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The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion
coefficient (ADC) imaging and pharmacokinetics.The application of ADC imaging to the detection of malignant tissue has in turn
prompted several studies concerning optimal experiment design formonoexponentialmodel fitting. In this paper, we propose a new
experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-
optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method
to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of
measurements, and range of 𝑏-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing
experiment design methods in terms of accuracy and precision of the estimated parameters.

1. Introduction

Themonoexponential model has been used inmany different
engineering applications. It is frequently used in modeling
biomedical phenomena to estimate biologically meaningful
parameters. Its applications in quantitative biomedical imag-
ing include apparent diffusion coefficient (ADC) imaging
[1], monitoring metabolic reactions [2], and pharmacoki-
netics [3]. ADC imaging has a wide range of applications
including the classification of brain disorders [4], detection
of malignant breast lesions [5], identifying stages of cerebral
infarction [6], and diagnostic imaging of the kidney [7,
8], prostate [9, 10], and ovaries [11, 12]. ADC imaging is
also used to solve challenging clinical problems such as the
differentiation of Parkinson’s disease from multiple system
atrophy and progressive supranuclear palsy [13].

The usefulness of ADC imaging as a quantitative imaging
tool has motivated several studies that have investigated the
reliability and reproducibility of ADC estimates [7, 14, 15].

From a mathematical point of view, the variance of the
estimated ADC values can be minimized by optimizing
experiment design. In the case of ADC imaging, experiment
design equates to the choice of the 𝑏-values applied for
measurements and their repetitions. In the case of enzyme
kinetics, it equates to the sample collection time (𝑡).The range
of valid sampling points is determined by the biophysical
aspects of the problem at hand. For instance, perfusion
contamination at low 𝑏-values [15, 16] and SNR drop at
high 𝑏-values [1] limit the applicable range of 𝑏-values. An
intuitively appealing experiment design is the equidistant
(ED) distribution of sampling points on a valid range of the
independent variable (𝑏 or 𝑡). The ED experiment design
method is widely used in the literature [7, 17–19]. However,
many studies use nonsystematic and random experiment
designs [9, 20] that can considerably influence the results.

Some studies have tried to find the optimal experiment
design by empirically evaluating a variety of experiment
designs [17]. In contrast, others have developed a theoretical
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framework by minimizing the variance of the estimated
parameters [21–23].The former strategymay potentially miss
the global optimum because of the discretization of the
problem and a nonexhaustive search. On the other hand,
studies pursuing the latter strategy are based on the Gaussian
noise assumption. The Cramer-Rao lower bound (CRLB) of
the ADC value is minimized in [23] assuming a Gaussian
noise distribution. Hereinafter, we call this method GCRLB.
The optimal experiment design in the GCRLB method
(briefly described inAppendix B) depends on theADCvalues
to be imaged. Thus the optimal design must be revised for
different applications and even for imaging different organs.
Moreover, in applications where the noise assumption is vio-
lated, the GCRLB design becomes suboptimal. In this paper,
we develop a theoretical framework for optimal experiment
design of monoexponential model fitting problems with less
restrictive assumptions on noise distribution. Our Monte
Carlo simulations using the proposed design method for
ADC imaging show that, in the presence of Rician noise, it
outperforms the GCRLB and ED methods. In addition, the
proposed design is independent of the imaged parameters
and provides more robust results.

The remainder of the paper is organized as follows.
The next section elaborates the proposed experiment design
method. Section 3 presents results of extensive evaluations
and comparisons. A discussion of different aspects and the
potential impact of this work is given in Section 4. Finally the
conclusion is presented in Section 5.

2. Proposed Experiment Design Method

Without loss of generality, hereinafter we focus on ADC
imaging as an example of monoexponential model fitting
problems. The model for ADC imaging is given by

𝑚 = 𝑚
0
exp (−𝑏𝐷) , (1)

where𝑚 is the measured signal when the diffusion weighting
factor 𝑏 is applied, 𝑚

0
is the observed signal in the absence

of such a weighting factor, and 𝐷 is the apparent diffusion
coefficient. The parameters to be estimated are 𝑚

0
and 𝐷.

