences between color stimuli. Contrarily, CIELAB coordinates are nonlinear
functions of CIE XYZ, and more perceptually uniform than the CIE XYZ color space [35,45]. The ∆E∗ab
between the theoretical tristimulus coordinates against the predicted values are computed, which
gives a measure of the model adjustment in a well-defined color metric.

Other modern color difference formulas which take ∆E∗ab as a reference have been developed
by the CIE. An example is the CIEDE2000 formula, which includes corrections for variations in
color difference perception due to lightness, chroma, hue, and chroma–hue interaction [46–48].
It must be indicated that CIEDE2000 was designed for specialized industry applications [49]. To use
the CIEDE2000 formula, a number of specific requirements have to be fulfilled. Some of these
requirements are the sample size (greater than 4 degrees), sample–sensor separation (contact),
background field (uniform, neutral gray), and sample homogeneity (textureless). Usually, these
conditions cannot be guaranteed in the usual working environments found in rock art documentation.
Therefore, it seems more appropriate to use the CIE76 formula herein instead of the CIEDE2000 to
determine color differences.

∆E∗ab is calculated as the Euclidean distance between two color stimuli in CIELAB coordinates

∆E∗ab =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (10)

where ∆L∗, ∆a∗, and ∆b∗ are the differences between the L∗, a∗, and b∗ coordinates of the two
color stimuli.

Numerous guides seek to quantify the maximum value allowed (tolerance) for an acceptable
color difference so that it is imperceptible by human vision. This concept is known as ”Just Noticeable
Difference” (JND). A good reference is found in the Metamorfoze guideline, which employs the CIE76
color difference formula, and establishes a color accuracy of 4 CIELAB units [50].

2.6. Induced Noise Analysis

The radiometric response of a digital camera is the outcome of a number of factors, such as
electromagnetic radiation, sensor electronics, the optical system, and so forth [51–55]. The noise
present on a single image is basically composed of two components: the photoresponse noise of every
sensor element (pixel) and the spatial nonuniformity or fixed pattern noise of the sensor array [56,57].

The nonlinear transformation functions in camera characterization models modify the input data
which are themselves affected by noise. In the camera characterization, noise is transferred from the
original image to the characterized image and transformed in different ways. In this paper, the analysis
of noise is carried out by comparing the coefficients of variation in the original and the characterized
images. The noise assessment was conducted on four selected patches of the color checker (C7, D7, C8,
and D8).
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3. Results and Discussion

3.1. Model Performance Assessment

For model assessment we processed the CIE XYZ residuals and the ∆E∗ab color differences values
after the characterization procedure.

3.1.1. CIE XYZ Residuals

Table 1 summarizes the fitted CIE XYZ and LOOCV residuals values achieved after the
characterization process for the two cameras used in the study. Also, the histograms of the fitted
and LOOCV residuals in both images are in Figure 3. Although both methodologies give satisfactory
results and fit appropriately to the input RGB data, all summary statistics and histograms clearly show
that GP outperforms the second-order polynomial regression model in both images. The standard
deviation values, which represent the mean error, as well as the maximum and minimum residuals,
are lower using the GP process than the second-order polynomial model.

Table 1. Fitted CIE XYZ (Res) and LOOCV residuals (RL) values after the characterization.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial

CIE X CIE Y CIE Z CIE X CIE Y CIE Z
Res RL Res RL Res RL Res RL Res RL Res RL

Max. 1.88 4.53 1.80 4.38 1.28 3.66 7.02 7.36 6.87 7.18 4.80 5.09
Min. −2.48 −4.59 −3.21 −5.80 −1.50 −4.54 −4.97 −5.46 −4.70 −5.15 −3.59 −3.93

Std. Dev. 0.73 1.39 0.77 1.48 0.49 1.01 1.77 1.92 1.82 1.98 1.29 1.38

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial

CIE X CIE Y CIE Z CIE X CIE Y CIE Z
Res RL Res RL Res RL Res RL Res RL Res RL

Max. 2.20 4.42 1.98 3.71 1.54 3.33 7.08 7.53 6.48 6.90 3.15 3.35
Min. −3.72 −4.25 −2.63 −3.84 −1.35 −1.80 −4.25 −4.69 −3.12 −3.31 −1.96 −2.45

Std. Dev. 0.94 1.46 0.78 1.20 0.45 0.74 1.75 1.92 1.45 1.58 0.49 0.86

Thus, given the results achieved using the GP, a notable improvement can be observed compared
with the common second-order polynomial models, that is, a higher adjustment correlation coefficient
and a greater predictive capacity were achieved. An improvement in the predictive capacity (LOOCV
residuals) implies a better model generalization, that is, a better capacity for interpolation and
extrapolation. This is a key aspect in the characterization procedure, as the output digital image
is the result of the application of the model established.

