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Magnetic resonance imaging data are being used in statistical models to predicted brain
ageing (PBA) and as biomarkers for neurodegenerative diseases such as Alzheimer’s
Disease. Despite their increasing application, the genetic and environmental etiology
of global PBA indices is unknown. Likewise, the degree to which genetic influences
in PBA are longitudinally stable and how PBA changes over time are also unknown.
We analyzed data from 734 men from the Vietnam Era Twin Study of Aging with
repeated MRI assessments between the ages 51–72 years. Biometrical genetic
analyses “twin models” revealed significant and highly correlated estimates of additive
genetic heritability ranging from 59 to 75%. Multivariate longitudinal modeling revealed
that covariation between PBA at different timepoints could be explained by a single
latent factor with 73% heritability. Our results suggest that genetic influences on PBA
are detectable in midlife or earlier, are longitudinally very stable, and are largely explained
by common genetic influences.

Keywords: predicted brain ageing, twin, gene, longitudinal predicted brain aging, MRI, development, cognitive
decline, Alzheimers’s disease
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INTRODUCTION

Brain magnetic resonance imaging (MRI) data are increasingly
used to predict brain ageing. In turn, predicted brain ageing
(PBA) is being used to estimate lifespan, to characterize
accelerated ageing, and to identify individuals with mild cognitive
impairment and the likelihood of progression to dementia
including Alzheimer’s Disease (Deary et al., 2009; Salthouse,
2010; Vos et al., 2012; Gaser et al., 2013; Fjell et al., 2014; Lowe
et al., 2016; Liem et al., 2017; Cole et al., 2019; Elliott et al.,
2019; de Lange and Cole, 2020). This approach works by relying
on machine learning to estimate associations between imaging
data and chronological age in training samples of varying ages
(Cole and Franke, 2017). Using supervised learning algorithms,
these associations are then applied to estimate PBA or predicted
brain age difference (PBAD) (the difference between predicted
and chronological age) in independent samples. Not only does
the approach assume that MRI of neuroanatomical degeneration
reflects poorer brain health and risk of neurodegenerative
diseases (McEvoy et al., 2009; Cole et al., 2019; Wang et al., 2019)
but that individual differences in brain aging stem from biological
processes influencing lifespan and age-related diseases explained
by genetic and environmental influences (Cole et al., 2019).
However, very little is known about the relative contribution of
genetic and environmental influences on PBA or PBAD and how
these may change over time.

We are aware of only two twin reports examining the
heritability of PBA and PBAD; Cole’s (Cole et al., 2017) cross-
sectional analysis of 62 female twins at mean age 62 years, and
Brouwer’s (Brouwer et al., 2021) longitudinal analysis of 673
twins aged 10–23 years. The latter reported PBAD heritabilities
up to 79% as well as longitudinal genetic correlations based on
gray matter density and cortical thickness ranging 0.46–0.68.
In addition to demonstrating heritability, these results suggest
a combination of stable and age-varying genetic influences on
brain aging at least in adolescents and young adults. Apart
from Brouwer’s analysis of adolescent and young adult twin
data, to our knowledge, there have been no twin reports that
have (i) estimated the genetic and environmental influences
on PBA and PBAD on older populations, or (ii) tested
developmental hypotheses regarding the stability of genetic
influences on brain ageing. Given the emphasis on early detection
of neurodegenerative diseases (Daviglus et al., 2010; Albert et al.,
2011; Golde et al., 2011; Sperling et al., 2011a,b), we sought to
address these gaps in our understanding.

Following the reports of Cole et al. (2017) and Brouwer et al.
(2021) and based on published heritability estimates for cortical
and subcortical volume (Baare et al., 2001; Wright et al., 2002;
Peper et al., 2007; Kremen et al., 2010; Brouwer et al., 2014;
Renteria et al., 2014; Satizabal et al., 2019), cortical thickness
(Thompson et al., 2001; Kremen et al., 2010; Kremen et al., 2013a;
Vuoksimaa et al., 2015), cortical surface area (Kremen et al., 2010;
Eyler et al., 2011; Kremen et al., 2013a; Brouwer et al., 2014;
Vuoksimaa et al., 2015), and diffusion MRI metrics (Elman et al.,
2017; Gillespie et al., 2017; Hatton et al., 2018b), we hypothesized
that MRI-based whole-brain indicators of PBA and PBAD
should be heritable. Next, we tested developmental hypotheses.