In ADC imaging the parameter of interest is 𝐷. However,
there exist applications in which 𝑚

0
is also important such

as (6) in [2]. Although mathematically two measurements
suffice, in practice 𝑁 > 2 measurements are acquired to
maximize precision. Depending on the problem at hand, one
is permitted to choose the independent variable (𝑏 in this
case) such that 𝑏min ≤ 𝑏 ≤ 𝑏max. Log-linear least square fitting
is frequently used because of its computational efficiency [18].
It can be formulated as follows:

ln𝑚
𝑖
= ln𝑚

0
− 𝑏
𝑖
𝐷, ∀𝑖 = 1, . . . , 𝑁. (2)

For𝑁measurements we obtain

y = Ax, (3)

where y ∈ R𝑁 contains measurements (ln𝑚
𝑖
), x ∈ R2

contains unknown parameters (x = [ln𝑚
0
𝐷]
𝑇), and A is the

design matrix below:

A =
[
[

[

1 −𝑏
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 −𝑏
𝑁

]
]

]

. (4)

The least squares estimator (LSE) of x is given by x̂ =

(A𝑇A)−1A𝑇y. The precision of the estimation problem above
is dependent on the experiment design A. For independent
and zero-mean measurement noise (on y) with constant
variance 𝜎

2 the LSE is unbiased and has the following
covariance matrix [24]:

Cov (x̂) = 𝜎
2M−1, (5)

where M = A𝑇A and is usually called the “information
matrix.” Optimal experiment design entails making the
covariancematrix small in some sense. It is usual tominimize
a scalar function of the covariance matrix. One design
approach is to minimize the determinant of the information
matrix (D-optimal design). In this paper, we solve the D-
optimal experiment design problem for ADC imaging.

Remark 1. The noise distribution on the diffusion attenuated
signal (denoted by 𝑚) is usually assumed to be Rician. To
investigate the significance of our noise assumptions in the
case of ADC imaging, we use Monte Carlo simulations. Let
|𝑚 + 𝑤| model the measured diffusion signal, where 𝑚 is
the true value of the signal and 𝑤 = 𝑤

𝑅
+ 𝑗𝑤
𝐼
is the

complex-valued measurement noise. The noise components
are Gaussian distributed: 𝑤

𝑅
∼ N(0, 𝜎

2

𝐺
), 𝑤
𝐼
∼ N(0, 𝜎

2

𝐺
).

We perform Monte Carlo simulations with Rician noise (on
𝑚) and the following setup: number of Monte Carlo trials
𝑁MC = 20000, 𝜎

𝐺
= 20, and 𝑚 varies from 5 to 20𝜎

𝐺
with

equal step size of 5. As can be seen in Figure 1, the zero-
mean assumption (on 𝑦

𝑖
= ln𝑚

𝑖
) holds for SNR > 2 while the

equal variance on log-measurements (y) holds for SNR > 10.
Overall, this shows that both zero-mean and equal variance
assumptions hold for SNR > 10.Thus, we expect the proposed
method to have diminished performance for high 𝑏-values
and high𝐷 values.

2.1. D-Optimal ExperimentDesign forMonoexponentialModel
Estimation. The D-optimal experiment design is based on
minimizing the determinant of the covariance matrix of the
LSE.TheD-optimal experiment design for ADC imaging can
be written as follows:

min det (M−1)

s.t.: M ≥ 0,

𝑏min ≤ 𝑏
𝑖
≤ 𝑏max, 𝑖 = 1, . . . , 𝑁,

(6)
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Figure 1: Results of Monte Carlo simulations show that if SNR > 10,
then zero-mean and equal variance noise assumptions hold forADC
imaging. Simulation setup: number of Monte Carlo trials 𝑁MC =

