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Genomic organization and gene expression of
the multiple globins in Atlantic cod: conservation
of globin-flanking genes in chordates infers the
origin of the vertebrate globin clusters
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Abstract

Background: The vertebrate globin genes encoding the a- and b-subunits of the tetrameric hemoglobins are
clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a
strong anchor for inferring common ancestry of the globin clusters. In fish, the number of a-b-linked globin genes
varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions.
Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin
repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions.

Results: The Atlantic cod genome was shown to contain 14 globin genes, including nine hemoglobin genes
organized in two unlinked clusters designated b5-a1-b1-a4 and b3-b4-a2-a3-b2. The diverged cod hemoglobin
genes displayed different expression levels in adult fish, and tetrameric hemoglobins with or without a Root effect
were predicted. The novel finding of maternally inherited hemoglobin mRNAs is consistent with a potential role
played by fish hemoglobins in the non-specific immune response. In silico analysis of the six teleost genomes
available showed that the two a-b globin clusters are flanked by paralogs of five duplicated genes, in agreement
with the proposed teleost-specific duplication of the ancestral vertebrate globin cluster. Screening the genome of
extant urochordate and cephalochordate species for conserved globin-flanking genes revealed linkage of RHBDF1,
MPG and ARHGAP17 to globin genes in the tunicate Ciona intestinalis, while these genes together with LCMT are
closely positioned in amphioxus (Branchiostoma floridae), but seem to be unlinked to the multiple globin genes
identified in this species.

Conclusion: The plasticity of Atlantic cod to variable environmental conditions probably involves the expression of
multiple globins with potentially different properties. The interspecific difference in number of fish hemoglobin
genes contrasts with the highly conserved synteny of the flanking genes. The proximity of globin-flanking genes in
the tunicate and amphioxus genomes resembles the RHBDF1-MPG-a-globin-ARHGAP17-LCMT linked genes in man
and chicken. We hypothesize that the fusion of the three chordate linkage groups 3, 15 and 17 more than 800
MYA led to the ancestral vertebrate globin cluster during a geological period of increased atmospheric oxygen
content.
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Background
Hemoglobin plays a critical role in both terrestrial and
aquatic animals by transporting oxygen from the
respiratory surface to the inner organs. The functional
complexity and evolutionary adaptation of this heme-
containing molecule to different environments has
therefore attracted researchers for more than a half-
century. In jawed vertebrates, or gnathostomes, the
hemoglobin tetramer consists of two pairs of a- and b-
globins, which probably arose by duplication of a sin-
gle primordial globin gene about 500-570 million years
ago (MYA) [1,2]. Whereas a- and b-globin genes are
juxtaposed in teleost fish, birds and mammals are
characterized by unlinked clusters of a- and b-globin
genes, which in mammals are arranged in the order of
their expression during ontogeny [3,4]. Based on the
conservation of the globin-flanking genes, including
MPG and c16orf35, all gnathostomes examined share a
common globin cluster referred to as the MC locus [5]
corresponding to the a-globin cluster in placental
mammals and chicken. Silencing of the b genes in the
ancestral MC-a-b cluster has apparently also occurred
in non-amniotic species, such as pufferfish, whereas a
single b-like ϖ-globin is retained in the a cluster of
marsupials and monotremes [6-8]. The teleost-specific
genome duplication event 350-400 MYA probably gave
rise to the second fish a-b globin cluster flanked by
ARHGAP17, LCMT and AQP8 [5,8]. It should be
noted that this LA locus lacks globin genes in tetra-
pods, but is positioned on the a-containing chromo-
some 16 and 14 in man and chicken, respectively [5].
The amniotic b-globin cluster is thought to have origi-
nated from the transposition of a b gene copy into a
region of olfactory receptor genes in their ancestor
[8-10].
In contrast to the linked a-b globin pairs identified in