Theories of somatic mutation predict an accumulation of
unrepaired cellular and molecular damage arising from genome
instability during a single generation (Kirkwood, 1977; Morley,
1998; Kirkwood, 2005), which is consistent with autoregression
(Guttman, 1954; Eaves et al., 1986; Boomsma and Molenaar,
1987; Boomsma et al., 1989). If changes in brain ageing do
indeed stem from the accumulation of age-related genetic and
environmental influences, the task is to determine how well
autoregression explains observed PBA data. Alternatively, it is
plausible that genetic and environmental influences in PBA are
time-invariant and better explained by common or independent
pathway theories (Neale and Cardon, 1992).

Our aim, therefore, was to explore the etiology of PBA (and
PBAD) in a sample of middle- to later-age men with longitudinal
MRI assessments. In addition to estimating PBA heritability, we
tested competing hypotheses to explain best the longitudinal
changes in genetic and environmental influences.

MATERIALS AND METHODS

Subjects
Participants comprise middle-aged male twins who underwent
MRI scanning as part of the Vietnam Era Twin Study of Aging
(VETSA) (Kremen et al., 2013b). Wave 1 took place between
2001 and 2007 (Kremen et al., 2006; mean age = 56.1, SD = 2.6,
range = 51.1–60.2). Wave 2 occurred approximately 5.5 years
later (mean age = 61.8, SD = 2.6, range = 56.0–65.9). Wave
3 occurred approximately 5.7 years later (mean age = 67.5,
SD = 2.6, range = 61.4–71.7). All participants were concordant
for US military service at some time between 1965 and 1975.
Nearly 80% reported no combat experience. The sample is 88.3%
non-Hispanic white, 5.3% African-American, 3.4% Hispanic,
and 3.0% “other” participants. Based on data from the US
National Center for Health Statistics, the sample is very similar
to American men in their age range with respect to health and
lifestyle characteristics (Schoeneborn and Heyman, 2009).

Ethics
Written informed consent was obtained from all participants.
The University of California, San Diego, Human Research
Protection Program Institutional Review Board approved the
proposal to collect these data (Project #150572, 150537, 140361,
071446, 031639, and 151333). Data are publicly available through
requests at the VETSA website.1

MRI Acquisition
A description of the MRI acquisition and derivation of the
predicted brain age (PBA) and predicted brain age difference
(PBAD) endophenotypes are provided in the Supplement.
Discussed in detail elsewhere (Hatton et al., 2018a), PBA
was estimated using the Brain-Age Regression Analysis and
Computation Utility software BARACUS v0.9.4 (Github Inc,
2017; Liem et al., 2017). PBAD scores were calculated by
subtracting PBA, also referred to as “stacked-anatomy” brain age

1http://www.vetsatwins.org
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in BARACUS, from the chronological age. A negative PBAD
is indicative of brain age estimated to be older than one’s
chronological age. Briefly, this approach works by relying on
machine learning to estimate associations between imaging data
and chronological age in training samples of varying age. We
used the BIDS-mode docker on Ubuntu 16.04 using the default
database that was trained on N = 1,166 subjects with no objective
cognitive impairment (566 women/600 men, mean age 59.1 years,
SD 15.2, range 20–80 years; Hatton et al., 2018a).

We note that while supervised machine learning algorithms
such as BARACUS can detect informative multivariate patterns,
the relative contributions of individual regions are not tested.
Therefore, no inferences are made regarding particular
regions of interest that might be responsible for individual
differences in PBA or PBAD.

As noted in section “Subjects” there was considerable variation
in chronological age at each wave and overlap in age ranges
between the three assessments. Given the variation and overlap,
longitudinal analysis of these wave-based data would therefore
preclude any meaningful understanding of age-related changes.
Ignoring irregular spacing between time intervals in longitudinal
modeling can lead to biased parameter estimates (Estrada and
Ferrer, 2019). Rather than employing definition variables to
account for individual differences in age at assessment and
irregular timer intervals (Mehta and Neale, 2005), our solution
was to recode each subject’s score according to their chronological
age at assessment. Thus, for example, if two subjects “a” and
“b” were both aged 60 at VETSA 1 and 2, respectively, each
would be assigned a PBA score for age 60. Since each subject
contributed a maximum of three data points between ages 51
and 72, this creates missing data for which Full Information
Maximum Likelihood is well suited to handling. However, to
reduce sparse data while maintaining computational efficiency,
our “age-anchored” PBA and PBAD scores were re-coded to
one of four age intervals according to each individual’s age at
assessment: 51–55; 56–60; 61–65; and 66–72 years.

