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ABSTRACT

Knowledge of the molecular interactions of human
proteins within tissues is important for identifying
their tissue-specific roles and for shedding light on
tissue phenotypes. However, many protein–protein
interactions (PPIs) have no tissue-contexts. The Tis-
sueNet database bridges this gap by associating
experimentally-identified PPIs with human tissues
that were shown to express both pair-mates. Users
can select a protein and a tissue, and obtain a
network view of the query protein and its tissue-
associated PPIs. TissueNet v.2 is an updated ver-
sion of the TissueNet database previously featured
in NAR. It includes over 40 human tissues pro-
filed via RNA-sequencing or protein-based assays.
Users can select their preferred expression data
source and interactively set the expression thresh-
old for determining tissue-association. The output
of TissueNet v.2 emphasizes qualitative and quan-
titative features of query proteins and their PPIs.
The tissue-specificity view highlights tissue-specific
and globally-expressed proteins, and the quantitative
view highlights proteins that were differentially ex-
pressed in the selected tissue relative to all other tis-
sues. Together, these views allow users to quickly as-
sess the unique versus global functionality of query
proteins. Thus, TissueNet v.2 offers an extensive,
quantitative and user-friendly interface to study the
roles of human proteins across tissues. TissueNet
v.2 is available at http://netbio.bgu.ac.il/tissuenet.

INTRODUCTION

Proteins act through interactions with other molecules, and
these interactions define their functions and their cellular

roles in health and disease (1–3). Owing to their importance,
many efforts have been invested in experimental mapping of
physical interactions between proteins. In human, which is
the focus of TissueNet, over 240 000 protein–protein inter-
actions (PPIs) between more than 20 000 human proteins
have been reported to date (4). These PPIs were detected by
various experimental methods, and their records are avail-
able through several public databases.

Unlike unicellular organisms such as yeast, the human
body is composed of many tissues and cell types, each ex-
pressing a distinct set of genes and proteins (e.g. (5–8)).
Consequently, human proteins have different interaction
partners across tissues and cell types (9,10). While this infor-
mation is important for understanding the different func-
tions of proteins across tissues, a tissue-sensitive view of
PPIs is not readily available (for brevity ‘tissues’ also stands
for cell types). Commonly applied PPI detection methods,
such as protein arrays and yeast-two-hybrid, detect PPIs in-
vitro or outside human cells. Other methods, like affinity-
based assays, are typically carried in a single condition and
not repeatedly across tissues (3,11).

A common approach for associating PPIs with tissues is
by considering tissue expression data, such that PPIs involv-
ing lowly expressed or undetectable proteins are penalized
or eliminated from the tissue view (e.g. (9,12,13)). The value
of the resulting tissue-sensitive interaction networks (inter-
actomes) was demonstrated in several applications, where
tissue interactomes were shown to outperform the global,
unfiltered interactome, in prioritizing disease genes (12–
16) or to illuminate the molecular basis of tissue-selective
hereditary diseases (17).

TissueNet was among the first databases that enabled
users to obtain tissue-sensitive views of PPIs (18). By inte-
grating gene and protein expression profiles of human tis-
sues into a unified expression dataset, TissueNet provided
extensive views into 16 main human tissues. Users could
query TissueNet by using a protein and retrieve a network
view of its PPI partners per tissue, or by using a PPI and
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retrieve the tissues expressing both pair mates. Importantly,
in the output network TissueNet highlighted proteins that
were tissue-specific or globally expressed, and by this, of-
fered an intuitive, comparative view of tissue-associated
PPIs.

Since the publication of TissueNet (18), additional
databases that offer tissue-sensitive interactomes were de-
veloped, including GIANT (15), SPECTRA (19), HIPPIE
(20) and IID (21). In most databases, whether relying on
a single expression dataset (20) or consolidating multiple
sources (15,18,21), tissue-associations are predetermined
and the user cannot fine-tune the expression threshold for
association, or explore different thresholds. Some databases
support comparative analysis by enabling the user to select
multiple tissues in a single query. For example, the output of
IID (21) is a table of PPIs and their tissue-associations, with
no network representation. The output of GIANT (15) in-
cludes a network view for each selected tissue. The output of
SPECTRA (19) is a single network view, with distinct pro-
tein and edge colors representing distinct tissues. However,
none of these output formats is scalable and takes into ac-
count the tens of different tissues that have been profiled to
date.