Xenopus, the fish a-b pairs are commonly organized
head-to-head or tail-to-tail with respect to transcriptional
polarity [11-16]. These configurations probably arose
from an inversion of one of the paired a-b genes in an
ancestral ray-finned fish, thus resembling the reported
case of gene inversion within the human b-globin cluster
[17]. The structural and functional diversity of the multi-
ple hemoglobins in teleosts strongly indicates that they
have experienced a major evolutionary pressure to exe-
cute their oxygen-transporting function under highly
variable physico-chemical conditions [18-20]. The selec-
tive forces have apparently resulted in the loss of hemo-
globin genes in the white-blooded Antarctic icefishes
(Channichthyidae) to reduce the blood viscosity at stable
subzero temperatures [21-23].
The genomic organization of the fish a-b globin clus-

ters has only been investigated in the model species

pufferfish, zebrafish and medaka [5,6,8,10,15,24]. Atlan-
tic cod is a marine cold water species being widely dis-
tributed from the sea surface to depths of 600 m in the
Arctic and temperate regions of the North Atlantic
Ocean, including the low saline Baltic Sea. Adaptation
of the different cod populations to the varying physico-
chemical conditions seems to involve hemoglobins with
highly pH-sensitive oxygen affinities (Root effect) to
adjust the swimming bladder to variable pressure during
vertical migrations [25,26], together with the novel fea-
ture of expressing polymorphic variants with different
oxygen-binding properties [27]. A variable number of
cod hemoglobin genes and allelic variants have been
reported in Norwegian, Icelandic and Canadian popula-
tions [27-29]. Here, we screened the draft cod genome
[30] and identified nine a- and b-globin genes, which
are organized in two unlinked clusters flanked by highly
conserved syntenic regions. We document close linkage
between the conserved globin-flanking genes in extant
cephalochordate and urochordate species, and hypothe-
size that the fusion of three chordate chromosomes
formed the ancestral vertebrate globin cluster more than
800 MYA.

Results
Identification of cod globin clusters
PCR primers were designed and employed to identify
a-b-linked globin genes from genomic DNA, but this
strategy resulted only in the amplification of the head-
to-head organized a1-b1 pair (Figure 1). We therefore
screened an Atlantic cod Bacterial Artificial Chromo-
some (BAC) library for a- and b-globin genes. Pyrose-
quencing of two positive BAC clones respectively
resulted in 33,889 and 32,029 reads, which were
assembled into 60 (BAC1) and 46 contigs (BAC2). Mul-
tiple hemoglobin genes and conserved globin-flanking
genes were identified by performing BLAST searches of
the contigs using the pufferfish globin loci as query
sequences. Finally, the most updated draft sequences
from the cod genome project (http://www.codgenome.
no) were screened to confirm the gene sequences identi-
fied in the BAC clones, and the genomic organization of
the hemoglobin loci was determined. The presented
sequence information therefore represents the north-
east Arctic population of Atlantic cod.

Cod MC locus
Four hemoglobin genes designated b5, a1, b1 and a4 were
identified within a 7-kb region of a scaffold spanning 1.7
Mb in the draft cod genome (Figure 1). The hemoglobin
genes show the characteristic structure of three exons and
two introns encoding the predicted a- and b-globins of
143 and 147 amino acids (aa), respectively (Figure 2). The
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paired a-b genes are organized tail-to-tail (b5-a1), head-
to-head (a1-b1) or tail-to-head (b1-a4), and the a1 gene
is transcribed in the opposite direction of the others.
Seven conserved genes, c16orf33, POLR3K, Mgrn1,
AANAT, RHBDF1, MPG and c16orf35, were identified
within a 90 kb region leftwards of the b5-a1-b1-a4 cluster,
while the rightwards flanking region of 80 kb harbors

ANKRD25, DOCK6 and HuC (Figure 1). A single major
regulatory element (MRE; YGCTGASTCAY) was identi-
fied as a reversed motif (ATGACTCAGCA) in intron 5
of RHBDF1 close to a putative GATA binding site.
Whereas paired MREs are located at this position in other
vertebrates examined, a second single MRE motif was
found in intron 9 of the cod Mgrn1 gene. In zebrafish, two

Figure 1 Conserved synteny at the MC locus in teleosts. Genomic organization of the Atlantic cod b5-a1-b1-a4 globin cluster compared
with the orthologous locus in zebrafish, medaka, stickleback and pufferfish. Omitted regions in the zebrafish loci are shown. The boxed genes
are shown above or below the doubled line to indicate rightward and leftward transcriptional direction, respectively. The color codes for gene
names are shown below.