There were 260, 251, and 126 subjects with PBA scores at one,
two and three age intervals, respectively. Since there were only
3 VETSA assessments, no subjects had data from all four age
intervals. Five participants were ascertained twice in the same 5-
year age interval. Only their first observation was included. Prior
to twin modeling all PBA and PBAD scores were residualized
for the location and scanner differences (i.e., 1.5T vs 3T), age
at assessment and ethnicity using the umx_residualize function
in the umx software package (Bates et al., 2019), and given the
range in birth year (1943–1955), residuals were also adjusted
for cohort effects.

Statistical Analyses
The OpenMx2.9.9.1 software package (Boker et al., 2011) in
R3.4.1 (R Development Core Team, 2018) was used to estimate
correlations between the PBA scores and to fit univariate and
multivariate genetic twin models (Neale and Cardon, 1992). The
OpenMx code used for the multivariate analyses is included in
the Supplement. Given the numbers of incomplete twin pairs
(see Supplementary Table 1), methods such as Weighted Least
Squares would result in significant listwise deletion thereby

altering the accuracy of the PBA and PBAD means and variances.
Fortunately, the raw data Full Information Maximum Likelihood
(FIML) option in OpenMx2.9.9.1 (Boker et al., 2011) has the
advantage of not only being robust to violations of non-normality
but also enables analysis of missing or incomplete data as well
as the direct estimation of covariate effects. More accurate
means and variance improve the estimation of the variances and
covariance structure used to test our competing hypotheses.

Univariate Analyses
In univariate analyses, the total variation in each PBA score was
decomposed into additive (A) heritability, shared or common
environmental (C), and non-shared or unique (E) environmental
variance components (see Figure 1). This approach is referred to
as the “ACE” variance component model. The decomposition is
achieved by exploiting the expected genetic and environmental
correlations between MZ and DZ twin pairs; MZ twin pairs are
genetically identical, whereas DZ twin pairs share, on average,
half of their genes. Therefore, MZ and DZ twin pair correlations
(rA) for additive genetic effects are fixed to 1.0 and 0.5,
respectively. The modeling assumes that shared environmental

FIGURE 1 | Univariate model to estimate the relative contribution of genetic
and environmental influences in predicted brain ageing (PBA). Individual
differences in PBA are decomposed into three sources of variation: additive
genetic (A); common or shared environmental influences (C); and unshared or
random environmental influences as well as measurement error (E). This
decomposition is achieved by specifying the expected genetic and
environmental correlations between monozygotic (MZ) and dizygotic (DZ) twin
pairs. MZ twin pairs are genetically identical, whereas DZ twin pairs share, on
average, half of their genes. Therefore, the MZ and DZ twin pair correlations
(raMZ and raDZ) for additive genetic effects are fixed to 1.0 and 0.5,
respectively. This model also assumes that shared environmental effects are
equally correlated (rc = 1) in MZ and DZ twin pairs. Non-shared environmental
influences are by definition uncorrelated within twin pairs (re = 0). Note that our
method of estimating the relative contribution of genetic and environmental
influences in PBA proceeds by estimating the additive genetic (σa), shared
environmental (σc), and non-shared environmental (σe) variances for the A, C,
and E latent factors. The size or contribution of these σe, σc, and σe variance
components to the phenotype are assumed to be equal within twin pairs.
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FIGURE 2 | Multivariate correlated factors (A) and competing hypothetical models to explain the sources of variance-covariance between the predicted brain age
(PBA) scores. Competing models include (B) the auto-regression, (C) common pathway, and (D) independent pathway models. For brevity, only latent additive
genetic (A1–4) and non-shared environmental (E1–4) factors are shown. (A) The multivariate correlated factor model estimates the size of the latent genetic and
environmental variances and covariances (double-headed arrows). It is atheoretical and makes no prediction about the nature of change in PBA over time. (B) In the
autoregression model, the time-specific genetic (σa1−4) and environmental (σe1−4) variance components or “innovations” for each genetic (A1–4) and environmental
(E1–4) latent factor true score are estimated along with each variable’s residual or error variance (σe1res−e4res). Also estimated are the autoregression or causal
coefficients (β) from one latent true score to the next. (C) In the common pathway model, the genetic (σa1) and environmental (σe1) variance components for the
common pathway, the factor loadings (λ1−4), and latent genetic and environmental residuals (σa1res−a4res, σe1res−e4res) are estimated. (D) Finally, in the
independent pathway model, genetic (σa1) and environmental (σe1) variance components are estimated independently with their factor loadings (λa1−4, λe1−4), and
latent genetic and environmental residuals (σa1res−a4res, σe1res−e4res). See Supplement for more detailed modeling description.

effects (C) are equal in MZ and DZ twin pairs, whereas non-
shared environmental effects (E) are by definition uncorrelated
and include measurement error.

