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Visceral fat has long been associated
with the development of insulin

resistance. Although the mechanism is
not well understood, it has been sug-
gested that an increase in this fat depot
results in an elevation in portal vein levels
of free fatty acids and/or adipokines,
adversely affecting hepatic glucose pro-
duction. Overactivity of the endocanna-
binoid system is closely related to
abdominal obesity and type 2 diabetes,
suggesting CB1 receptor antagonism may
exert its beneficial effects by decreasing
visceral fat mass. A recent study published
from our laboratory explores the role of
chronic CB1 receptor antagonism and the
longitudinal changes in insulin sensitivity
and fat deposition in the canine model.

Obesity has long been associated with
insulin resistance and hyperinsulinemia.1

Studies have demonstrated an increase in
hyperinsulinemia and insulin resistance
with weight gain that is reversed with
weight loss, suggesting a cause and effect
relationship.2 Although the relationship
between obesity and the development of
insulin resistance has been well documen-
ted, the exact role that adipose tissue may
play in the pathogenesis of this disease has
not yet been elucidated. There is accu-
mulating evidence that adipose tissue,
particularly visceral (also referred to as
central, omental or abdominal) adipose,
may be critical in the development of
insulin resistance. Visceral fat has been
shown to be more lipolytically active than
subcutaneous fat in the presence of
catecholamines, in addition to being more
resistant to the anti-lipolytic actions of
insulin. As originally proposed by Vague3

and expanded by others,4-6 an increase in
central abdominal fat tissue can lead to an
elevation in the portal vein concentration
of free fatty acids (FFA), leading to an
increase of FFA delivered directly to the
liver thereby driving glucose production
upward. In addition to its lipolytic
properties, visceral fat has been found to
have greater gene expression of more
proinflammatory adipokines than subcuta-
neous fat,7 and there is also a particularly
strong negative correlation between vis-
ceral adiposity and adiponectin levels.8

The endocannabinoid system may play
a key role in the link between adiposity
and insulin resistance. Overactivity of the
endocannabinoid system is intimately
related to abdominal adiposity and type
2 diabetes, and chronic CB1 receptor
antagonism has been shown to alleviate
both obesity and insulin resistance.
Recently, we reported a significant
improvement in hepatic insulin resistance
in dogs rendered obese and insulin
resistant with a high fat, hypercaloric diet
after only two weeks of treatment with a
CB1 receptor antagonist, rimonabant
(RIM).9 Hepatic insulin sensitivity was
almost completely restored to pre-diet
levels while visceral and subcutaneous fat
depots were virtually unaltered and rel-
atively little change in peripheral insulin
sensitivity. However, there was a concom-
itant increase in plasma adiponectin levels
which occurred with RIM that was not
observed in the placebo animals, suggest-
ing that the improvement in hepatic
insulin sensitivity observed with CB1

receptor antagonism may be mediated by
adiponectin.

Although it is well known that there
is a strong association between visceral
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adiposity and insulin resistance, a causal
relationship has yet to be determined. It
has been also been considered that insulin
resistance per se may cause visceral fat
accumulation such that insulin resistance
of subcutaneous fat would result in a
reduction of fatty acid uptake by this fat
depot, resulting in increased fat deposition
in visceral stores. Alternatively, it had been
thought that both visceral fat accumula-
tion and insulin resistance may be related
to another biological process.10 Studies
utilizing animal models with a selective
reduction in visceral fat have shown that
decreasing omental fat volume results in an
improvement in insulin resistance, sug-
gesting a direct relationship between this
fat depot and insulin sensitivity.11-13

