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ABSTRACT Control of Mycoplasma gallisepticum infection can be accomplished through
vaccination. However, virulent field strains with genetic markers identical to vaccine strains
have been identified. Here, we report the sequencing of three field isolates with genetic
markers identical to the M. gallisepticum 6/85 vaccine strain.

Infection with Mycoplasma gallisepticum often leads to significant economic losses for
poultry producers, but vaccination with live attenuated vaccines provides significant

protection from disease and losses (1, 2). However, some live attenuated vaccine strains
have virulent strains with identical genetic markers. Three virulent M. gallisepticum isolates
(K4043, K4421A, and K5234) were previously shown to be identical to the 6/85 vaccine strain
based on the sequences of their genetic markers (3, 4).

The threeM. gallisepticum 6/85-like strains were obtained from Stanley Kleven (University
of Georgia, retired) as frozen broth cultures, grown at 37°C for a single 1/10 passage upon
receipt, and stocked at 280°C. The stocked strains were plated onto Frey’s agar (5) at 37°C
for 72 h. A single colony of each was grown in Frey’s broth to mid-log phase (the phenol
red indicator turned orange) for three 1/10 passages, and aliquots of the final passage were
pelleted by centrifugation (20,000 � g); multiple pellets of each strain were stored at280°C
(6). DNA for genome sequencing was isolated from the bacterial pellets using a DNeasy
blood and tissue kit (Qiagen, Inc., Germantown, MD, USA) according to the manufacturer’s
instructions. The DNA quantity and purity (260/280-nm and 260/230-nm ratios, respectively)
were assessed using a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA).

Illumina sequencing was conducted by the USDA ARS Genomics and Bioinformatics
Research Unit (Stoneville, MS, USA). DNA samples were sheared to 500-bp fragments, libraries
were prepared using an Illumina NeoPrep instrument (version 1.0 kit), and 2� 150 paired-end
sequencing was performed using an Illumina NextSeq500 sequencer (Illumina Biotechnology
Company, San Diego, CA, USA). The sequences were trimmed using the FastX-Toolkit version
0.0.14 Trimmer, and bases 9 to 144 were retained (7). Sickle version 1.33 was used to filter the
paired-end reads with quality and length thresholds of 25 and 20, respectively (8). All software
packages were used with default parameters unless otherwise specified. The average
sequence quality and length were 34 and 136, respectively, for all sequences. The sequence
metrics are given in Table 1.

Genomic DNA for MinION sequencing (Oxford Nanopore Technologies, Oxford, UK)
was isolated from duplicate frozen bacterial pellets, as used for the Illumina sequencing.
Unsheared genomic DNA was barcoded using the EXP-NBD103 kit and prepared for
sequencing using the SQK-LSK108 kit, and all three samples were sequenced together for
48 h using the same FLO-MIN106 flow cell. DNA base calling and barcode sorting were per-
formed using Guppy version 4.2.2 (Oxford Nanopore Technologies). Fastp version 0.20.0 was
used to remove sequences shorter than 3,000 bases to facilitate assembly (9). The sequence
metrics are given in Table 1. Genome assembly using both the Illumina and MinION data
was performed using the hybrid assembly mode of Unicycler version 0.4.8 (10). Overlaps
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were identified and trimmed automatically using the software. Each genome was assembled
into a single circular contig, rotated to start with dnaA, and polished automatically using the
software. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation
Pipeline version 6.0 during the genome submission (11, 12). The total genome size and other
genome statistics are given in Table 1.

Data availability. The annotated genome sequences, along with the raw reads, have
been deposited at GenBank. The accession numbers are listed in Table 1.
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TABLE 1 Accession numbers and genome information

Parameter

Data for strain:

K4043 K4421A K5234
Isolation source (3, 4) Meleagris gallopavo, 1995, Nebraska, USA Meleagris gallopavo, 1997, Michigan, USA Gallus domesticus, 2002, USA
GenBank accession no. CP092250.1 CP092249.1 CP092251.1

Illumina sequencing
Coverage (�) 947 2,145 53
No. of paired-end reads 6,740,304 15,431,938 381,216
SRA accession no. SRX14173698 SRX14172012 SRX14175583

MinION raw sequence reads
No. of reads 96,132 88,990 85,961
Avg length (bp) 7,345 8,549 10,583
SRA accession no. SRX15714068 SRX15714069 SRX15714067

MinION filtered reads
Coverage (�) 617 651 891
No. of reads 47,974 46,196 50,105
Avg length (bp) 12,446 13,786 17,413
SRA accession no. SRX14173699 SRX14172013 SRX14175584

Length (bp) 968,336 978,181 979,308
%G1C 31.6 31.4 31.6
No. of tRNAs 32 32 32
No. of rRNAs 6 6 6
No. of CDSsa 754 759 759
a CDSs, coding sequences.
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