20000, 𝜎
𝐺
= 20, and𝑚 varies from 5 to 20𝜎

𝐺
(equal step size of 5).

where the explicit expression forM is

M =

[
[
[
[
[

[

𝑁 −

𝑁

∑

𝑖=1

𝑏
𝑖

−

𝑁

∑

𝑖=1

𝑏
𝑖

𝑁

∑

𝑖=1

𝑏
2

𝑖

]
]
]
]
]

]

. (7)

Noting that minimizing det(M−1) is equivalent to maximiz-
ing det(M) we obtain the following problem formulation:

max det (M)

s.t.: M ≥ 0,

𝑏min ≤ 𝑏
𝑖
≤ 𝑏max, 𝑖 = 1, . . . , 𝑁.

(8)

2.2. Solutions to the D-Optimal Design Problem. The explicit
form of the objective function of the optimization problem in
(8) is

det (M) = 𝑁

𝑁

∑

𝑖=1

𝑏
2

𝑖
− (

𝑁

∑

𝑖=1

𝑏
𝑖
)

2

. (9)

It can be seen that, in contrast to previous studies, the D-
optimal design is independent of the unknown parameters.
Thus, it can be used when imaging different organs as well
as in other applications. For 𝑁 = 2 the objective function
becomes det(M) = (𝑏

1
−𝑏
2
)
2. Therefore the D-optimal design

is 𝑏
1
= 𝑏min, 𝑏2 = 𝑏max. For 𝑁 = 3 the objective function

becomes det(M) = (𝑏
1
− 𝑏
2
)
2
+ (𝑏
1
− 𝑏
3
)
2
+ (𝑏
3
− 𝑏
2
)
2.

Consequently, the D-optimal design is 𝑏
1
= 𝑏
2
= 𝑏min, 𝑏3 =

𝑏max or equivalently 𝑏1 = 𝑏
2
= 𝑏max, 𝑏3 = 𝑏min. Generally, one

can see that for arbitrary𝑁 the D-optimal experiment design
is obtained when

𝑏
𝑖
= 𝑏min ∀𝑖 = 1, . . . , 𝑛,

𝑏
𝑖
= 𝑏max ∀𝑖 = 𝑛 + 1, . . . , 𝑁,

(10)

where 𝑛 = 𝑁/2 if𝑁 is even; otherwise 𝑛 = (𝑁 + 1)/2. In the
next section we compare the D-optimal design with the ED
and GCRLB designs.

3. Evaluation and Simulation Results

In this section we evaluate the proposed D-optimal experi-
ment design method and compare it with existing optimal
design methods. We run Monte Carlo simulations using the
pseudo-algorithm given in Appendix A. In our simulations
we use the Rician noise distribution. While this does not
match the noise assumptions of our theoretical framework,
it permits a more realistic evaluation of the results for
ADC imaging. We use the range [0.1, 3] × 10

−3mm2/s of 𝐷
values that are reported for human brain studies [4, 23]. In
abdominal organs the range extends up to 5 × 10

−3mm2/s
[7]. In the text to follow we note that (i) the units associated
with 𝐷 and 𝑏 have been omitted for readability (all 𝑏-values
are stated in s/mm2) and (ii) 𝐸(𝑥) = (1/𝑁MC) ∑

𝑁MC
𝑖=1

𝑥. It is
also noteworthy that we used LSE throughout the paper for
parameter estimation.

3.1. Comparison to GCRLB. Given that the GCRLB method
[23] is specifically designed for ADC estimation and is in
good agreement with previous studies [21, 22], herein we
compare the proposed D-optimal design with the GCRLB
method. Figure 2 shows the standard deviation of estimated
ADC values (𝜎

𝐷
) for a range of𝐷 values, where𝑁 = 2, 𝑏min =

0, 𝑏max = 2000, 𝑚
0
= 500,𝑁MC = 20000, and SNR = 𝑚

0
/𝜎
𝐺
.

