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Oligosaccharides represent a major fraction of 
milk constituents. Unique among mammals, 
human milk contains a tremendous diversity of 
oligosaccharide structures, which are shaped by 
extension of lactose through glycosyltransferase 
enzymes in the mammary gland (Egge, 1993). 
The most abundant structures are the trisaccha-
rides produced by addition of fucose or sialic 
acid to lactose. Whereas fucosylated oligosac-
charides are missing from most mammalian 
milks, sialylated oligosaccharides are more 
widely distributed (Urashima et al., 2001).  
Because milk oligosaccharides are neither di-
gested nor absorbed in the small intestine (Brand 
Miller et al., 1995), they have been suggested  
to contribute to the development of the infant  
gastrointestinal tract and its colonization by 
commensal bacteria (Savage, 1977; Frank and 
Pace, 2008).

Milk oligosaccharides influence the devel-
opment of the intestinal microbiota by acting 

as selective nutrients, which support the prolif-
eration of specific bacterial groups (Gibson and 
Roberfroid, 1995). The prebiotic action of 
milk oligosaccharides has been demonstrated 
by comparing the intestinal microbiota of in-
fants fed on oligosaccharide-rich breast milk 
and infants fed on formula (Harmsen et al., 2000). 
Furthermore, considering the structural similarity 
of milk oligosaccharides with cell surface glycans, 
milk oligosaccharides can function as soluble 
receptors, thereby preventing the attachment 
of pathogenic bacteria to intestinal epithelial 
cells (Newburg, 2009).

Commensal bacteria are mainly found in 
the large intestine, consisting predominantly 
of the phyla Firmicutes and Bacteroidetes 
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Milk oligosaccharides contribute to the development of the intestinal environment by 
acting as decoy receptors for pathogens and as prebiotics, which promote the coloniza-
tion of commensal bacteria. Here, using 2,3- and 2,6-sialyltransferase-deficient mice, 
we investigated the role of the sialylated milk oligosaccharides sialyl(2,3)lactose and 
sialyl(2,6)lactose on mucosal immunity. The exposure of newborn mice to milk contain-
ing or deficient in sialyllactose had no impact on the development of mucosal leukocyte 
populations. However, when challenged by dextran sulfate sodium (DSS) in drinking 
water, adult mice that had been fostered on sialyl(2,3)lactose-deficient milk were more 
resistant to colitis compared with mice fostered on normal milk or sialyl(2,6)lactose-
deficient milk. Analysis of intestinal microbiota showed different colonization patterns 
depending on the presence or absence of sialyl(2,3)lactose in the milk. Germ-free mice 
reconstituted with intestinal microbiota isolated from mice fed on sialyl(2,3)lactose-
deficient milk were more resistant to DSS-induced colitis than germ-free mice reconsti-
tuted with standard intestinal microbiota. Thus, exposure to sialyllactose during infancy 
affects bacterial colonization of the intestine, which influences the susceptibility to  
DSS-induced colitis in adult mice.

© 2010 Fuhrer et al.  This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.rupress.org/terms). After six months 
it is available under a Creative Commons License (Attribution–Noncommercial– 
Share Alike 3.0 Unported license, as described at http://creativecommons.org/ 
licenses/by-nc-sa/3.0/).
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importance of theses type of milk oligosaccharides on the 
colonization of intestinal bacteria and on the susceptibility 
to an experimental colitis model.

RESULTS
The sialyltransferase enzymes St6gal1 and St3gal4 are 
responsible for the production of sialyllactose in mouse milk
The composition of mouse milk oligosaccharides is limited  
to sialyllactose with only traces of fucosylated lactose (Kuhn, 
1972; Prieto et al., 1995). This low structural complexity makes 
the mouse a suitable model to investigate the role of these  
specific milk oligosaccharides on mucosal immunity. Because 
multiple 2,3 and 2,6 sialyltransferase enzymes (Harduin- 
Lepers et al., 2001) could be responsible for the production 
of sialyllactose, we have first examined the expression of these 
genes in the lactating mammary gland. The messenger RNA 
(mRNA) levels of the 2,3 sialyltransferase genes St3gal1 to 
St3gal6 and of the two 2,6 sialyltransferase genes St6gal1 
and St6gal2 were determined by real-time PCR. The ex-
pression of the St6gal1 gene was induced up to 20-fold  
during lactation, suggesting this sialyltransferase may ac-
count for the biosynthesis of sialyl(2,6)lactose (6SL; Fig. 1), 
and thus confirming a previously published observation  
(Dalziel et al., 2001). Among 2,3 sialyltransferase genes, the 
expression of St3gal1 and St3gal4 were induced by three- and 
fourfold during lactation, respectively (Fig. 1). The three  
St6gal1, St3gal1, and St3gal4 also represented the most abun-
dant sialyltransferase transcripts in lactating mammary gland 
when mRNA levels were normalized to GAPDH (Fig. S1).

To confirm the involvement of the St3gal1, St3gal4, and 
St6gal1 sialyltransferases in the production of milk sialyllac-
tose, the oligosaccharide composition of milk isolated from 
St3gal1, St3gal4, and St6gal1 sialyltransferase-deficient mice 
was determined by pulsed amperometry-HPAEC. Milk iso-
lated from St3gal1/ mice showed unaffected or rather in-
creased levels of both sialyl(2,3)lactose (3SL) and 6SL when 
compared with the levels measured in WT mice by day 2 of 
lactation (Fig. 2 A). The analysis of oligosaccharides in milk 

from St3gal4/ mice showed a strong 
decrease of 3SL, indicating that this 
sialyltransferase accounts for the bulk 
of 3SL production. The importance of 
St6gal1 in the production of 6SL was 