Figure 2 Sequence alignment of the Atlantic cod a-b globins, myoglobin, neuroglobin globin-X and cytoglobin 2. The sequences are based
on the draft genome of the northeast Arctic population of Atlantic cod. Human b-globin is included for comparison. The alignment was optimized by
omitting the N-and/or C-terminal sequences of the non-hemoglobins, and numbers refer to the residues presented. The consensus sequence shows
residues with > 80% identity. Putative residues required for Root effect are boxed. GenBank accession numbers: a1 (ACJ66341), a2 (ACJ66342), a3
(ACV69832), a4 (ACV69835), b1 (ACV69840), b2 (ACJ66344), b3 (ACJ66345), b4 (ACJ66346), b5 (ACV69854). Introns are indicated by arrows.
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additional Mgrn1 genes (ENSARG00000018347,
ENSDARG00000057481) are also linked to the LA globin
locus.

Cod LA locus
The second cod globin cluster was shown to contain
five hemoglobin genes in the order b3-b4-a2-a3-b2
positioned within a region of about 12 kb in a scaffold
spanning 381 kb (Figure 3). The tail-to-head organized
pairs b4-a2 and a3-b2 are transcribed in opposite
directions. The three exons encode the 147-aa long b-
globins, while the predicted a3 contains only 141 aa
compared to the other a-globins of 143 aa (Figure 2).
The globin cluster is flanked on the leftward side by a
70-kb region harboring duplicated AQP8 genes similar
to the zebrafish locus, and the adjacent ARHGAP17
and LCMT genes are conserved in the teleosts exam-
ined (Figure 3). A RHBDF1-like gene is juxtaposed to
FoxJ1 in the LA locus of only cod and pufferfish,
whereas we found a FoxJ1 gene coupled to the MC
locus in stickleback (ENSGACG00000014879) and zeb-
rafish (ENSDARG00000059545). We also identified
paralogs of stickleback RHBDF1 (ENSGACG00000
004462), ARHGAP17 (ENSGACG00000009145) and
FoxJ1 (ENSGACG00000014879) linked on chromosome
5, which, however, contains no globin genes, whereas
an ARHGAP17 duplicate is coupled to the MC locus in
pufferfish (ENSTING00000017988), zebrafish (ENS
DARG00000075341) and medaka (ENSORLG00000
009090). A second ARHGAP17 gene was also identified
in the cod genome, but we presently lack information
about any linkage to the globin loci.

Other cod globin genes
Five additional globin genes encoding myoglobin, neuro-
globin, globin-X and two cytoglobins were identified in
the cod genome (Figure 2). The gene encoding the

predicted cod myoglobin of 145 aa is organized as the
a-b globins, while neuroglobin and globin-X of 159 and
197 aa, respectively, are encoded by four and five exons.
The three exons of the cytoglobin-2 gene encode a
protein of 202 aa, while the draft genome sequences
contained only a partial cytoglobin-1 gene. The four
a-globins are less similar (35-67% identity) than the five
b-globins (57-99%) of which b2, b3 and b4 show high
sequence identity. The a-globins share only 25-33% iden-
tity with the b-globins, compared to sequence identities
of about 20% between the cod a-b globins and the other
globins, except for the very low similarity with globin-X.
Despite this low overall identity, highly conserved posi-
tions were identified throughout the aligned sequences,
including human b-globin (Figure 2). Rare mutations in
almost all these positions have been reported to affect
the functionality of human hemoglobin [31], and suggest
the importance of these residues for the proper structure
and/or function of different oxygen-binding molecules in
diverse vertebrate species.