3.1.2. ∆E∗ab Color Differences

The ∆E∗ab color differences (Equation (10)) obtained between the theoretical and predicted values
allowed us to assess the colorimetric quality achieved after the adjustment. The results obtained for the
∆E∗ab are shown numerically in the Table 2. Also, they can be consulted graphically in the Figure 4 (for
the Sigma SD15) and Figure 5 (for the Fujifilm IS PRO), where the red line delimits the JND tolerance
established in 4 CIELAB units.



Sensors 2019, 19, 4610 10 of 22

Sigma SD15 image
Gaussian process

(a) (b)
Second-order polynomial

(c) (d)

Fujifilm IS PRO image
Gaussian process

(e) (f)
Second-order polynomial

(g) (h)

Figure 3. CIE XYZ residuals histograms after the adjustment: (a,b,e,f) Gaussian process; (a,d,g,h);
Second-order polynomial; (a,c,e,g); CIE XYZ residuals; (b,d,f,h); LOOCV residuals.
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Table 2. ∆E∗ab summary of the statistical results after the characterization.

Sigma SD15 Image Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial Gaussian Process Second-Order Polynomial

∆E∗ab LOOCV ∆E∗ab LOOCV ∆E∗ab LOOCV ∆E∗ab LOOCV
Max. 8.251 8.906 15.086 17.814 8.213 8.409 12.634 13.021
Mean 1.755 2.440 2.561 2.751 1.817 2.285 2.753 2.958

Median 1.403 2.180 2.135 2.205 1.486 1.913 2.101 2.281
Std. Dev. 1.479 1.863 1.836 2.022 1.457 1.729 2.186 2.305

Sigma SD15 image

(a)

(b)

Figure 4. Sigma SD15 ∆E∗ab values for the X-Rite patches: (a) ∆E∗ab; (b) LOOCV ∆E∗ab.

Under a strict colorimetric criterion, the average and median values for ∆E∗ab obtained using both
regression models are less than 3 CIELAB units, that is, lower than the JND. However, the ∆E∗ab color
differences obtained confirm that the adjustment based on the GP model offers better results than the
second-order polynomial regression for both cameras. The values achieved for the mean and median
∆E∗ab in both images are similar using the second-order polynomial regression model.

It is clearly observed that the main improvement is in the maximum ∆E∗ab values obtained.
Although the average for LOOCV ∆E∗ab is slightly lower using the GP, the maximum values for LOOCV
∆E∗ab decreases significantly using this model. The maximum values obtained are 17.814 and 13.021
for the Sigma SD15 and the Fujifilm IS PRO image, respectively, using a second-order polynomial
regression model, whereas the maximum values for LOOCV ∆E∗ab using the GP are ~8 CIELAB
units (Table 2).

Moreover, the number of patches with ∆E∗ab greater than 4 units (JND) clearly decrease for both
images after applying the GP (Figures 4 and 5). Thus, the GP improvement achieved in the adjustment
is noticeable in colorimetric terms, reaching lower magnitude residuals (Table 1) and ∆E∗ab values
(Table 2), which means better model fits and higher predictive characteristics.
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Fujifilm IS PRO

(a)

(b)

Figure 5. Fujifilm IS PRO ∆E∗ab values for the X-Rite patches: (a) ∆E∗ab; (b) LOOCV ∆E∗ab.

3.1.3. Analysis of Color Chart Patches

The use of the LOOCV procedure in this study is twofold: it allows an overall model checking as
well as analyzing patches used in the camera characterization at an individual level. Values for ∆E∗ab
less than 4 CIELAB units (JND value represented by the red line in the plots in Figures 4 and 5) are
achieved for the majority of the patches. Also, it is clearly observed that the Fujifilm IS PRO image
gives better results than the Sigma SD15 image, particularly after applying the GP (cf. Figure 5b
with Figure 4b).

Table 3 displays the percentage of patches with a LOOCV ∆E∗ab greater than 4 CIELAB units for
the different regression models performed. Once again, the GP model gives slightly better results than
the second-order polynomial model, especially for the Fujifilm IS PRO digital camera.

Table 3. Percentage of patches with LOOCV ∆E∗ab > 4 CIELAB units.