(Eckburg et al., 2005). Firmicutes themselves are composed 
of two major clostridial groups, namely the clostridial clus-
ter IV and clostridial cluster XIVa, which comprises Lach-
nospiraceae. The density and diversity of the intestinal 
microbiota are highly complex. Culture-independent meth-
ods have allowed us to estimate the presence of 500–1,000 
different species and >7,000 strains in the human gastroin-
testinal tract (Ley et al., 2006; Dethlefsen et al., 2007). 
Commensal bacteria are indispensible for the proper de-
velopment of the mucosal immune system. In addition to 
morphological development of immune compartments, bac-
terial colonization initiates antibody production (Macpherson 
and Harris, 2004) and the production of antimicrobial pro-
teins such as defensins (Falk et al., 1998). Bacterial cell wall 
components have also been shown to regulate CD4+ T helper 
cell activity in the lamina propria (Mazmanian et al., 2008). 
On the other hand, a defect of the innate immune system 
has been shown to affect the composition of the intestinal 
microbiota in mice, and thereby contributes to metabolic 
imbalance (Vijay-Kumar et al., 2010). In humans, similar rela-
tionships have been established between the intestinal micro
biota and energy balance, thus leading to the definition of 
microbiomes typical for disorders such as obesity (Turnbaugh  
et al., 2006).

Prebiotic oligosaccharides have been said to reduce the 
susceptibility to allergies in infants (Moro et al., 2006; von 
Hoffen et al., 2009) and shown to influence the immune re-
sponse to vaccination in mice (Vos et al., 2007). However, 
the mechanisms underlying the regulatory action of oligo-
saccharides remain largely unknown. Considering the struc-
tural complexity of human milk oligosaccharides, the mouse 
with its reduced range of milk oligosaccharides (Prieto et al., 
1995) enables addressing the functional impact of specific 
oligosaccharides on mucosal immunity in vivo. In this study, 
we have studied the impact of sialylated oligosaccharides  
using sialyltransferase-knockout mice deficient for these 
milk oligosaccharides. The fostering of newborn mice by 
normal or sialyllactose-deficient mothers demonstrated the  

Figure 1.  Sialyltransferase gene expres-
sion in mouse mammary gland. The relative 
levels of mRNA transcripts encoding the six 
2,3 sialyltransferases (St3gal1 to St3gal6) 
and the two 2,6 sialyltransferases (St6gal1 
and St6gal2) were measured in virgin mice 
(mRNA levels set to 1), at 1 wk postpartum,  
2 wk postpartum, and 3 d post-weaning. Data 
represent the mean ± SEM of 3 mice per time 
point (n = 3). Similar results were obtained in 
two independent experiments.

http://www.jem.org/cgi/content/full/jem.20101098/DC1
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3SL and 6SL and the exact structure of sialic acid in mouse milk 
were also analyzed after release by neuraminidase treatment. 
We did find that milk sialyllactose was exclusively composed  
of N-acetylneuraminic acid because no N-glycolylneuraminic 
acid could be detected (Fig. S2).

Feeding with milk deficient in 3SL increases the resistance 
of mice to dextran sulfate sodium–induced colitis
The role of milk 3SL and 6SL in the development of the 
mucosal immune system was addressed by feeding WT and 
St3gal4/ newborn mice with normal or with 3SL-deficient 
milk by cross-fostering litters with WT and St3gal4/ moth-
ers. The same cross-fostering approach was applied to study 
the role of 6SL. Leukocyte populations and IgA secretion 
were determined in 3-, 6-, and 12-wk-old mice by flow  
cytometry and enzyme-linked immunosorbent assay, re-
spectively. The T cell–specific markers TCR/, CD4, 
CD8, and CD8/ were measured in WT, St3gal4/,  
St6gal1/, and correspondingly cross-fostered mice. No dif-
ferences were noticeable for leukocyte populations and IgA 
secretion (Fig. S3), indicating that neither the feeding with 
sialyllactose-deficient milk, nor the disruption of the St3gal4 
and St6gal1 genes had any impact on the maturation of intes-
tinal leukocytes.

In a second approach, we addressed whether feeding with 
3SL- and 6SL-deficient milk affected the response of mice to 
an intestinal challenge. At 7 wk of age, mice were exposed to 
dextran sulfate sodium (DSS) in drinking water for 5 d. DSS 
impairs the integrity of intestinal barrier, thereby inducing  
an acute colitis (Okayasu et al., 1990). WT mice responded 
strongly to the treatment, as shown by a loss of body weight 
of 17% by day 7. In contrast, St3gal4/ mice were more re-
sistant to DSS, as they lost only 5% of their body weight by 
day 7 (Fig. 3 A). WT mice that were cross-fostered and fed 
with 3SL-deficient milk sustained the DSS treatment better 
than those fed with normal milk, as shown by a reduced loss 
of body weight of 8%. Correspondingly, St3gal4/ mice fed 
with normal milk were more susceptible to DSS-induced 
colitis than littermates fed with 3SL-deficient milk (Fig. 3 A). 
DSS-induced colitis in St6gal1/ mice led to a similar dis-
ease as found in WT mice. Accordingly, cross-fostering ex-
periments with normal and 6SL-deficient milk had no impact 
on the susceptibility to acute colitis (Fig. S4). We therefore 
focused on the investigation of 3SL in colitis development.