Globin gene mapping and expression
The cod a-b globin clusters were mapped to different
linkage groups by genotyping multiple single nucleotide
polymorphic (SNP) markers, including the globin SNPs
underlying the Metb1Val and Thra2Ile polymorphisms
[27]. The segregation of the SNPs in full-sib cod families
localized the MC and LA loci to linkage groups 17 and 16,
respectively, among the total of 24 linkage groups [32].
The nine a-b globin genes were shown to be transcrip-

tionally active by quantifying the mRNA levels through-
out the life cycle of Atlantic cod using real-time qPCR
(Figure 4). Intriguingly, a1, a2, b1 and b2 mRNAs were
identified in unfertilized eggs, whereas fertilized eggs and
early embryos contained mainly the b5 transcript. The
later stages of embryogenesis showed very low hemoglo-
bin mRNA levels prior to the larval expression of several

Figure 3 Conserved synteny at the LA locus in teleosts. Genomic organization of the Atlantic cod b3-b4-a2-a3-b2 globin cluster compared
with the counterpart in zebrafish, medaka, stickleback and pufferfish. Further details are as given in Figure 1.
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a- and b-globin genes, and all hemoglobin genes were
expressed in the juvenile and adult fish. Abundant
expression of a1, a2, b1 and b2 was measured in the
adult fish, while the other genes showed low mRNA
levels (Figure 5).

Discussion
The Atlantic cod genome was shown to harbor alto-
gether nine a- and b-globin genes organized in two
unlinked clusters similar to the other teleost genomes

available. The expression of many hemoglobin genes in
adult cod is consistent with the multiple tetrameric
hemoglobin types and subtypes identified by gel electro-
phoresis of blood proteins [33,34]. The cod hemoglobin
repertoire is further extended by the polymorphic a1,
b1, b3 and b4 globins [27,29] of which the functionally
different variants of b1 are differentially distributed in
cod populations [27,35,36]. The dominant expression of
a1, a2, b1 and b2 in adult fish is in agreement with the
isolation of three major tetramers designated Hb1, Hb2

Figure 4 Real-time PCR analysis of globin gene expression in Atlantic cod. The globin mRNA levels are presented relative to the level of
ubiquitin mRNA at each developmental stage examined. The juvenile and adult expression profiles include spleen and blood mRNAs,
respectively. dpf, days post fertilization; dph, days post hatching.
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and Hb3, which comprise different combinations of
these four subunits [37]. The tetrameric Hb3 (a1-a1-
b2-b2) was shown to exhibit a marked Root effect of
importance for the delivery of oxygen to the swim blad-
der for neutral buoyancy and to the retina for enhanced
visual acuity via the highly specialized vascular struc-
tures [25,38]. The structural basis for this extreme acid-
induced reduction in oxygen affinity is far from under-
stood, but the putative key residues, including Asp95a,
Asp99b and Asp101b [39,40], are conserved in the cod
hemoglobins, except for b1 and a3. We therefore sug-
gest that the b1-containing Hb1 tetramer (a1-a1-b1-b1)

has no Root effect and might function as an emergency
oxygen supplier when fish exercise vigorously.
The detection of hemoglobin mRNAs in unfertilized

cod eggs is the first evidence of maternally inherited a-
b globins, while Vlecken et al. [41] recently reported
maternal transfer of myoglobin mRNA in zebrafish. The
function of these oxygen-binding molecules in the early
fish embryo is uncertain, as aerobic processes have been
shown to continue in the zebrafish embryo after func-
tional ablation of hemoglobin [42]. Hemoglobin-derived
antimicrobial peptides expressed in the fish epithelium
have been suggested to play a significant role in the
non-specific immune response [43], together with
maternally transferred transcripts encoding lysozyme
and cathelicidin [44]. The very low embryonic expres-
sion of globin genes is consistent with the transparent
hemolymph flowing through the heart, which starts con-
tracting after embryogenesis is two-thirds completed
[45]. Thus, the early larval expression of hemoglobins
probably represents the initial stage of hemoglobin oxy-
gen binding and coincides with gill development. The
embryonic expression of b5 and the dominant mRNA
levels of a4 at hatching are in agreement with the phy-
logenetic analysis grouping these genes together with
other fish globins expressed in embryonic stages [29].
Duplication and loss of hemoglobin genes have appar-

ently occurred within specific teleost sublineages and have
resulted in a variable number of a- and b-globins as sum-
marized in Figure 6. The LA locus comprises from two

Figure 5 Comparison of globin mRNA levels quantified in adult
Atlantic cod. See Figure 4 for details.