Multivariate Analyses to Test Competing
Theories
This univariate method is easily extended to the multivariate case
to estimate the size and significance of genetic and environmental
influences within and between PBA over time.

In order to have a reference for contrasting and choosing the
best fitting theoretical model, we first fitted a multivariate ACE
“correlated factors” (Figure 2A) before fitted competing
autoregression (Figure 2B), common (Figure 2C) and
independent pathway (Figure 2D) models See Supplement
for detailed modeling explanation. Given that (i) the machine
learning method used here to calculate PBA and PBAD relied on
a cognitively normal training sample and (ii) our twin analyses
relied on a community-dwelling (non-clinically) ascertained
sample, we therefore, refer to all A, C, and E variance components
as genetic and environmental “influences”, which assumes any

observed variation in normal brain ageing comprises both risk
and protective factors.

Model Fit
The best-fitting model was determined using a using a likelihood
ratio test and the Akaike’s Information Criterion (AIC) (27).
For each best-fitting univariate and multivariate model, the
parameters were then successively fixed to zero and their
significance determined using a likelihood ratio chi-square test.

RESULTS

The numbers of complete and incomplete twin pairs by zygosity
are shown in Supplementary Table 1. Descriptive statistics for
each PBA score before and after residualization of the means and
variances are shown in Supplementary Table 2.

Strength of Association
All phenotypic correlations between the PBA scores at each age
interval were high and ranged from 0.67 to 0.76 (see Table 1).
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TABLE 1 | Predicted brain age (PBA) phenotypic polyserial correlations.

(1) (2) (3) (4)

(1) PBA 51–55 1

(2) PBA 56–60 0.67 1

(3) PBA 61–65 0.76 0.74 1

(4) PBA 66–72 0.67 0.72 0.75 1

Polyserial correlations represent the associations between the underlying liability
rather than observed phenotypic distributions (Pearson, 1900; Pearson and
Pearson, 1922).

Twin Pair Correlations
Table 2 shows the twin pair correlations by zygosity for the PBA
scores at each age interval. If familial aggregation was entirely
attributable to shared family environments, then monozygotic
(MZ) and dizygotic (DZ) twin pair correlations would be
statistically equal. In contrast, if familial aggregation was entirely
attributable to shared additive (or non-additive) genetic factors,
then DZ correlations would be 1/2 (or less) the size of the
MZ twin pair correlations. Here, DZ twin pair correlations
ranged from 0.1 to 0.6 and were ∼1/3 the size of the MZ twin
pair correlations.

Univariate Analyses
Predicted brain ageing univariate model fitting results are
shown Supplementary Table 3. At each age interval, the “AE”
model with no common environmental effects provided the best
fit. Familial aggregation in each PBA score could be entirely
explained by additive genetic influences (A) ranging from 59
to 75% (see Table 2). All remaining variation was explained by
non-shared environmental influences.

Multivariate Analyses
Both the autoregression and independent pathway models fitted
the data poorly as judged by the significant change in their
likelihood chi-squared ratios (see Supplementary Table 4). In
contrast, the changes in the likelihood for the 1- and 2-factor
common pathway models were not significant. Here, the 1-
factor common pathway model provided a better comparative
fit as judged by the lower AIC, and in subsequent modeling
(see Supplementary Table 5), both the “CE” and “E” sub-
models deteriorated significantly whereas the “AE” model yielded
a non-significant likelihood ratio chi-square difference as well
as the lowest AIC.

Thus, our multivariate analyses indicate that correlations
between the PBA measures across time are best explained by
a single factor, which can be explained 74% additive genetic

and 26% non-shared environmental influences (see Figure 3).
Total genetic variances (common and residual influences) in
PBA at ages 51–55, 56–60, 61–65, and 66–72 were estimated to
be 57, 69, 60, and 67%, respectively. For PBA at ages 61–65,
the residual genetic variance was non-significant, indicating that
genetic variance here is entirely captured by the common factor.