Sigma SD15 Fujifilm IS PRO

Patches % Patches %

Model Gaussian process 12 8.57 11 7.86
Second-order 19 13.57 31 22.14

LOOCV Gaussian process 23 16.43 22 15.71
Second-order 20 14.29 31 22.14

Particularly, there are eight patches with the highest ∆E∗ab values in both images regardless of the
model applied (A8, B4, B9, E4, G4, H3, H9, and M3). These patches can be easily identified on the X-rite
ColorChecker (Figure 6a) as well as on the CIE chromaticity diagram (Figure 6b). The worst results are
found in patches E4, H9, B4, and G4 (blue, green, purple, and red, respectively). Note that patches
E4 (blue), G4 (red), and H9 (green) are near the vertices of the triangle that delimits the color gamut,
that is the chromatic domain, of the sRGB color space (white line plotted in picture b in Figure 6).
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(a) (b)

Figure 6. Patches with higher LOOCV ∆E∗ab values: (a) on X-Rite ColorChecker; (b) on CIE
chromaticity diagram.

Thus, the nature and colorimetric characteristics of the color patches used as training sample set
have an effect on the overall accuracy of the model used [58]. The colors represented with the highest
∆E∗ab values in these patches correspond to saturated colors that are commonly found in artificial
or industrial objects, but not in natural scenes such as those found in archaeological applications.
We have to keep in mind that, usually, color charts used as colorimetric reference are designed
mainly for industrial processes or photographic applications. Therefore, purple (B4, H3, and M3),
blue (E4), green (H9 and B9), and bright red (G4) colors will not likely be present in archaeological
scenes. Consequently, these color patches could be removed from the training sample during the
characterization process without affecting the global accuraccy.

Previous research show that a proper selection of the patches, such as the skin tone colors, provides
suitable results for camera characterization procedure applied in rock art paintings [59,60]. In Spanish
Levantine rock art paintings, it is more frequent to find reddish or black colors (only dark reds in the
Cova dels Cavalls) in pigments and skin tone or brown colors in the support. It is clearly observed
that these patches work correctly regardless of the regression model used.

3.1.4. Induced Noise Results

The two cameras used in this study have different built-in sensors. The Sigma SD15 camera
incorporates a Foveon R©X3 sensor, whereas the Fujifilm IS PRO carries a Super CCD sensor. The values
of the variation coefficients were computed and compared between the input RGB image and the
output sRGB characterized image for the two mathematical transformations. The pixel variability
evaluation was conducted in a reduced group of ColorChecker patches with homogeneous reflectance
(C7, D7, C8, and D8).

Table 4 shows the variation coefficients for the raw RGB digital values from the original images
before the camera characterization (Figure 7a,e). It is informative to contrast these values with
the variation coefficients obtained for the CIE XYZ (Table 5) and sRGB transformed data (Table 6)
respectively. For a brief overview, Table 7 shows a summary of the variation coefficients obtained.

Moreover, as the degree of the polynomial model used can affect the results achieved in terms
of noise, we included the comparison of the variation coefficients for the linear model as well [61].
Our outcomes show basically the same results in the second-order and linear models, which are still
slightly worse than the GP result (cf. Tables 5 and 6). The trend found in the induced noise results,
that is, the noise depends on the sensor and therefore it is different for each camera regardless of the
mathematical model.
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The coefficients obtained for the digital values on the original image indicate that the noise
generated directly by the Foveon R©X3 sensor is greater than noise in the SuperCCD (Table 4).
Apparently, the SuperCCD sensor seems to respond better in the raw data collection stage in terms of
noise variability.

Also, the overall results confirm the superior behavior of the SuperCCD when compared with
the Foveon R©X3 sensor (cf. Tables 5 and 6). Table 7 shows that none of the regression models applied
to the Fujifilm IS PRO image increased the original variability coefficients. In fact, the coefficients
decrease slightly after applying the GP; with the opposite behavior present in the Foveon R©X3 sensor.
Both, the CIE XYZ and sRGB coefficients obtained increase significantly in the Foveon R©X3 sensor,
regardless of the characterization model used.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Noise comparative detail sRGB images after characterization: (a–d) Sigma SD15;
(e–h) FujifilmIS PRO; (a,e) Original raw images; (b,f) Gaussian process; (c,g) Second-order polynomial
model; (d,h) Linear model.

Table 4. Noise variation coefficients of the original RGB digital numbers.