Figure 6 Comparison of the a-b globin genes in the MC and LA loci of diverse teleosts. Linkage between globin genes is represented by
solid line (broken line indicates uncertainty). The genes are transcribed in the rightward (upper) or leftward (lower) direction. The linkage groups
are numbered. The number of paired a-b genes in salmon is unknown (n). The estimated divergence times (MYA) are based on mitochondrial
DNA sequences [64].
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(stickleback) to five globins (cod), and the phylogenetic ana-
lysis of the highly similar b2, b3 and b4 globins in the cod
cluster indicated a relatively recent gene duplication event
in gadids [29]. Whereas the cod MC locus contains four
globins, this cluster harbors up to 13 globins in zebrafish,
stickleback and medaka. Maruyama et al. [24] suggested
that the latter globin cluster originated from a subcluster
duplication, while subsequent gene silencing is evidenced
by the ϖb-ϖa pseudogene pair in medaka. In pufferfish,
the MC locus has been reduced to only two a-globins [6],
while only remnants of an a-globin gene are found in ice-
fishes inhabiting the cold Polar Ocean saturated with oxy-
gen [46,47]. The metabolic functions are maintained in the
hemoglobin-less icefishes by the elevated cardiac output of
blood of low viscosity through the highly vascularized gills
and skin [48]. Although the Arctic variant of cod b1 and a
major b globin component of the pelagic Antarctic teleosts
Pagothenia borchgrevinki and Trematonus newnesi share
only 58% sequence identity, similar functional features of
these globins were recently hypothesized based on their
close position in the PC (principal component) plane in the
hydrophobicity analysis of multiple fish globins [49].
The highly conserved linear order of the globin-flanking

genes provides a strong anchor for inferring common
ancestry of the vertebrate globin clusters. The proposed
teleost-specific duplication of an ancient a-b globin cluster
implies that paralogs of the flanking genes should still be
present in both loci. In silico analysis of the teleost gen-
omes available revealed linkage of RHBDF1, ARHGAP17,
Mgrn1, AQP8 and FoxJ1 paralogs to the MC and LA loci
in several species. Consistent with these findings, com-
parative gene mapping of medaka, zebrafish, pufferfish
and human genomes demonstrated large conserved synte-
nic segments in paired fish chromosomes, including the
globin-containing pairs of linkage groups 8 and 19
(medaka), 3 and 12 (zebrafish), and 2 and 3 (pufferfish)
[50,51] (see Figure 6). Furthermore, we found evidence for
the origin of the RHBDF1-MPG-a-globin-ARHGAP17-
LCMT1 syntenic region in man and chicken by screening
the genomes of the tunicate Ciona intestinalis and the lan-
celet Branchiostoma floridae (amphioxus). Four Ciona glo-
bin genes designated CinHb1-4 were shown to form a
monophyletic group basal to the vertebrate hemoglobin,
myoglobin and cytoglobin [52]. We recognized CinHb3
(ENSCING00000006495) linked to MPG and ARHGAP17
on chromosome 3q, while an additional Ciona globin gene
(ENSCING00000002015) is coupled to RHBDF1 on chro-
mosome 1q (Figure 7). In amphioxus, we identified
RHBDF1 (position 17_000132), MPG (17_000133), ARH-
GAP17 (17_000183) and LCMT (17_000184 and
17_000191) on the 4.2-Mb long scaffold 17, which has
been localized to the chordate linkage group (CLG) 15 by
FISH analysis [53]. We were, however, unable to position
any of the multiple globin genes to the 16 scaffolds