According to table 3 in [23] the optimal two-point design for
𝐷 ∈ [0.1, 3] × 10

−3 is 𝑏
1
= 0, 𝑏

2
= 820 while the D-optimal

method suggests 𝑏
1
= 0, 𝑏

2
= 𝑏max. Several key observations

can be drawn from Figure 2. (i) Increasing the SNR from 4 to
10 significantly improves the performance of the GCRLB. In
addition, the performance of theGCRLB is heavily dependent
on the𝐷 values to be measured. In contrast, the performance
of the D-optimal design is very consistent, demonstrating
robustness to changes in SNR and 𝐷. (ii) The D-optimal
design outperforms the GCRLB over the entire range of 𝐷
values and SNRs. (iii) For small 𝐷 values and high SNR,
where the Rician distribution can be fairly approximated by a
Gaussian distribution [25], the performance of the GCRLB
is close to that of the D-optimal design. (iv) Though the
Rician noise model does not match our theoretical noise
assumption, the precision of 𝐷 is independent of its actual
value,𝐷.

Figure 3 compares the GCRLB and D-optimal designs
in terms of error (computed as |𝐸(𝐷)−𝐷|) and standard
deviation of 𝐷 (illustrated as vertical bars for each 𝐷 value),
where 𝑁 = 10, 𝑏min = 0, 𝑏max = 2000, 𝑚

0
= 500, 𝑁MC =

20000, and SNR = 𝑚
0
/𝜎
𝐺

= 10. According to table 3 in
[23] the optimal ten-point design for 𝐷 ∈ [0.1, 3] × 10

−3 is
𝑏
1
= 𝑏
2
= 0, 𝑏

3
= 𝑏
4
= ⋅ ⋅ ⋅ = 𝑏

8
= 700, and 𝑏

9
= 𝑏
10

= 𝑏max
while the D-optimal design suggests 𝑏

1
= ⋅ ⋅ ⋅ = 𝑏

5
= 0,

𝑏
6
= ⋅ ⋅ ⋅ = 𝑏

10
= 𝑏max. It can be seen in Figure 3 that the

D-optimal design performs better in terms of accuracy and
precision. Figure 4 shows, for the same test, plots of the bias
(computed as𝐸(�̂�

0
)−𝑚
0
) and standard deviation of �̂�

0
. It can

be seen that the proposed method leads to both accurate and
precise estimation of 𝑚

0
. In addition, the D-optimal design

shows very consistent performance over the whole range of
𝐷 values. It is noteworthy that the GCRLB method severely
underestimates𝑚

0
for high𝐷 values.
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3.2. Sensitivity Analysis and Comparison to the ED Design.
In this section we evaluate the sensitivity of the D-optimal
design to changes in input parameters such as 𝐷, 𝑁, 𝑏max,
and SNR. The input variable 𝑏min is not considered because
it is usually set to 𝑏min = 0.

The ADC value may vary depending on tissue type,
pathological/developmental changes, and aging. The error
and standard deviation of𝐷 and �̂�

0
are illustrated in Figure 5

for the range 𝐷 ∈ [0.1, 5] × 10
−3, where 𝑁 = 10, 𝑏min = 0,

𝑏max = 2000, 𝑚
0
= 500, 𝑁MC = 20000, and SNR = 𝑚

0
/𝜎
𝐺
=

10. It can be seen that the D-optimal design outperforms the
ED design in terms of accuracy and precision. Notably, the
difference in estimation of 𝑚

0
is extremely large. This can

have a significant impact on studies that use the diffusion
signal itself as a biomarker (as in [14]). Note that, for the
D-optimal design, the variance of 𝜎

𝐷
is almost fixed for
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Figure 5: Error and standard deviation of 𝐷 and �̂�
0
for the range

𝐷 ∈ [0.1, 5] × 10
−3, where𝑁 = 10, 𝑏min = 0, 𝑏max = 2000,𝑚

0
= 500,

𝑁MC = 20000, and SNR = 𝑚
0
/𝜎
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= 10. The D-optimal design is

compared to the ED design (where 𝑏
𝑖
s are equidistantly distributed

between 𝑏min and 𝑏max).