The severity of colitis was also registered by measuring 
colon length, epithelial permeability, and histology. At 
day 7, colon length was shortened by 20–25% in WT 
mice, whereas it was shortened by 10% in St3gal4/ mice 
(Fig. 3 B). Cross-fostered mice showed a degree of colon 
shortening that matched the loss of body weight. WT 
mice fed with 3SL-deficient milk showed only a 10% colon 
shortening, and St3gal4/ mice fed with normal milk 
showed a more pronounced colon shortening (Fig. 3 B).  
A similar picture was obtained by examining epithelial 
permeability in the intestine. DSS treatment increased epi-
thelial leakiness in WT mice, but not in St3gal4/ mice. 

confirmed by the absence of this oligosaccharide in the milk 
isolated from St6gal1/ mice (Fig. 2 A). The impact of St3gal4 
on 3SL production was investigated in more details by mea-
suring sialyllactose levels across lactation. In WT mice, 3SL  
levels peaked in the first week of lactation and slowly decreased 
until day 20, where only minor concentrations were detected.  
In contrast, 6SL levels showed only a modest increase by mid- 
lactation (Fig. 2 B). The 3SL peak by the first week of lactation 
was absent in the milk of St3gal4/ mice and 3SL levels re-
mained low across lactation, thus demonstrating the importance 
of St3gal4 for the biosynthesis of 3SL (Fig. 2 C). The identity of 

Figure 2.  Sialyllactose concentration in mouse milk during lacta-
tion. (A) 3SL and 6SL in milk from WT, St3gal1/, St3gal4/, and  
St6gal1/ mice isolated at 2 d postpartum. nd, not detectable. 3SL and 6SL 
were measured in WT milk (B) and in St3gal4/ milk (C) throughout lac-
tation. Amounts are given in grams per 100 g dried milk (DM). Values are 
given as mean ± SEM of 3 mice from 2 independent experiments (n = 3).

http://www.jem.org/cgi/content/full/jem.20101098/DC1
http://www.jem.org/cgi/content/full/jem.20101098/DC1
http://www.jem.org/cgi/content/full/jem.20101098/DC1
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To better characterize the inflam-
matory response, we first measured 
the expression of chemokine and  
inflammatory marker genes in colon 
tissue on day 7 of DSS treatment. 
Whereas the levels of TNF and IL-1 

expression were only partially altered by milk feeding history, 
IL-6 expression was induced 59-fold in St3gal4/ mice, 
which had been fed with normal milk, when compared with 
an 25-fold increase observed in mice exposed to 3SL- 
deficient milk (Fig. 4). WT mice exposed to normal milk 
during lactation contained elevated levels of IL-6 that was 
again reduced in mice previously exposed to 3SL-deficient 
milk. The expression of the chemokines CCL2, CCL5, and 
CXCL-1 was elevated in mice with severe inflammation and 
correlated with the exposure to normal milk. Similarly, the 
expression of other inflammatory markers, such as IL-12, 
IFN-, and COX-2 was also increased in DSS-treated mice, 
yet to lower levels (Fig. 4).

The extent and types of cells infiltrating the inflamed colons 
were analyzed by flow cytometry in WT, St3gal4/ mice, 
and correspondingly cross-fostered mice. By day 5, 27–40%  
of cells recovered from the lamina propria were CD45+ 
(Fig. 5 A). By day 7, an additional 5–10% CD45+ cells were 
detected. Leukocyte infiltration was highest in mice with 
normal milk feeding history, but infiltration was only slightly 
decreased in mice that had been fed with 3SL-deficient 
milk (Fig. 5 B). The CD45+ cells were identified as B cells 

The finding was reversed when looking at cross-fostered 
WT and St3gal4/ mice fed with 3SL-deficient and nor-
mal milk, respectively (Fig. 3 C). Histological examina-
tion of DSS-treated mice revealed severe inflammation 
with massive infiltration of leukocytes into the mucosa 
and loss of entire crypts and surface epithelium, particu-
larly in the middle to distal colon at day 7, for WT and 
cross-fostered St3gal4/ mice (Fig. 3 D). St3gal4/ mice 
were less affected by DSS treatment as focal inflammation 
was less pronounced. The extent of tissue damage and leu-
kocyte infiltration in WT and St3gal4/ mice correlated 
with the exposure to milk 3SL during feeding. The impact 
of cross fostering on the colitis of WT and St3gal4/ mice 
was confirmed by grading the extent of epithelial damage 
and leukocyte infiltration in the medial and distal colon 
(Hausmann et al., 2007). The colitis score of WT mice fed 
with 3SL-deficient milk showed a nonstatistically signifi-
cant lower trend than that of WT mice fed with normal 
milk. Correspondingly, the score of St3gal4/ mice fed 
with normal milk tended to be higher, yet nonstatistically 
significantly, than that of St3gal4/ mice fed with 3SL-
deficient milk (Fig. 3 E).

Figure 3.  DSS-induced colitis. (A) 7-wk-
old WT mice (black circle, WT), cross-fostered 
WT mice (black triangle, WT CF), St3gal4/ 
mice (gray circle, KO), and cross-fostered  
St3gal4/ mice (gray triangle, KO CF) were fed 
DSS. (A) Body weight (n = 4–8). (B) Colon 
length. Values are given as percentage of 
untreated control mice; C, control untreated 
mice; DSS, DSS-treated mice; CF/DSS, cross-
fostered DSS-treated mice (n = 4–8). Similar 
results were obtained in four independent 
experiments. (C) Intestinal permeability as 
measured by FITC-dextran in serum from 
control mice and colitogenic mice on day 5 of 
DSS-induced colitis as obtained from 3 inde-
pendent experiments (n = 4–8). (D) Micro-
scopic analysis of colon tissues. Colons were 
removed at day 7, fixed, and stained with 
hematoxylin and eosin. Representative results 
from 6 mice out of 2 independent experi-
ments are shown. Bars, 100 µm. (E) Histologi-
cal scoring of colitis by evaluation of 
epithelial damage and extension of leukocyte 
infiltration, as previously described (Hausmann 
et al., 2007). Three mice per group were  
analyzed in two independent experiments 
(total 6) and three animals in untreated 
groups. *, P < 0.05.
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Feeding with 3SL-deficient milk 
modifies the bacterial colonization  
of the mouse intestine
We did show so far that the exposi-
tion to milk in the first 3 wk of life 
had an impact on the susceptibility to 
DSS-induced colitis tested in adult 
mice. Considering the known effect 
of milk oligosaccharides as prebiotics 
(Bode, 2009), we addressed whether 
the presence or absence of 3SL af-
fected the composition of the intesti-
nal microbiota and thereby the outcome 