Sigma SD15 Image Fujifilm IS PRO Image

Patch R G B R G B

C7 0.020488 0.014114 0.009923 0.011586 0.01077 0.01223
C8 0.036863 0.019129 0.017545 0.013394 0.01170 0.00851
D7 0.018434 0.016139 0.016432 0.008498 0.01294 0.01039
D8 0.015118 0.014687 0.015908 0.010909 0.01162 0.00933

Table 5. Variation coefficients of the output CIE XYZ coordinates.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial Linear

Patch X Y Z X Y Z X Y Z

C7 0.03673 0.01413 0.03559 0.02447 0.02620 0.03129 0.01988 0.04851 0.03192
C8 0.01290 0.06014 0.09700 0.01360 0.05988 0.09379 0.01916 0.04617 0.10635
D7 0.05272 0.05006 0.05985 0.07844 0.03741 0.06928 0.03755 0.05664 0.06164
D8 0.01933 0.04773 0.08251 0.01365 0.05254 0.07137 0.01632 0.04362 0.07257

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial Linear

Patch X Y Z X Y Z X Y Z

C7 0.00824 0.01098 0.00967 0.00905 0.01275 0.01009 0.01037 0.01197 0.00969
C8 0.01054 0.01162 0.01730 0.01104 0.01179 0.01782 0.00983 0.01078 0.01831
D7 0.01058 0.01286 0.01040 0.00929 0.01163 0.01066 0.00812 0.01156 0.00994
D8 0.00552 0.01033 0.01639 0.00653 0.01080 0.01632 0.00618 0.00916 0.01390
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Table 6. Variation coefficients of the output sRGB digital numbers.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial Linear

Patch sR sG sB sR sG sB sR sG sB

C7 0.09597 0.02311 0.01805 0.01602 0.02768 0.07291 0.01751 0.03312 0.07113
C8 0.02104 0.06967 0.07489 0.07404 0.06745 0.01955 0.08095 0.05876 0.02398
D7 0.01982 0.03815 0.03506 0.03982 0.03447 0.04274 0.03732 0.03072 0.03744
D8 0.03110 0.05567 0.05300 0.04821 0.05360 0.02538 0.04778 0.04715 0.02661

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial Linear

Patch sR sG sB sR sG sB sR sG sB

C7 0.01693 0.00721 0.00478 0.00528 0.00825 0.01490 0.00782 0.00954 0.01624
C8 0.00712 0.00884 0.01200 0.01286 0.00922 0.00737 0.01034 0.00803 0.00671
D7 0.00462 0.00746 0.00585 0.00588 0.00748 0.00531 0.00969 0.00632 0.00577
D8 0.00163 0.00767 0.00927 0.00967 0.00776 0.00257 0.00613 0.00696 0.00324

Table 7. Summary of the variation coefficients obtained.

Sigma Fujifilm

SD15 Image IS PRO Image

Original RGB 0.01790 0.01099
Gaussian process CIE XYZ 0.04739 0.01120

sRGB 0.04463 0.00778
Second-order CIE XYZ 0.04766 0.01148

sRGB 0.04349 0.00810
Linear CIE XYZ 0.04774 0.01082

sRGB 0.04271 0.00807

Additionally, Figure 7 displays the noise comparative images as a result of the different color space
transforms during the camera characterization. Greater noise is produced by the Foveon R©X3 sensor
versus the SuperCCD sensor. It is evident that the best results are obtained for the Fujifilm IS PRO
camera in terms of noise (cf. Figure 7b–d,f–h). Obviously, the architecture of each sensor is different,
as well as its characteristics and operation. Therefore, with regard to image noise, the effect produced
by the sensor differs depending on the camera used. It turns out that the digital camera selected for
the photographic work is a crucial aspect to be taken into account in archaeological applications.

3.2. Output sRGB Characterized Images

The original raw images were successfully transformed into the same device-independent color
space by means of the two regression models applied (Figure 8). Both the GP and the second-order
polynomial model gave similar results. Even an experienced observer is unable to perceive differences
between the images generated with the two regression models applied for both SLR digital cameras
(cf. Figure 8c–f). The JND threshold of 4 CIELAB units is suitable in most practical applications
(specifically in this study), and proves that human vision cannot perceive the improvement obtained
with the GP (cf. ∆E∗ab GP and second-order polynomial mean values in Table 2).
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Original and output sRGB characterized images: (a,c,e) Sigma SD15; (b,d,f) Fujifilm IS PRO;
(a,b) Original; (c,d) GP; (e,f) Second-order polynomial model.

3.3. ∆E∗ab Mapping Images

To verify the colorimetric quality achieved using both the GP and the polynomial regression
model, we mapped the ∆E∗ab between the two characterized sRGB images obtained (Figure 9).
The predominant green color (∆E∗ab < 2 units) observed in the mapping images shows that the results
obtained are very satisfactory regardless the model applied. Again, the best results were obtained for
the Fujifilm IS PRO image (Figure 9b). Nevertheless, for common applications, both regression models
can be used since they offer successful results.