spanning almost the complete CLG15. Based on conserved
chromosomal segments of the amphioxus and human gen-
omes, Putnam et al. [53] reconstructed a total of 17 ances-
tral CLGs of which CLG3, CLG15 and CLG17 showed
syntenic association with the a-containing human chro-
mosome 16. Although we presently lack information
about any coupling of the amphioxus globin-like genes to
these linkage groups, we propose that the fusion of CLG15
to CLG3 and CLG17 resulted in the linkage of the
RHBDF1-MPG-ARHGAP17-LCMT region to globin gene
(s) as illustrated in Figure 7. The identification of remnants
of this globin linkage in the Ciona genome indicates that
the proposed chromosomal rearrangement occurred prior
to the divergence of the vertebrates and urochordates
about 800 MYA [54]. Thus, the formation of this syntenic
region seems to have coincided with a period of Earth his-
tory characterized by a rise in atmospheric oxygen from
0.02-0.04 atm 850 MYA to present day levels of 0.2 atm
540 MYA [55]. The increased oxygen content would be
expected to have a strong impact on the regulation and
structure of H2S-binding globins. In sulfide-rich environ-
ments, the unusual sulfide-binding function is found in
annelid globins containing key cysteine residues, which are
absent in annelid globins from sulfide-free environments
[56]. Concomitant with increased atmospheric oxygen, the
role of globins as oxygen scavengers would probably be
lost in oxygen-tolerant organisms to function as oxygen-
transporting hemoglobins. Based on the close phylogenetic
relation of cyclostome hemoglobins to gnathostome cyto-
globins, the ancestors of cyclostome and gnathostome ver-
tebrates were recently stated to have independently

Figure 7 Proposed model for the evolution of the ancient
globin cluster. Conserved synteny of globin-flanking genes in
extant cephalochordate (amphioxus) and urochordate (C. intestinalis)
species together with the MC (green) and LA (violet) globin loci in
man and fish. The fusion of three chordate linkage groups (CLG) to
form the homolog of the a-containing human chromosome 16 is
based on the reported chromosomal rearrangements of the
ancestral chordate genome [53].
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invented erythroid-specific oxygen-transporting hemoglo-
bins about 450-600 MYA [57]. The transcriptional regula-
tion of the hemoglobins in extant vertebrates involves
both proximal promoters and distant enhancers [58]. In
mouse erythroid cells, the active a1 and a2 genes are in
close spatial proximity of the flanking RHBDF1, MPG and
c16orf35, including the cis-regulatory MREs, as the result
of erythroid-specific changes in the chromatin conforma-
tion [59]. The chromosomal rearrangements forming this
highly conserved syntenic region seem to have occurred
more than 800 MYA, and we therefore propose that the
molecular mechanism underlying the oxygen-dependent
regulation of globin expression evolved prior to the struc-
tural changes in the duplicated ancestral globins.

Conclusions
In contrast to the low number of globin genes reported in
Antarctic teleosts [23], the adaptation of Atlantic cod to
fluctuating environmental conditions probably involved
the evolution of multiple globins with potentially differ-
ent oxygen binding properties. The unlinked globin pairs
a1-b1 and a2-b2 are abundantly expressed in the adult
fish and form three major hemoglobin tetramers with dif-
ferent Root effect. The identification of paralogous genes
in the flanking regions of the two globin clusters in
diverse teleosts supports the proposed teleost-specific
duplication of the vertebrate globin cluster. Based on the
conserved synteny of globin-flanking genes in extant uro-
chordate and cephalochordate species, we hypothesize
that the ancestral globin cluster contained both the MC
and LA loci, and was formed by the fusion of three chor-
date chromosomes. We propose that these chromosomal
rearrangements facilitated the transcriptional regulation
of globin synthesis to cope with increased atmospheric
oxygen content about 850 MYA. Thus, these regulatory
changes probably preceded the convergent evolution of
different ancestral globins to function as erythroid-speci-
fic oxygen transporting hemoglobins.