𝐷 ∈ [1, 5] × 10
−3. This consistency of performance is also

apparent in the estimation of𝑚
0
.

The number of measurements is in general limited by the
available clinical scan time. Here, we consider a range of 𝑁
that is feasible for clinical studies according to the literature.
The error and standard deviation of 𝐷 and �̂�

0
are illustrated

in Figure 6 for the range𝑁 = 2 to𝑁 = 20, where𝐷 = 1×10
−3,

𝑏min = 0, 𝑏max = 2000, 𝑚
0
= 500, 𝑁MC = 20000, and
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for the range

𝑁 = 2 to 𝑁 = 20, where D = 1 × 10
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𝐺

= 10. It shows that the D-optimal design
outperforms the ED design in terms of standard deviation
(vertical bars) of 𝐷 and �̂�

0
. As 𝑁 increases, the variance of

the estimated parameters decreases for both design methods
while the accuracy is almost constant. Note that for 𝑁 = 2

the two design methods lead to the same solution. Deviating
fromD-optimal solution, accuracy/precision of �̂�

0
for the ED

method considerably decreases even with higher number of
measurements (cf.𝑁 = 2 with𝑁 = 4).

Different 𝑏max values are recommended in the literature
for different target organs/tissues. For example, [1] suggests
𝑏max = 700 for kidney while 𝑏max = 1500 is used for head and
neck imaging [20] and 𝑏max = 2000 for brain imaging [18].
The error and standard deviation of 𝐷 and �̂�

0
are illustrated

in Figure 7 for the range 𝑏max = 700, 800, . . . , 2000, where
𝐷 = 1 × 10

−3, 𝑁 = 10, 𝑏min = 0, 𝑚
0
= 500, 𝑁MC =

20000, and SNR = 𝑚
0
/𝜎
𝐺

= 10. It can be seen that the
D-optimal design outperforms the ED design in terms of
standard deviation (vertical bars) of 𝐷 and �̂�

0
. For the ED

design, as 𝑏max increases it does not make a considerable
difference to the estimation of𝐷 but it does negatively impact
on the estimation of 𝑚

0
producing increasingly larger errors

for values of 𝑏max beyond 1600. In contrast, the D-optimal
design shows a better and relatively consistent performance
over the whole range (with almost constant accuracy and
precision).

The signal-to-noise ratio also affects the accuracy and
precision of the estimation problem.We investigate the effect
of SNR on the proposed experiment design as follows. The
error and standard deviation of 𝐷 and �̂�

0
are illustrated in

Figure 8 as a function of SNR (defined as𝑚
0
/𝜎
𝐺
), where𝐷 =

1×10
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Figure 8: Error and standard deviation of 𝐷 and �̂�
0
as a function

of SNR (defined as 𝑚
0
/𝜎
𝐺
), where 𝐷 = 1 × 10

−3, 𝑁 = 10, 𝑏min = 0,
𝑏max = 2000, 𝑚

0
= 500, and𝑁MC = 20000. The D-optimal design is

compared to the ED design.

D-optimal design leads to minimum variance estimation of
the unknown parameters. For ED design, the accuracy and
precision of both 𝐷 and �̂�

0
improve with increasing SNR

while for the D-optimal design an improvement is only seen
for𝐷.

3.3. Tests on a Mean Diffusivity Map. To illustrate the impact
that experiment design may have on diffusion-weighted
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(a) (b)

Figure 9: Original mean diffusivity map considered as ground truth (a) and an example noisy image produced by adding Rician distributed
noise, where SNR = 5 (b). The original image is taken from [18].