of DSS-induced colitis. To address the first point, we finger-
printed the intestinal microbiota of WT, St3gal4/, and 
cross-fostered mice by temporal temperature gradient gel 
electrophoresis (TTGE) and by real-time PCR. TTGE fin-
gerprints from each 6 mice of each group were analyzed at 
3, 6 (Fig. 6 A), and 12 wk of age. Despite internal differ-
ences within groups, cluster analysis indicated a higher 
degree of similarity within than between these groups.  
A specific band, identified by sequencing as representing  
a Ruminococcaceae species (Fig. S6), was only detectable by 
TTGE in the microbiota of mice exposed to 3SL, namely in 
WT mice and in St3gal4/ mice fed with WT milk (Fig. 6 A). 
The sequence obtained from the TTGE band indicated that 
the Ruminococcaceae species was very close to Rumino-
coccaceae from the clostridial cluster IV, yet different from 
the species known to date. By comparison, the presence or 
absence of 6SL as tested with St6gal1/ mice did not affect 
the occurrence of the Ruminococcaceae in the intestinal 
microbiota (Fig. S7), indicating that these bacteria require 
3SL for gut colonization.

The diversity of the intestinal microbiota was also de-
termined during DSS-induced colitis. A lower amount of 
bands on the gels were detected in DSS-treated mice com-
pared with healthy animals, indicating a decrease in micro-
bial diversity (Fig. 6 B). The band distribution on the gel 
was also shifted in mice treated with DSS, showing a change 
in microbial composition. Interestingly, the Ruminococcaceae-
related band remained unchanged during colitis. The intestinal 

(68%, CD19+) and granulocytes (20%, Ly6G+), with a  
minor population of T cells (7%, CD3+), inflammatory 
monocytes (6%, Ly6C+ high), and macrophages (7%, 
F4/80+; Fig. 5 C and Fig. S5). The number of Th1 and 
Th17 cells, as assessed by respective IFN- and IL-17 de-
tection in CD4+ T cells, was equal in WT mice by day 7 
of DSS treatment, whereas a threefold decrease of Th1 
against Th17 cells was found in St3gal4/ mice (Fig. S5). 
The main increase in infiltrating leukocytes was caused  
by Ly6C+ inflammatory monocytes, as previously observed 
in IBD patients (Flanagan et al., 2008). To determine 
whether the genotype of the infiltrating leukocytes af-
fected the extent of DSS-induced colitis, we subjected  
irradiated WT mice transplanted with St3gal4/ bone 
marrow and irradiated St3gal4/ mice transplanted with 
WT bone marrow to DSS treatment. After transplanta-
tion, mice were given 7 wk to recover from mucosal  
injury sustained during irradiation before being subjected 
to DSS treatment. WT mice bearing immune cells from  
St3gal4/ mice rapidly developed colitis and lost 15% of 
body weight, whereas St3gal4/ mice bearing WT  
immune cells did only lose 3% of weight loss at the same 
time point (Fig. 5 D). The fact that St3gal4/ mice re-
mained resistant to DSS treatment regardless of the geno-
type of infiltrating leukocytes, i.e., WT or St3gal4/, 
established that the resistance to DSS was inherent to the 
intestinal tissue and not affected by the deletion of St3gal4 
in blood leukocytes.

Figure 4.  Expression of mRNA encoding 
inflammation markers and chemokines in 
colons of mice at day 7 of DSS treatment. 
7-wk-old WT mice, cross-fostered WT mice, 
St3gal4/ mice and cross-fostered  
St3gal4/ mice were fed DSS. C, control un-
treated mice, DSS, DSS-treated mice, CF/DSS, 
cross-fostered DSS-treated mice. mRNA levels 
were measured using the 2ct method and 
normalized to the levels of the GAPDH mRNA. 
Values are shown relative to the mRNA levels 
of untreated control mice. Data are repre-
sented by mean ± SEM from 4 samples out of 
2 independent experiments (n = 8). *, P < 0.05.

http://www.jem.org/cgi/content/full/jem.20101098/DC1
http://www.jem.org/cgi/content/full/jem.20101098/DC1
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influenced the relative composition of Enterobacteriaceae 
and the clostridial cluster IV to total bacteria. Enterobacte-
riaceae and the clostridial cluster IV were more abundant 
in WT and cross-fostered St3gal4/ mice after DSS treat-
ment (Fig. 7 B).

Considering the differential detection of a Ruminococ-
caceae species by TTGE analysis and the fact that several  
Ruminococcaceae are part of the clostridial cluster IV (Van 
Dyke and McCarthy, 2002), we have measured the abundance 

microbiota DNA samples investigated by TTGE (Fig. 6,  
A and B) were also tested by real-time PCR analysis to de-
termine the distribution of the five phylogenic groups 
(Enterobacteriaceae, Lachnospiraceae, clostridial cluster IV, 
Bacteroidetes, and Lactobacillaceae) in WT, St3gal4/, 
and cross-fostered mice. This analysis confirmed that 3SL 
deficiency in the milk affected the colonization of clostrid-
ial cluster IV bacteria (Fig. 7 A). However, during DSS- 
induced colitis, the previous exposure to 3SL in milk 