Methods
Identification of globin clusters
PCR
Forward and reverse PCR primers were designed to
amplify pairs of a-b genes using cod globin gene
sequences available in GenBank (Table. 1). PCR was per-
formed under standard conditions (Applied Biosystems
2720 thermal cycler) using genomic DNA as template
(Qiagen DNeasy blood & tissue kit). The amplified pro-
ducts were ligated into the pGEM®-T easy vector (Pro-
mega) and sequenced in both directions (Applied
Biosystems 3130xl genetic analyzer).
BAC library screening
A cod BAC library consisting of 92,000 clones with
average insert size of 125 kb was screened for globin

genes by PCR using gene specific primers (Table 2) on
pools and super-pools of BAC clones. Positive BAC
clones were purified (NucleoBond BAC 100), and
sequenced using the 454 GS FLX instrumentation at the
Norwegian Sequencing Center (http://www.sequencing.
uio.no). The resulting reads were assembled using New-
bler v. 2.0 (gsAssembler) [60], using default settings and
filtering of the reads against contaminating E. coli geno-
mic sequences. The pufferfish globin loci (AY016023,
Sphoeroides nephelus; AY016024, Takifugu rubripes)
were utilized as query sequences in BLAST searches of
the assembled contigs.
Cod genome BLAST
The Atlantic cod genome project (http://www.codgen-
ome.no) is based on the genome sequences of the
north-east Arctic cod population. Scaffold sequences
harboring globin genes were identified among the
assemblies of the cod genome project [30] using the
BLAST search tool at http://www.bioportal.uio.no.
Annotation of genes located on the scaffolds was com-
pleted based on results from TBLASTN searches of
known protein sequences from related species, using
the bioinformatics software CLC genomics workbench
(CLC bio).
Chordate genome BLAST
Conserved globin and globin-flanking genes were identi-
fied in cephalochordate and urochordate species by
BLAST searching the genomes of Branchiostoma flori-
dae (version 1.0, http://genome.jgi-psf.org/Brafl1/Brafl1.
home.html) and Ciona intestinalis (release 43, http://
www.ensembl.org/Ciona_intestinalis/Info/Index).

Real-time qPCR
Fish
Spleen and blood were sampled from juvenile (n = 5)
and adult (n = 12) fish kept at the National Cod Breed-
ing Centre (Kraknes, Tromsø, Norway) and the Univer-
sity of Bergen, respectively. Sexually mature fish were
hand-stripped, and eggs were fertilized in vitro. The

Table 1 PCR primers for amplification of cod a1-b1 gene
pair and for screening BAC library

Gene Name Sequence (5’ to 3’)