The detail of the color chart shown in Figure 9 displays some patches marked in red, that is,
with ∆E∗ab color differences values greater than 4 CIELAB units (JND). The red color is also found on
the edge of the ColorChecker. Indeed, it was on the color chart background support where we found
most of the red pixels. It is well known that color depends on the incident lightin; thus, changes in
geometry produce local changes of illumination in some parts of the scene. This means that in certain
areas the initial homogeneous lighting hypothesis is not fulfilled, and the regression model does not fit
well to the input data in shaded areas. This circumstance also reflects the importance of illumination
in colorimetry.
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(a) (b)

Figure 9. ∆E∗ab difference mapping images between GP and second-order polynomial characterization
models: (a) Sigma SD15; (b) Fujifilm IS PRO.

3.4. Rock Art Specimen Detail Images

We also compared the results obtained in two different rock art details present on the scene: the
wounded animal detail (right upper corner); and the hunting scene (lower left corner) (Figure 10).
For each detail selected from the scene we show the clip of the original image, the output (characterized)
image after applying the different regression models, as well as the color difference mappings between
both models. In order to facilitate the identification of the specimens, a mask has been applied to the
latter image (Figures 11 and 12).

(a) (b)

Figure 10. Selected rock art scenes: (a) SigmaSD15; (b) Fujifilm IS PRO. (A) Wounded animal detail.
(B) Hunting scene.

Better results are observed in the images characterized with the Fujifilm IS PRO. The color
differences ∆E∗ab obtained for the pigments were under 2 CIELAB units, hence the predominant green
color (Figures 11g and 12g). A limited set of pixels marked in red (∆E∗ab > 4 CIELAB units) are
observed in areas where the homogeneous lighting hypothesis is not fulfilled due to geometry changes
in the support (Figure 11g). On the other hand, the yellow values (∆E∗ab ~ 2–3 units) present in the
Sigma SD15 image can be due to the fact that the GP slightly improves the camera characterization
(Figures 11c and 12c). Therefore, it is important to previously make a correct selection of the camera to
be used in the characterization process for archaeological research.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Wounded animal images: (a–d) Sigma SD15; (e–h) Fujifilm IS PRO; (a,e) Original image;
(b,f) GP characterized image; (c,g) ∆E∗ab comparative image; (d,h) Second-order characterized image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Hunter scene images: (a–d) Sigma SD15; (e–h) Fujifilm IS PRO; (a,e) Original image; (b,f) GP
characterized image; (c,g) ∆E∗ab comparative image; (d,h) Second-order characterized image.

It can be seen that the images have been successfully characterized, independently of the
regression model used. All details in the characterized images present the same ranges of colors,
as well as homogeneous lighting for both cameras (cf. Figure 11b,d,f,h; Figure 12b,d,f,h).

4. Conclusions

The use of digital images to support cultural heritage documentation techniques has undergone
unprecedented advance in the last decades. However, the original RGB data provided by digital
cameras cannot be used for rigorous color measurement and communication. To face the lack of
colorimetric rigor of the input RGB data recorded by the sensor, it is necessary to conduct a colorimetric
camera characterization; alternatively, color profiles can also be used.

In this paper, the experimental assessment of a GP model has been carried out, and compared with
a common second-order polynomial model. Although both regression models yielded good results,
the use of the GP provides an improvement in colorimetric terms and fits better to the original raw
RGB data. The lowest CIE XYZ residual values achieved for the adjustment and ∆E∗ab color differences
supports the use of a GP as a proper model for characterizing digital cameras. However, for practical
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purposes, the final sRGB characterized images derived from both the GP and the second-order
polynomial model can be used with success in cultural heritage documentation and preservation tasks.

Additionally, the GP regression model has been tested on two SLR digital cameras with different
built-in sensors to analyze the performance of the model in terms of pixel variability. The noise errors
achieved show that similar results were obtained regardless the regression model used. However,
the results also reveal that the induced noise highly depends on the camera sensor, which is clearly
significant in the Foveon R©X3 but not in the Super CCD. Thus, the correct choice of the digital camera
is a key factor to be taken into consideration in the camera characterization procedure.

It is observed that the camera characterization procedure allows clear identification of the
different pigments used in the scene, a proper separation from the support, the achievement of more
accurate digital tracings, and accurate color measurement for monitoring aging effects on pigments.
This methodology proves to be highly applicable not only in cultural heritage documentation tasks,
but in any scientific and industrial discipline where a correct registration of the color is required.
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