The TissueNet database shows query proteins and their
interactions in the selected tissue, using a network view
that immediately compares this tissue to all other tissues by
highlighting tissue-specific and globally expressed proteins
(Figure 1A). As we previously showed, this comparison is
key in studying the tissue-specific effects of disease proteins
(17). TissueNet v.2 is an enhanced version of TissueNet that
includes significant data expansion, increased usability, and
provides a new quantitative view of the query protein and
its tissue-associated interactions.

ENHANCEMENTS AND NEW FEATURES IN TIS-
SUENET V.2

TissueNet v.2 builds on the huge increment in the under-
lying data that opened the door for new features that were
not possible with previous data. In addition to a 3-fold in-
crease in PPI data, sources for tissue expression profiles of
unprecedented scale became available. With TissueNet v.2,
users have the flexibility to select the expression source and
to set the expression threshold for tissue-associations inter-
actively. By this, they can change dynamically the resulting
network and fine-tune the tissue-specificity view of the pre-
sented proteins. The scale of the data allowed us to carry
differential expression analysis for each tissue relative to
all other tissues. By toggling a button, users can switch to
a differential view of the same output network, and study
quickly which interaction partners were up- or down- reg-
ulated in that tissue, and which were expressed similarly
across tissues (Figure 1B). Below we describe in detail the
increase in data and the new functionality of TissueNet v.2
that supports comparative and quantitative views of protein
interaction sub-networks across tissues.

New data incorporated into TissueNet v.2

TissueNet synergizes between large-scale data of human
PPIs and expression profiles of tens of human tissues, to

create an extensive database of tissue-associated PPIs. To
this end, we gathered PPIs from four major PPI databases,
BioGrid (4), IntAct (22), MINT (23) and DIP (24), and con-
solidated them by using the MyProteinNet web-server (25).
This resulted in a global human interactome that contained
243 706 PPIs between 17 283 human proteins. The usage of
MyProteinNet guaranteed that PPIs that were not detected
by established experimental methods were excluded.

Since TissueNet was published (18), tissue expression
profiles became available at unprecedented scale and qual-
ity. We extracted RNA-sequencing profiles from two lead-
ing sources: the Genome-Tissue Expression (GTEx) con-
sortium (5) and the Human Protein Atlas (HPA) (6). From
GTEx we included 421 samples from 42 tissues, and from
HPA we included 192 samples from 29 tissues (see Meth-
ods). We associated between genes and their proteins prod-
ucts. To complement the RNA-sequencing data, we also ex-
tracted from HPA protein expression profiles based on an-
tibody staining, which included over 14 000 proteins in 83
samples from 47 human tissues.

Enhanced user flexibility

TissueNet v.2 offers users the ability to select the expression
source by which to associate PPIs to tissues, and to set the
expression threshold for the association (Figure 1C). The
resulting network view shows the query protein with its PPI
partners that surpassed the threshold in the selected tissue,
colored by their tissue-specificity. A sliding bar allows users
to repeatedly change the threshold and obtain an adjusted
network. Another menu allows users to toggle between dif-
ferent tissues. The output menu also includes information
about the expression levels of the presented proteins across
tissues, their gene ontology (GO) annotations, and their PPI
detection methods.

A new quantitative view into tissue interactome differences

The extensive RNA-sequencing data provides a rich quanti-
tative view of tissue expression that was previously unavail-
able. Specifically, it allows for identifying proteins that are
differentially expressed in the selected tissue relative to other
tissues. For this, we carried differential expression analy-
sis per tissue (see Methods), and made it available to users
through the quantitative view toggle button. By selecting
this view, the output network is colored by the expression
fold-change of the genes in the selected tissue, allowing users
to immediately identify components that are up- or down-
regulated in that tissue (Figure 1B).

SUMMARY

The TissueNet v.2 database provides tissue-associated PPIs
for tens of human tissues by integrating data of PPIs with
data of gene and protein expression according to user-
defined parameters. The output of TissueNet v.2 high-
lights qualitative and quantitative features of the PPI sub-
networks that differentiate the selected tissue from other hu-
man tissues. By this, TissueNet v.2 offers a powerful means
for illuminating general and tissue-specific protein func-
tions, processes and phenotypes. Its scalable functionality
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Figure 1. TissueNet v.2 output views and query flow chart. (A) The tissue-specificity view of the query protein DAG1 in muscle highlights its muscle-specific
and globally expressed PPI partners. The DAG1 protein appears as a diamond-shaped node. Orange nodes denote muscle-associated proteins that were
expressed in at most 20% of GTEx tissues, and blue nodes denote muscle-associated proteins that were expressed in at least 80% of GTEx tissues. (B) The
quantitative view of the query protein DAG1 in muscle highlights its PPI partners that were significantly up- or down-regulated in muscle relative to other
tissues. Node colors range from blue to red to denote down-regulated and up-regulated genes, respectively. White nodes denote genes with insignificant
change in expression. This quantitative view is obtained directly from the tissue-specificity view by a toggle button. (C) A flowchart describing the integrative
framework of TissueNet v.2. TissueNet analysis starts with a consolidated set of experimentally detected human PPIs. In each query, the user selects one
of three data sources of tissue expression profiles, and can set the expression threshold for tissue-association. The output network view shows the query
protein and its PPI partners that were expressed in the selected tissue at the threshold level or above.