Genetic correlations between the four PBA scores were high
and ranged from 0.78 to 0.92 (Table 3) indicating that the same
genes are largely influencing PBA across time. In contrast, the
environmental correlations were moderate to high, ranging from
0.45 to 0.58 (Table 3) suggesting that large proportions of the
environmental influences are unique to each age interval.

We then applied the same univariate and multivariate
modeling pipeline to the PBAD scores. All results are shown
in the Supplementary Tables 6–10. Not only were the
patterns of additive genetic and non-shared environmental factor
correlations in the best fitting 1-factor common pathway “AE”
model for PBAD nearly identical to PBA, the heritability of the
common pathway was identical at 74%.

DISCUSSION

Individual differences in MRI-based estimates of PBA and
PBAD are highly heritable, with genetic influences accounting
for approximately three-quarters of the overall variance. The
genetics of PBA are also highly correlated across time and
these correlations can be best explained by a common set of
heritable influences. Consequently, efforts to identify common
molecular variants in PBA (Smith et al., 2020) may not require
age-stratified samples. Our findings are also consistent with
the hypothesis that common genetic influences explain most
of the individual differences in brain ageing beginning in
midlife and onward.

We also found that PBA could not be explained by shared
environmental influences that drive twin pair similarity. Twins
reared together are ideal controls for environmental influences
that were shared during infancy and youth, continue to be shared,
or continue to exert an impact. Naturally, as twins age and spend
less time together, one would expect the number of directly
shared environmental influences, relative to the time in their
lives when they were reared together, to be diminished. Thus,
in terms of individual differences in brain ageing, environments
shared between family members that increase twin pair similarity,
e.g., household and early rearing environments, parental income
and SES (van der Loos et al., 2013; Davies et al., 2015), lack
enduring or persistent effects and are of less importance than

TABLE 2 | Predicted brain age monozygotic and dizygotic twin pair polyserial correlations (corrMZ and CorrDZ) along with standardized variance components and 95%
confidence intervals components for the best-fitting additive genetic (A) and non-shared environment (E) univariate models.

corrMZ (95% CIs) CorrDZ (95% CIs) A (95% CIs) E (95% CIs)

PBA 51–55 0.68 (0.53–0.78) 0.13 (−0.19 to 0.42) 0.64 (0.54–0.69) 0.36 (0.31–0.46)

PBA 56–60 0.70 (0.59–0.78) 0.29 (0.11–0.46) 0.71 (0.61–0.79) 0.29 (0.21–0.39)

PBA 61–65 0.60 (0.49–0.70) 0.20 (0.01–0.38) 0.58 (0.45–0.68) 0.42 (0.32–0.55)

PBA 66–72 0.66 (0.55–0.75) 0.18 (–0.07 to 0.58) 0.61 (0.47–0.71) 0.39 (0.29–0.53)
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FIGURE 3 | Predicted brain age (PBA) best fitting common pathway (CP) multivariate model comprising additive genetic (A) and non-shared environment (E) variance
components. Illustrated are the genetic and environmental variance components for the common pathway, the factor loadings from the CP to the observed PBA
phenotypes, and the genetic and environmental residual variance components. All variance components are standardized and include 95% confidence intervals.

environments that are unique to individuals, e.g., diet, drug
use or allostatic stressors such as negative life events (Hatton
et al., 2018a). Indeed, we have previously shown that having
more favorable and modifiable lifestyle behaviors such as a good
diet, physical activity, social engagement, and less nicotine and
alcohol consumption predict less advanced brain age and less
AD-like brain aging (Franz et al., 2021; Whitsel et al., 2021).
These findings may have implications concerning the efficacy
of community-based versus individually targeted efforts to slow
rates of brain ageing.

The hypothesis regarding accumulative environmental and
molecular influences predicted by somatic mutation theories
that ought to be captured by autoregression modeling was not
supported. Instead, our data were consistent with what is perhaps
a counterintuitive explanation. To the extent that any unrepaired
damage is linked to genetic variation in our global indices of
PBA, our modeling provided little support for autoregression
features or accumulation of age-related or age-specific genetic
influences over time. Likewise, we found no evidence to
support the hypothesis that age-specific environmental influences
are accumulative.