Figure 5.  Hematopoietic cell infiltration and bone marrow chimera of WT and St3gal4/ mice. Colonic cells were isolated and stained with 
anti-CD45 APC-Cy7 and analyzed by FACS. Mice were analyzed on day 0 (D0), 5 (D5), and 7 (D7) of DSS treatment. (A) Representative dot plots of WT, 
cross-fostered WT mice (WT CF), St3gal4/, and cross-fostered St3gal4/ mice (St3gal4/ CF) from three independent experiments are shown.  
The percentage of gated cells is indicated at the top left corner of each plot. (B) Quantitation of CD45+ cells in colon infiltrates from 3 independent ex-
periments (n = 4–8). *, P < 0.05. (C) Leukocyte subsets in colons on day 0 (D0), 5 (D5), and 7 (D7) of DSS treatment as obtained from 2 independent  
experiments (n = 3–6). *, P < 0.05, KO: St3gal4/. (D) Body weight of WT mice transplanted with St3gal4/ bone marrow cells (black triangles; n = 10)  
and St3gal4/ mice transplanted WT bone marrow cells (gray circles; n = 11) during DSS treatment. Data represent the mean ± SEM of 10–11 mice from 
2 independent experiments. *, P < 0.05.
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Microbiota isolated from mice fed with 3SL-deficient milk 
increase the resistance of reconstituted germ-free mice  
to DSS-induced colitis
To demonstrate that the effect of 3SL-deficiency toward DSS 
treatment was mediated by selective bacterial colonization  
of the intestine, we have reconstituted germ-free mice with 
intestinal microbiota isolated from the cecum of WT and  
St3gal4/ mice. Colonization success was confirmed by TTGE 
analysis of fecal pellets 2 wk after reconstitution. The micro-
biota from WT mice included the Ruminococcus-related 
specific band, whereas the microbiota from St3gal4/ mice 
lacked this major band (Fig. 8 A). The mice with reconsti-
tuted microbiota were then subjected to DSS treatment by 
12 wk of age. The mice with the WT-derived microbiota 
showed a progressive loss of body weight similar to WT mice, 
reaching 82% of their initial body weight by day 7 (Fig. 8 B).  
In contrast, the mice with the St3gal4/-derived microbiota 
showed a moderate weight loss to 90% of initial body weight, 
thus demonstrating that the composition of the intestinal mi-
crobiota had a direct influence on the susceptibility to DSS-
induced colitis.

DISCUSSION
This study demonstrated the impact of the milk sialyllactose 
3SL on the colonization of the mouse intestinal microbiota, 
and thereby on the susceptibility to DSS-induced colitis. 
The application of the cross-fostering setup between WT 
and St3gal4/ mice demonstrated for the first time that a 
single oligosaccharide structure influences microbial com-
position in vivo. The different abundance of specific bacte-
rial groups like Ruminococcaceae in mice fed with normal 
or 3SL-deficient milk correlated with the susceptibility to 
DSS-induced colitis. The first question arising when con-
sidering the model investigated is whether the oligosaccha-
ride 3SL exerts regulatory functions on the mucosal immune 
system, thereby influencing the immune response to DSS 
exposure. Our survey of leukocyte populations did not reveal 
any differences between WT, St3gal4/ and cross-fostered 
mice, thus speaking against such an immunoregulatory effect 
of 3SL. Furthermore, the bone marrow transplantation between 
WT and St3gal4/ mice showed that the susceptibility  
to DSS did not correlate with the genotype of leukocytes. 
Finally, the differential susceptibility of reconstituted germ-
free mice to DSS demonstrated that the effect of 3SL-deficient 
milk was mediated by microbiota and not by the mucosal 
immune system.

The exposure to 3SL during lactation could influence 
the colonization of intestinal bacteria by affecting their ad-
hesion to the intestinal epithelium or by serving as nutrients 
for specific groups of bacteria. Milk 3SL could impair the 
attachment of bacteria binding to sialylated surfaces (Sakarya 
et al., 2003) or induce phase variation, thereby decreasing 
type 1 fimbriae expression on some bacteria (Sohanpal  
et al., 2004). However, we could not address such an effect of 
3SL on the colonization of Ruminococcaceae because we 
have not succeeded at isolating this bacterial group in culture. 

of these bacteria using PCR primers that specifically target 
16S recombinant DNA (rDNA) from Ruminococcus genera 
(Fig. S8). In agreement with the TTGE data, the Rumino-
coccaceae species was more abundant in mice that had been 
exposed to 3SL containing milk, i.e., in WT and cross- 
fostered St3gal4/ mice (Fig. 7 C). The treatment with DSS 
did not alter the levels of Ruminococcaceae, thereby con-
firming the TTGE findings (Fig. 6 B).

Figure 6.  Microbiota analysis in the mouse gastrointestinal tract. 
Temporal temperature gradient gel electrophoresis profiles of 16S rDNA 
gene amplification products from cecum of 6 wk-old WT and St3gal4/ 
mice fed with either WT or St3gal4/ milk (A) and after DSS-induced 
colitis (B). The data represent the results of one out of two independent 
experiments with six animals per group. The marker (M) shows amplifica-
tion products from the species Lactobacillus plantarum, Lactococcus 
lactis, Corynebacterium variabile, Brevibacterium linens, and Arthrobacter 
protophormiae from top to bottom. Arrowheads mark the position cor-
responding to the Ruminococcaceae bands.
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may have a proinflammatory action. 
The fact that Ruminococcaceae have 
been found enriched in patients  
with inflammatory bowel disease 
(Prindiville et al., 2004; Martinez-
Medina et al., 2006; Andoh et al., 
2007) supports their potential role  
as proinflammatory bacteria. More-
over, the intestinal colonization of 
Ruminococcaceae may impair the 
settlement of other bacterial groups, 
which are known to attenuate the 
extent of the inflammatory response 
(Nanda Kumar et al., 2008; Im  
et al., 2009)

At the present stage, it is not pos-
sible to demonstrate a direct relation-
ship between the intestinal abundance 
of Ruminococcaceae and the sever-
ity of DSS-induced colitis. The isola-
tion and culture of Ruminococcaceae 

in vitro would allow the selective reconstitution of germ-
free mice with these bacteria and subsequently to address 
the susceptibility of the mice to DSS treatment. We are  
currently trying to enrich for Ruminococcaceae on 3SL- 
containing media to assess their exact role in the development 
of colitis.