a1-b1 A1-B1F GCAAATTGTTCAAGTTATTCCCCCTAAC

A1-B1R TAAAGACTGACCTGCAACGCGAGTGGT

a1 A1-bacF CAGACCAAGACTTACTTCAGCC

A1-bacR GCTCGCTCAGAGTGAGAAGAC

a2 A2-bacF CCGATGATATCGGAGCTGAGG

A2-bacR CTAAGGCTGAGGAGTCCTCC

b1 B1-bacF ATGGTTGAATGGACAGCTGC

B1-bacR GTCGACGTGCAGTTTCTC

b2 B2-bacF TGGACAGATAGTGAGCGCG

B2-bacR AGTGGAGCAGAGACAGCTC
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incubation of embryos and feeding of larvae were car-
ried out as described [44]. Sampling of unfertilized eggs,
fertilized eggs and larvae was performed during 10
weeks. All samples were rapidly submerged in RNAlater
(Ambion, Austin, TX, USA) and incubated at 4°C over-
night, then stored at -20°C.
RNA isolation and cDNA synthesis
5-10 eggs/embryos or 3-5 larvae were pooled and homo-
genized in 1.5 ml microcentrifuge tubes containing lysis
buffer (Qiagen RNeasy mini kit) using a plastic pestle.
After centrifugation through a QiaShredder column
(Qiagen, Hilden, Germany), RNA was isolated according
to the manufacturer’s protocol (Qiagen RNeasy mini
kit), and followed by the recommended on-column
DNase treatment. The Qiagen RNeasy mini kit was also
used for the spleen and blood samples from juvenile
and adult fish, respectively. cDNA was synthesized from
1 μg total RNA using TaqMan® Reverse Transcription
Reagents (Applied Biosystems) and oligo-dT primer in
20 μl reactions using the conditions of: 25°C for 10 min,
48°C for 30 min and 95°C for 5 min. Primers used for
real-time qPCR were adopted from Borza et al. [29] for
the globins, while ubiquitin primers were taken from
Olsvik et al. [61] (Table 2). For the b1 gene, two allele-
specific primer sets were used on all samples, and rela-
tive expression was calculated dependent on the actual
genotype of each sample. Ten-fold dilution series were
prepared to generate standard curves, and PCR

efficiencies and relative quantification results were cal-
culated according to Ståhlberg et al. [62] using ubiquitin
as the reference transcript [63]. Cycling parameters were
50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for
15 sec, 61°C for 1 min, including a final dissociation
stage to yield melting curves. Reactions of 25 μl con-
sisted of 12.5 μl 2× Power SYBR®Green PCR Master
Mix (Applied Biosystems), 0.5 μl each of sense and anti-
sense primers (10 μM) and 11.5 μl of 50× diluted
cDNA.

List of abbreviations
MPG: N-methylpurine-DNA glycosylase; ARHGAP17: Rho GTPase activating
protein 17; RHBDF1: rhomboid 5 homolog 1; LCMT: leucine carboxyl
methyltransferase; c16orf35: human chromosome 16 open reading frame 35;
POLR3K: DNA-directed RNA polymerase III subunit RPC10; Mgrn1:
mahogunin Ring Finger 1; AANAT: arylalkylamine N-acetyltransferase; DOCK:
dedicator of cytokinesis; ANKRD: ankyrin repeat domain; AQP: aquaporin;
FoxJ1: fork head J1; PC: principial component; FISH: fluorescence in situ
hybridization; CLG: chordate linkage group; dpf: days post fertilization; dph:
days post hatching.
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Table 2 Primers for real-time qPCR, amplification efficiency (%) and amplicon size (bp)

Gene Name Sequence (5’ to 3’) Efficiency Size

a1 A1F GACTTACTTCAGCCACTGGAAGAGCCT C 96 153

A1R TTGAAGGCGTGCAGCTCGCTCAGAG

a2 A2F GTCCTATTTCTCTCACTGGAAGGACGCG 85 153

A2R ATGAACGCGTGCAGCTCGCTAAGGC

a3 A3F CACATCATACCCTGGCACCAAGAC 95 172

A3R CTGGTAGGCGTGGTAGGTTTGAAGAG

a4 A4F TTCTCCCACTGGAAAGACCTCGG 70 138

A4R ATGGAGCTCACTGAGCTCGAGAAG

b1 allele A B1FA TTATGGGAAACCCCAAGGTGGCCAA 91 131

B1R GTGCAGTTTCTCGGAGTGCAGCACGC

b1 allele B B1FB TTGTGGGAAACCCCAAGGTGGCTGC 98 131

B1R GTGCAGTTTCTCGGAGTGCAGCACGC

b2 B2F CCTGTACAATGCAGAGACCATCATGGC 84 151

B2R GTGCAGCTTGTCAGAGTGGAGCAGAG

b3 B3F ACAGATAGTGAGCGCGCCATCATTAA 86 176

B34R GCGGCGATCAGGGGGTTGCACAG

b4 B4F ACAGATAGTGAGCGCGCCATCATTAC 95 176

B34R GCGGCGATCAGGGGGTTGCACAG

b5 B5F GTGGACTCGGAGGTACTTTGGAAAC 89 168

B5R TGCAGCTGACTGAGCTCGCAATAG

Ubiquitin UbiF GGCCGCAAAGATGCAGAT 81 69

UbiR CTGGGCTCGACCTCAAGAGT
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