and user-friendly interface can accommodate new data of
additional tissues and cell types as they become available
to increase precision and coverage of the database even fur-
ther. With the increasing density and coverage of human
PPIs, analysis tools that provide meaningful views into these
huge amounts of data will become even more important in
basic and applied research into human phenotypes and dis-
eases.

MATERIALS AND METHODS

Expression data sources

Tissue expression profiles were obtained from GTEx (5)
and HPA (6). From GTEx we gathered RNA-sequencing
raw counts for all samples that were denoted with trau-
matic injury as the cause of death, resulting in 421 sam-
ples of 42 tissues. From HPA we gathered paired-end 100-
bp raw RNA-sequencing reads for 192 samples of 29 tis-
sues (ArrayExpress accession number: E-MTAB-2836). To
convert raw reads to raw counts, we first trimmed them
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with Trimmomatic to remove adapter sequences and low-
quality ends (parameters: illuminaclip slidingwindow:4:15
minlen:36). We aligned the trimmed reads to the GRCh38
assembly of the human genome using STAR version 2.3.0
with default parameters (26). Gene annotation was accord-
ing to the genecode.v21.annotation.gtf file. Raw reads per
gene that aligned to the reference genome uniquely were
counted using HTSeq-count. Raw counts were normalized
for each data source using the TMM method by the edgeR
package (27), to obtain the same library size for every sam-
ple. Genes with less than 10 counts in all samples were re-
moved before normalization. The normalized count for a
gene in a tissue was set to its median normalized count in
the corresponding tissue samples. We extracted data of pro-
tein expression for 85 samples from HPA (6). Samples taken
from main tissues were united by associating each protein
with its highest measured level (Supplementary Table S1).

Differential expression analysis

Differential expression analysis was applied to GTEx tis-
sues with at least five samples and to HPA tissues with at
least three samples. In each sample, we transformed RNA-
sequencing normalized counts using the VOOM method
(28), and calculated differential expression using a linear
model in the R-package Limma (29). Specifically, we com-
pared all samples of the same tissue to all other samples in
that data source. Only genes with FDR adjusted P-values
<0.05 were considered to be differentially expressed and
were colored according to their log2 fold-change values.

Protein–protein interactions data

Human PPIs were downloaded from BioGrid (4), DIP (24),
MINT (23) and IntAct (22), using the MyProteinNet web-
server (25). The usage of MyProteinNet ensured that only
PPIs detected by established methods for detection of phys-
ical interactions were considered, and resulted in a global
interactome that contained a subset of the PPIs recorded in
the different databases. PPI data will be updated every three
months.

Implementation

The TissueNet server was implemented in Python, using the
Flask framework, with data stored on a MySQL database.
The website client was programmed using the ReactJS
framework and designed with Semantic-UI CSS. The net-
work view is displayed by the Cytoscape.js plugin (30). The
website supports all major browsers. Recommended view-
ing resolution is 1440×900 and above.

Network view coloring

Network coloring is dynamic and depends on the data
source and on the user-selected threshold on expression lev-
els, as measured by normalized read counts. Only proteins
whose expression level is not below the expression thresh-
old are presented in the output network, and their tissue-
specificity is also computed dynamically based on the same
threshold. Since GTEx contains samples from tissues with

multiple regions (e.g. 11 brain sub-regions), to compute
tissue-specificity we grouped different regions of the same
tissues as detailed in Supplementary Table S2.

Download

The TissueNet database is available for download under the
permissive Creative Commons license. Tissue interactomes
were computed for each RNA-sequencing data source using
a threshold of 8 normalized counts, and for HPA protein us-
ing a threshold of low expression. The distributions of pro-
teins and PPIs by number of associated tissues were bimodal
and similar across data sources (Supplementary Figure S1).
Download data is versioned by numbered database builds
and by global interactome build dates. The download page
offers the user the ability to download data separately for
each data source.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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