However, reports in human studies have
been conflicting.14-16 In order to examine
the putative relationship between visceral
fat and insulin sensitivity, we employed
the use of a CB1 receptor antagonist,
rimonabant. Previous studies conducted in
humans17-19 have found that RIM treat-
ment results in favorable changes in
cardiometabolic risk factors that were
associated with significant reductions in
waist circumference—indicating a decrease
in visceral adiposity. These findings sug-
gest that rimonabant effects on insulin
resistance may be secondary to a reduction
in visceral fat. However, in our study, we
found a profound effect of RIM on hepatic
resistance with only a minimal change in
visceral fat, suggesting that the improve-
ment in insulin sensitivity must be due to
other mechanisms. Our study also revealed
a highly significant increase in plasma
adiponectin in the RIM treated animals
that occurred in concert with the improve-
ment in insulin sensitivity as well as a
marked increase in the expression of liver
adiponectin receptors (ADR1 and ADR2).
Additionally, we observed increased
expression of other mediators of hepatic

lipid oxidation such as canitine palmitoyl-
transferase I and peroxisome proliferator-
activated receptor-a. Together, these data
indicate that RIM has a direct effect on the
liver mediated by adiponectin, to increase
fat oxidation. As discussed in our publica-
tion, other studies have found that
activation of hepatic CB1 receptors
increases hepatic gene expression of the
sterol regulatory element-binding protein-
1c, a lipogenic transcription factor, and its
targets, acetyl-CoA carboxylase-1 and fatty
acid synthase,20 thereby contributing to
diet-induced steatosis and associated hor-
monal and metabolic changes,21 indicating
that there may be a prevalent role of
peripheral CB1 receptors in the devel-
opment of insulin resistance. A more
recent study utilizing hepatic explants to
examine the direct effect of CB1 receptor
antagonism on the liver demonstrated that
RIM treatment increased fat oxidation,22

confirming a direct effect of RIM on the
liver. Although CB1 receptor antagonism
is well known for its central effects in
mediating food intake and weight loss,
increasing evidence has shown that CB1

receptors in peripheral tissues may also
play a role in directly regulating metabolic
processes, giving further evidence that in
our study, the improvement in insulin
sensitivity was not directly related to the
modest decrease in fat accumulation but
due to the action of RIM on increasing
adiponectin.

It has also been found that adipocyte
cell size may play a determining role in
determining insulin sensitivity, independ-
ent of cell number. In a separate publica-
tion23 from our laboratory, adipocytes
isolated from both visceral and subcuta-
neous fat depots from placebo and RIM
animals were examined for qualitative
changes in cell size and distribution that
are undetectable by magnetic resonance
imaging (MRI). We found that fat feeding

altered the adipocyte size distribution in
both visceral and subcutaneous fat, result-
ing in the appearance of very large cells
(. 75 mm diameter). However, only the
appearance of these hypertrophic adipo-
cytes in visceral fat was found to be a
significant predictor of hepatic insulin
resistance. RIM treatment reversed the
effects of high fat diet in both depots by
eliminating the population of large adipo-
cytes. Interestingly, while MRI showed
volume expansion in both fat depots, we
found qualitative differences at the cellular
level that could not be detected by MRI.
This suggests that in addition to absolute
volume of adipose tissue playing a major
role in the development of hepatic insulin
resistance, size and distribution of adipo-
cytes in the fat compartment are also
important.

In summary, our study found an
almost complete restoration of hepatic
insulin sensitivity when the CB1 receptor
antagonist rimonabant was administered
to animals rendered obese by a high fat
hypercaloric diet. This improvement
occurred in the absence of a significant
change in absolute visceral fat volume,
indicating that there may be a direct
effect of RIM on the liver mediated by
adiponectin. RIM’s effect on adipose cell
size and distribution in the visceral
adipose tissue may also be a significant
contributor in ameliorating hepatic insu-
lin resistance. It would be of great
interest to selectively examine the direct
effects of RIM on peripheral tissues such
as the liver and adipose in the insulin
resistant dog model. Future studies
comparing the effects of a peripheral vs.
central CB1 antagonist will be necessary
to better distinguish whether the meta-
bolic benefits of chronic endocanna-
binoid blockade are due primarily to
diminished central regulation or decreased
peripheral action.
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