5

10

15

20

25

30

(a)

5

10

15

20

25

30

(b)

Figure 10: Error in estimation of diffusion signal computed as |𝐸(�̂�
0
) −𝑚
0
| for the D-optimal (a) and ED (b) design methods. The color bar

ranges from 0 to 31.

images, we perform the following test. We take figure 4.(a)
in [18] as the ground truth image. Then we add Rician
distributed noise pixelwise (SNR = 5).The original image and
an example of noisy images are shown in Figure 9.

Let 𝐼(𝑖, 𝑗) denote a pixel intensity in the original image.
Then we run Algorithm 1 with the following setting for all
pixels: 𝑚

0
= 𝐼(𝑖, 𝑗), SNR = 𝑚

0
/5, 𝑁 = 20, 𝐷 = 1 × 10

−3,
𝑏min = 0, 𝑏max = 2000, and 𝑁MC = 20000. The resultant
images computed as error in estimation of �̂�

0
(|𝐸(�̂�

0
) −𝑚
0
|)

and its standard deviation are shown in Figures 10 and 11,
respectively. Figure 10 shows that one can accurately estimate
diffusion signal using the D-optimal design. The accuracy
is almost independent of the signal level. In contrast, the
ED design produces large errors for high signal levels. In
applications that consider statistics in small ROIs (such as
[11]) this may be misleading.

The optimal experiment design is fundamentally based
on improving the precision of the estimation problem. This
can be seen in Figure 11, where we illustrate the standard
deviation of �̂�

0
. It can be seen that the D-optimal design

consistently produces lower variance than the ED design. It
is noteworthy that Figures 10 and 11 represent the sensitivity
analysis with respect to 𝑚

0
and confirm the stable perfor-

mance of the D-optimal design.

4. Discussions

Although the current work focuses on ADC imaging, the
proposed method can be applied in experiment design for
other applications of the monoexponential model. As an
example, empirical evaluations in [17] show that addingmore
measurements on 𝑏min improves the results of model fitting
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Figure 11: Standard deviation in estimation of �̂�
0
. The D-optimal design (a) produces more precise estimates compared to the ED design

(b). Note that the standard deviation is multiplied by 100 to enhance the visualization.

Data:𝐷,𝑚
0
,𝑁, 𝑏min, 𝑏max, 𝜎𝐺 and𝑁MC, number of Monte Carlo trials.

Result: Mean value and standard deviation of𝐷 and �̂�
0

(i) Choose an algorithm ED/GCRLB/D-opt. to assign 𝑏
𝑖
∀𝑖 = 1, . . . , 𝑁.

(ii) Set𝑚
𝑖
= 𝑚
0
exp(−𝑏

𝑖
𝐷).

for 𝑟 = 1 to𝑁MC do
(i) Add Rician distributed noise to𝑚

𝑖
s to obtain SNR =𝑚

0
/𝜎
𝐺
;

(ii) Compute the unknown parameters𝐷 and �̂�
0
;

(iii) Record the mean value and standard deviation of𝐷 and �̂�
0
.

Algorithm 1: Pseudo-algorithm to evaluate an experiment design.

in enzyme kinetics (compared to the ED design). This is in
agreement with our findings.

Comparing the proposed method to previous studies, we
see that it (i) is based on less restrictive noise assumptions
and thus covers a wider range of applications, (ii) shows
that the optimal design is not necessarily dependent on the
imaged parameters, (iii) outperforms the ED and GCRLB
methods (based on evaluations using simulated data), and
(iv) is applicable even if the noise assumptions are partly
violated.