Our study has demonstrated that the exposure to a sin-
gle milk oligosaccharide structure can significantly influ-
ence intestinal bacterial colonization and thereby affect 
the susceptibility of the host to DSS-induced colitis. The 
fact that mice fed with 3SL-deficient milk were more re-
sistant to DSS treatment is somehow paradoxical, consid-
ering that this oligosaccharide is evolutionary conserved in 
most mammals. Although 3SL has a proinflammatory ef-
fect in the DSS model, it can be assumed that 3SL may 
mediate protective actions, e.g., by preventing the adhe-
sion of pathogenic viruses and bacteria during infancy. 
Further, the 3SL-dependent microbiota might confer an 
evolutionary advantage by promoting an inflammatory  

Alternatively, 3SL could be used as a carbon and nitrogen 
source, which would facilitate the proliferation of bacteria 
capable of metabolizing sialic acid, as shown for the intesti-
nal colonization of E. coli and V. cholerae (Chang et al., 
2004; Almagro-Moreno and Boyd, 2009b). The Nan clus-
ter of genes required for the catabolism of sialic acid is found in 
several pathogenic and commensal bacteria including, Rumino­
coccus gnavus (Almagro-Moreno and Boyd, 2009a). Thus, the 
selective colonization of Ruminococcaceae in the presence 
of 3SL might be mediated through their ability to use 3SL for 
energy gain.

The Gram-positive Ruminococcaceae are obligate anaer-
obes that are commonly found in the colon of mammals such 
as mice and humans (Collins et al., 1994). Ruminococcaceae 
are known to ferment polysaccharides like cellulose and 
starch (Herbeck and Bryant, 1974; Wang et al., 1997; 
Leitch et al., 2007). The correlation between the abun-
dance of the Ruminococcus-related species and the suscepti-
bility to DSS-induced colitis suggests that this bacterium 

Figure 7.  Quantitative analysis of gas-
trointestinal microbiota. The microbiota 
composition of WT, St3gal4/, and respec-
tive cross-fostered (CF) mice was determined 
by real-time PCR in native microbiota (A)  
and microbiota on day 7 of DSS treatment (B). 
(C) Real-time PCR of Ruminococcaceae  
species in WT, St3gal4/, and CF mice in 
control conditions and after 7 d of DSS-
induced colitis. Values are shown as relative 
amount to total bacteria 16S rDNA measured 
by the 2Ct method. Two independent  
experiments were performed and data  
show means ± SEM of 4–6 animals  
(n = 4–6). *, P < 0.05.
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MATERIALS AND METHODS
Mouse models. Sialyltransferase St6gal1/ (Hennet et al., 1998),  
St3gal1/ (Priatel et al., 2000), and St3gal4/ (Ellies et al., 2002) were 
provided by J. Marth (University of California, Santa Barbara, Santa Barbara, 
CA). All mice were in the C57BL/6 background. Sialyltransferase-deficient 
and WT control mice were housed in light-cycled and climate-controlled 
rooms. All experiments were performed in compliance with the Swiss Ani-
mal Protection Ordinance and approved by the Veterinary Office of the 
Canton of Zürich, Switzerland. Synchronized matings were set up for sialyl-
transferase and WT control mice to allow the exchange of newborn mice for 
cross-fostering experiments. To this end, both the mothers and the litter of 
the other genotype were transferred to new cages, including parts of the 
mother’s nests.

Sialyltransferase gene expression in mammary glands. Commercial 
RNA (Axxora Ltd.) isolated from mammary glands of virgin mice and mice 
after 1 and 2 wk postpartum and 3 d after weaning was used to monitor sialyl
transferase expression profiles by real-time PCR (ABI Prism 7000; Applied 
Biosystems) using a SybrGreen protocol. In brief, RNA samples were treated 
with DNase (DNA-Free; Ambion) according to the manufacturer’s instruc-
tions. RT reactions were performed with 2 µg of total RNA and random 
hexamer primers using the Thermoscript RT-PCR System (Invitrogen)  
according to manufacturer’s instructions. Real-time PCR reactions were 
performed using the SYBRGreen PCR Master Mix (Applied Biosystems) of 
24 µl and 1 µl of test cDNA per reaction. The primers used for amplification 
of mouse sialyltransferase genes are listed in Table S1. After an initial denatur-
ation step of 10 min at 95°C, 40 cycles were performed at 95°C for 15 s, 60°C 
for 1 min, and 72°C for 1 min. Gene expression was normalized to GAPDH  
expression and calculations were done according to the 2Ct method  
(Livak and Schmittgen, 2001).

Mouse milking. Lactating mothers were separated from their suckling 
newborns for 4 h. Milk ejection was stimulated by intraperitoneal injection 
of 0.5 IU of oxytocin (Sigma-Aldrich). Mice were anesthetized by ketamine 
(0.65 ml/kg) and xylazine (0.5 ml/kg). Milk was collected by aspiration 
(Haberman, 1974; Nagasawa, 1979), and then frozen and lyophilized. Dry 
matter was determined by weighing, and samples were resuspended in water 
to yield a stock solution of 100 mg/ml.

Milk oligosaccharide analysis. For each sample, an equivalent of 16.5 µg 
dry matter was separated on a CarboPac PA200 analytical column (Dionex) 
with an amino trap guard (Dionex) using a high performance anion ex-
change chromatography system ICS3000 (Dionex) equipped with a pulsed 
amperometry detector. The column compartment was set to 25°C and the 
flow speed to 0.38 ml/min. The running conditions were as follows: iso-
cratic 30 mM NaOH (Avantor) for 10 min followed by a linear gradient to 
100 mM NaOH for 10 min followed by isocratic 100 mM NaOH for 10 min 
and a linear gradient from 0 to 100 mM Na-acetate (Merck) for an addi-
tional 35 min. Each run was preceded by a washing and equilibration step: 
isocratic 500 mM Na-acetate for 5 min, followed by isocratic 300 mM 
NaOH for 10 min, followed by isocratic 30 mM NaOH for 10 min. The re-
tention times for 6SL and 3SL were 38.3 min and 38.7 min, respectively. 
Peak identification was done based on retention time comparison with au-
thentic external sialyllactose standards (Dextra Laboratories) and disappear-
ance of sialyllactose peaks upon neuraminidase treatment with simultaneous 
appearance of N-acetylneuraminic acid. For quantification, a standard curve 
with 50, 100, and 250 ng authentic 6SL and 3Sl standards was established 
before and after injection of five milk samples.