Instead, our best-fitting model suggests that brain ageing is
best explained by stable genetic and environmental influences
acting via a highly heritable common pathway accounting for
most of the individual differences over a 21-year period. Our
modeling makes no prediction regarding the number of genes
likely involved in brain ageing. However, given recent genome
wide association scan (GWAS) findings based on multiple
brain ageing indices (Smith et al., 2020), including a GWAS
of lifespan (Timmers et al., 2019), we speculate that ageing
processes are highly polygenic. Our statistically derived common
pathway should not be interpreted to represent any identifiable
biological structure(s) governing this supervised learning index
of ageing. It is, instead, consistent with Kirkwood’s theory of a
centrally regulated process of ageing, which under selection, has
evolved to optimize the “allocation of metabolic resources across
core processes like growth, reproduction, and maintenance”
(Kirkwood, 2005). Kirkwood also argued that “network” theories
of ageing used to describe multiple processes (Kirkwood, 1977,
2005) ought to distinguish upstream mechanisms that set ageing
in motion from downstream mechanisms that affect ageing at the
cellular level toward the end of life (Kowald and Kirkwood, 1996).
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TABLE 3 | Predicted brain age additive genetic (below diagonal) and non-shared
environmental correlations based on the best fitting “AE” 1-factor
common pathway model.

(1) (2) (3) (4)

(1) PBA 51–55 1 0.48 0.45 0.47

(2) PBA 56–60 0.82 1 0.54 0.58

(3) PBA 61–65 0.92 0.87 1 0.53

(4) PBA 66–72 0.83 0.78 0.88 1

The high genetic correlation of rg = 0.72 between ages 51–55 and
66–72 suggests, broadly, that genetic influences underpinning
any putative “upstream” and “downstream” processes are mostly
shared in common.

We have demonstrated that having more negative life events,
particularly relating to interpersonal relationships, is associated
with advanced PBA, i.e., higher predicted brain age relative to
chronological age (Hatton et al., 2018a).

Limitations
Our results should be interpreted in the context of four
potential limitations.

First, our hypothesis testing was not exhaustive. If PBA
is related to rates of cellular or molecular ageing (Kirkwood,
2005), plausibly, genetic and environmental influences could
unfold over time, and be better explained by growth processes
(Nesselroade and Baltes, 1974; McArdle, 1986; McArdle and
Epstein, 1987; Duncan and Duncan, 1991; Duncan et al., 1994).
Although each twin pair was assessed on the same scanner
on each measurement occasion, MRI data were collected on
different scanners (i.e., 1.5T at VETSA 1 vs 3T at VETSA
2 and 3) resulting in likely measurement non-invariance
across assessments. Consequently, data were residualized for
these and other covariate effects. This resulted in the loss of
interpretable mean and variance information necessary for latent
growth curve modeling.

Second, our data were limited to midlife and early old
age. Therefore, the stability in the genetic and environmental
influences observed between ages 51 and 72 years may not
generalize to other periods in the life course. For example, it
is conceivable that genetic and environmental autoregression
processes may have occurred before our first assessment (Elliott
et al., 2019). There may also exist sub-groups of individuals for
whom different autoregressions or hybrid auto-regression plus
common factor models provide a better explanation of change
over time. These hypotheses can only be resolved with additional
data, e.g., data collected earlier in life, and are not within the scope
of the current data.

Third, of the age at interview distribution at each of the
VETSA waves spanned a decade. As mentioned in the “Materials
and Methods”, rather than employing definition variables to
account for individual differences in age at assessment, our
solution was to recode each subject’s PBA and PBAD scores
according to their chronological age at assessment. Our results
should therefore, be interpreted as the average change of
individuals with the 4-year age intervals. We did, however, repeat
our analyses using the wave-based data whereby the assessment

occasion was treated as a different time point (i.e., the VETSA
interviews at waves 1, 2, and 3) while modeling age at assessment
as a covariate. Here again, we found that the common pathway
provided the best fit to the data.

Finally, our results may not generalize to women or ethnic
minorities. We know of no other genetically informative twin
studies with comparable and longitudinal MRI data. The
uniqueness and size of our sample is a key strength of
the VETSA cohort.

CONCLUSION

This is the first study to explore the genetic and environmental
influences on PBA in a longitudinal sample. We assessed
males age 51–72 years and report three major findings. First,
measures of PBA were highly correlated across time. Second, the
heritability estimates based on univariate twin analyses ranged
from 59 to 74%. Finally, there was no evidence that PBA
could be explained by an accumulation of age-specific genetic
or environmental influences. Instead, genetic influences at each
age interval were highly correlated and captured by a single,
common factor with a heritability of 73%. Future analyses should
explore the sources of genetic and environmental covariation
between brain ageing and other complex behaviors related to
cognitive decline.
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