Figures 3 and 5 show that (i) in contrast to the findings
in [23] there exist 𝐷-independent optimal designs that
minimize variance of the estimated ADC values and (ii) even
using optimal designs𝐷 values greater than 1.1×10−3 cannot
be estimated accurately. In other words, the error of 𝐷 is
larger than 10% when 𝐷 > 1.1 × 10

−3. This means that
ADC values reported for cartilage, muscle [23], and normal
white matter [4] are accurate/reliable while high ADC values
reported for normal kidney [7] should arguably be treated
with caution. This warrants further investigation using real
data.
Noise Distribution. The noise assumptions (independency
and equal variance) are necessary for tractable theoretical

derivations but do not necessarily limit the proposedmethod
to Gaussian noise. For example, these assumptions hold for
scenarios with independent but nonidentical noise distribu-
tions provided that they have equal variances. We have eval-
uated the proposed method in realistic cases (independent
Rician noise with nonequal variances). However, in mod-
ern scanners with phased arrays and multicoil acquisition
[26], the noise is noncentrally 𝜒-distributed [27]. The D-
optimal design problem for such kind of noise distributions
is intractable. In addition, relaxing the “equal variance”
condition, the D-optimal design becomes dependent on the
imaged parameters. Thus, we can not find an optimal design
that performs well over the whole range of the imaged
parameters.

Estimation Method. One can use other estimation methods
instead of LSE. Possibilities include themedian estimator [18],
maximum likelihood estimator (MLE), and weighted least
squares (WLS) [28]. The exact formulation of the D-optimal
design problem for these estimation techniques is dependent
on the noise distribution and often becomes intractable. In
the case of Gaussian noise theMLE leads to the same solution
as LSE.
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Physical Considerations. Given that the proposed method
takes the minimum and maximum 𝑏-values as the input, one
can adjust the range to avoid the signal distortion caused by
physical phenomena such as the perfusion effect at low 𝑏-
values and non-Gaussian behavior at high 𝑏-values.

5. Conclusion

The need for precise estimation of biomedical quantities has
given rise to studies concerning optimal experiment design
for monoexponential model fitting. In this paper, we formu-
lated the problem as a D-optimal design problem that is a
convex optimization problem. In contrast to previous studies,
we did not restrict our theoretical framework tomodel fitting
in the presence of Gaussian noise. Solving this problem and
evaluating the results for ADC imaging on simulated data, we
showed that the optimal design is independent of the imaged
parameters. Furthermore, Monte Carlo simulations showed
that the D-optimal design outperforms the ED and GCRLB
methods. Moreover the proposed method is applicable to a
wider range of problems because of its less restrictive noise
assumptions. Our evaluations show that it is applicable even
if the noise assumptions are partly violated. An important
practical result is that accurate estimation of highADCvalues
is not possible even using optimal experiment design.

Appendices

A. Evaluation of an Experiment Design

Here we provide a pseudo-code for the algorithm used in
Section 3 (see Algorithm 1).

B. GCRLB Experiment Design

In an estimation problem, the lower bound of the variance of
a parameter𝑥

𝑗
,𝜎2(𝑥
𝑗
), is given by the corresponding diagonal

element of the inverse of the Fisher information matrix:

𝜎
2
(𝑥
𝑗
) ≥ (F−1)

𝑗𝑗
. (B.1)

This is known as the Cramer-Rao lower bound (CRLB).
Assuming zero-mean Gaussian noise on 𝑚 in (1), one can
obtain the following Fisher information matrix for ADC
imaging [23]:

F =
1

𝜎
𝐺

[
[
[
[
[

[

𝑁

∑

𝑖=1

exp (−2𝑏
𝑖
𝐷) −

𝑁

∑

𝑖=1

𝑏
𝑖
𝑆
0
exp (−2𝑏

𝑖
𝐷)

−

𝑁

∑

𝑖=1

𝑏
𝑖
𝑆
0
exp (−2𝑏

𝑖
𝐷)

𝑁

∑

𝑖=1

𝑏
2

𝑖
𝑆
2

0
exp (−2𝑏

𝑖
𝐷)

]
]
]
]
]

]

. (B.2)

In the derivation above x = [𝑆0 𝐷]. The GCRLB experiment
design entails minimizing the CRLB of 𝐷, (F−1)

22
, with

respect to 𝑏
𝑖
s for a given value/range of 𝐷. The reader is

referred to [23] for more details.
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