IgA analysis. Fresh feces pellets were homogenized in PBS containing  
0.1 mg/ml trypsin inhibitor (Sigma-Aldrich) at 4°C and cleared by centrifu-
gation at 10,000 g for 10 min. Supernatants were serially diluted in PBS con-
taining 0.05% Tween (Fluka)/0.1% BSA (Fluka) and 50 µl were applied per 
well. IgA was determined by sandwich-ELISA using anti–mouse IgA anti-
body (BD) as coating antibody and biotinylated rat anti–mouse IgA antibody 

defense reaction upon an infection challenge. The fact that 
3SL levels in milk are elevated in the first days postpartum 
and strongly decrease until weaning may indicate the need 
for a balanced availability of the oligosaccharide in the  
developing gastrointestinal tract. The study of additional  
immunological challenges and infectious models in sialyl-
transferase/ mice will further clarify the biological impor-
tance of sialylated milk oligosaccharides in the physiology 
of the gastrointestinal tract.

Figure 8.  Colitis in reconstituted germ-free mice. (A) Temporal tem-
perature gradient gel electrophoresis profiles of 16S rDNA amplification 
products from feces of mice colonized with WT or St3gal4/ microbiota 
at 2 wk after colonization (n = 6). The marker (M) shows amplification 
products from the species Lactobacillus plantarum, Lactococcus lactis, 
Corynebacterium variabile, Brevibacterium linens, and Arthrobacter proto-
phormiae from top to bottom. Arrowheads mark the position correspond-
ing to the Ruminococcaceae bands. (B) Body weight change in 
DSS-induced colitis of reconstituted germ-free mice colonized with WT 
(black triangles) or St3gal4/ (gray diamonds) microbiota (n = 6). The 
difference in body weights measured at day 7 was significant (P < 0.05). 
The data show the results from 1 experiment performed with 6 animals 
per group (n = 6).
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were reconstituted with 2 × 106 BM cells by intravenous injection  
(Spangrude, 2008). Mice were treated with antibiotics (Borgal 24% ad us. 
vet.; Veterinaria AG) for 3 wk.

Temporal temperature gradient gel electrophoresis. DNA was isolated 
from freshly isolated cecal content using the QIAamp DNA Stool Mini kit 
(QIAGEN). Bacterial 16S rDNA was amplified using the universal primers 
HDA1-GC 5-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCA
CGGGGGGACTCCTACGGGAGGCAGCAGT-3 and HDA-2 5-GTAT-
TACCGCGGCTGCTGGCAC-3 according to Ogier (Ogier et al., 2002). 
The PCR conditions were 30 cycles at 94°C for 30 s, 56°C for 30 s, and 72°C 
for 1 min, flanked by an initial denaturation at 94°C for 4 min and a final 
elongation at 72°C for 4 min. PCR products were loaded on 8.5% poly-
acrylamide gels containing 8 M urea and separated by TTGE using the  
D-Code universal mutation detection system (Bio-Rad Laboratories). Electro-
phoresis was performed in 60 mM Tris-acetate, 30 mM acetic acid, and  
1.5 mM EDTA first at 20 V for 15 min, followed by a constant voltage at  
80 V for 18 h with a temperature increase of 0.2°C/h from 66 to 70°C. TTGE 
profiles were analyzed by using GelCompar II software (Applied Maths).

Bacterial typization. TTGE bands were excised from the gels and DNA 
was diffused over night at 4°C in 100 µl H2O. Standard HDA primers were 
used to reamplify the PCR product from 3 µl of eluate. PCR products were 
purified using QIAquick PCR purification kit (QIAGEN) and sequenced 
(Synergene Biotech). The proportion of bacterial phyla in intestinal samples 
was determined by real-time PCR using the SYBR Green JumpStart Taq 
ReadyMix (Sigma-Aldrich) as described for cytokine gene expression and 
primer pairs specific for the lineages Bacteroidetes, Enterobacteriaceae, 
Lachnospiraceae, clostridial cluster IV, and Lactobacillaceae (Table S1). The 
forward primer specific for the Ruminococcaceae species was designed by 
choosing a stretch of 16S rDNA gene sequence that was distinctive from the 
corresponding sequences of other Ruminococcaceae of the clostridial cluster 
IV (Fig. S8). Cycling conditions were 40 cycles at 95°C for 15 s, 66°C for 
20 s, and 72°C for 20 s after an initial denaturation at 95°C for 10 min. 
Quantification values were calculated by the 2Ct method relative to total 
bacteria 16S rDNA amplification.

Germ-free colonization. Cecal contents (100 mg) of WT and St3gal4/ 
donor mice were collected under anaerobic conditions and diluted in 10 ml 
of anaerobic mineral solution containing 5 g/liter NaCl, 2 g/liter glucose, 
and 0.3 g/liter cysteine-HCl (de Sablet et al., 2009). 3–4-wk-old C57BL/6 
germ-free males (Institute of Laboratory Animal Science, University of 
Zürich, Switzerland) were colonized with 200 µl of 1:100 diluted cecal mi-
crobiota by gavage and kept in isolators for 4 wk.

Statistics. Results were expressed as mean ± SEM. Difference between 
groups was analyzed using one-way analysis of variance with Bonferroni’s 
Multiple Comparison Post-test. Significance was accepted for P < 0.05.

Online supplemental material. Fig. S1 shows the mRNA levels of sialyl-
transferases normalized to GAPDH expression in mammary gland tissue.  
Fig. S2 outlines the determination of sialic acid in mouse milk. Fig. S3 shows 
unchanged T cell development and IgA production in the intestine of  
St3gal4/ and St6gal1/ mice. Fig. S4 shows the normal susceptibility of 
St6gal1/ mice to DSS-induced colitis. Fig. S5 shows the typing of leukocyte 
subsets in the colon of DSS-treated mice. Fig. S6 outlines the identification 
of a Ruminococcaceae species from TTGE analysis. Fig. S7 shows the intes-
tinal microbiota analysis in St6gal1/ mice. Fig. S8 explains the definition 
of a PCR primer specific for the new Ruminococcaceae species. Table S1 
lists the primers used in the present study. Online supplemental material is 
available at http://www.jem.org/cgi/content/full/jem.20101098/DC1.

The authors kindly thank Monique Julita and John Newell for excellent technical 
assistance with milk oligosaccharide and mammary gland gene expression analysis 
as well as Charlotte Burger and Isabelle Frey for assistance with histology.

(BD) as detection antibody. The antibody complex was detected using strep-
tavidin-HRP (Sigma-Aldrich) and tetramethylbenzidine substrate solution 
(BD) at 440 nm in an ELISA plate photometer (Tecan). A purified mouse 
IgA standard (BD) was used for quantification.

DSS-induced colitis. 7-wk-old sex-matched mice were treated with 
3.75% (wt/vol) DSS (molecular mass = 36–50 kD; MP Biomedicals) in 
drinking water for 5 d, followed by a supply of normal water until sacrifice 
of the animals (Okayasu et al., 1990). The lowest possible DSS dosage was 
chosen to achieve acute inflammation within 7 d. Body weight and physical 
activity were monitored daily. Animal pain was kept to a minimum by fol-
lowing the Swiss Animal Protection Ordinance and euthanizing animals 
reaching <85% of initial body weight.

Transepithelial permeability assay. Mice were gavaged with 60 mg/100 g 
body weight of FITC-dextran (MW 3,000–5,000; Sigma-Aldrich; Napolitano 
et al., 1996). Mice were sacrificed and blood was isolated by cardiac punc-
ture. Serum fluorescence (485/535 nm) was measured immediately using a 
Genios Multi-Detection Microplate Reader (Tecan, Switzerland). Concen-
trations were calculated from standard curves using serial dilutions of FITC-
dextran in serum.

Histology. The distal third of the colon was mechanically cleaned, cut lon-
gitudinally, and fixed in 4% paraformaldehyde, and then embedded in paraffin. 
Tissue samples were cut in serial 3-µm sections, which were stained with 
hematoxylin–eosin. Histological examination was performed in a blinded 
fashion. Histological scoring of 3 sections obtained from 3 sites at 100 µm 
distance was graded on a scale of 0 (normal morphology, no infiltrate) to  
8 (loss of crypts in large areas, infiltration of the lamina submucosa) as de-
scribed previously (Hausmann et al., 2007).

Cytokine gene expression. RNA from frozen colon tissue was isolated 
using the RNeasy Protect Mini kit (QIAGEN) according to the manufac-
turer’s instructions. RT was performed with 2 µg total RNA using oligo(dT) 
primers and an Omniscript RT kit (QIAGEN). Real-time PCR was per-
formed using SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich) with 
specific primers for IL-1, IL-6, TNF, IL-12, IFN-, and GAPDH (Quanti-
Tect Primer; QIAGEN) and CCL2, CCL5, CXCL-1, and COX-2 (Table S1) 
in a Mx3000P thermocycler (Stratagene). Cycling conditions were 40 cycles  
at 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s after initial denaturation 
at 95°C for 10 min. Gene expression was normalized to GAPDH expression 
using the 2Ct method (Livak and Schmittgen, 2001).

Lamina propria leukocyte isolation. Colon lamina propria leukocytes 
were isolated as described previously (Lefrançois and Lycke, 2001). In brief, 
to detach intraepithelial lymphocytes, chopped colon segments were incu-
bated two times for 30 min at 37°C under constant stirring condition in 50 ml 
of Ca2+- and Mg2+-free Hanks’ balanced salt solution containing 10 mM 
Hepes, 2% horse serum, 2 mM DTT, and 0.5 mM EDTA. Leukocytes were 
released by additional incubation with 0.5 mg/ml of collagenase type IV 
(Sigma-Aldrich) and 30 µg/ml of DNase I (Sigma-Aldrich) for 2 × 45 min 
at 37°C, and cells were filtered through a 40-µm nylon mesh cell strainer.

Flow cytometry. Cells were stained on ice for 30 min with the following: 
anti-CD45 APC-Cy7, anti-CD19 APC, anti-CD3 FITC, anti-Gr.1 PE, 
anti-TCR PE, anti-TCR APC, anti-CD4 PE, anti-CD8 PE, anti-
CD8 PE-Cy5, anti-CD11c APC, anti-Ly-6G PerCP, anti-Ly-6C APC, 
anti-F4/80 Alexa Fluor 488, anti-CD11b PE, anti-CD4 PerCP-Cy5, anti–
IL-17A PE, anti–IFN- FITC, and anti–IL-17 PE antibodies (BD). Cells 
were analyzed with a FACSCanto II flow cytometer (BD).

Bone marrow transfer. 10-wk-old male WT and St3gal4/ recipient 
mice were lethally exposed to 9.33 Gy radiations (3.11 Gy/min). Femur and 
tibia from WT and St3gal4/ donor mice were removed and flushed with 
RPMI 10% FCS (Invitrogen) to harvest BM cells. Irradiated recipient mice 
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