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We present here the calculation of the mean time to capture of a
tethered ligand to the receptor. This calculation is then used to
determine the shift in the partitioning between (1) free, (2) singly
bound, and (3) doubly bound ligands in chemical equilibrium as a
function of the length of the tether. These calculations are used in
the research article Fibroblast Growth Factor 2 Dimer with
Superagonist in vitro Activity Improves Granulation Tissue For-
mation During Wound Healing (Decker et al., in press [1]) to
explain quantitatively how changes in polymeric linker length in
the ligand dimers modifies the efficacy of these molecules relative
to that of free ligands.
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 A cell viability assay was conducted with human dermal fibroblast cells
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 Text and figure
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 Effect of linker/tether length between two FGF2 proteins on cellular activity
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Value of the data
� There are a number of ligands that bind to cell receptors as dimers or multimers. These include
transcription factors and enzymes. For example the G-protein coupled receptor family, which
includes receptors for dopamine, somatostatin, and bradkykinin all exhibit dimer-dependent
activity. This for reason, future drug development may involve more broadly the use of tethered
ligands to enhance the efficacy of ligand binding, as was explored in the research article [1]. Thus,
the fundamental analysis of the chemical kinetics of tethered ligand binding, which we present
here, is of general interest for drug design.

� In this data in brief we present an analysis of the chemical kinetics of tethered ligand binding in a
manner generally applicable to all studies of tethered ligand binding since it relies only on fun-
damental statistical physics.

� The principal effects of the tether are to first keep a second ligand nearby the first and second to
provide a harmonic potential pulling that second ligand towards the receptor. These two effects
shorten the mean time to capture for the second ligand, particularly at low ligand concentrations.

� We calculate the effect of the length of polymeric tether on the equilibrium concentration of bound
dimers. This result could be generally applicable to all tethered-dimer binding problems.

� We present the details of the calculation with sufficient detail to allow other workers to modify it
as necessary for general problems related to tethered molecule binding problems.

� We show data on the effect of cellular metabolic activity versus linker length along with a fit to our
calculations.
1. Data

We calculate the mean time to capture of a ligand tethered by a Gaussian polymer coil in part one
below. We then use this calculation in part two to determine how the length of the polymer controls
the chemical equilibrium between free and bound ligands. Finally, we present data on cellular
metabolic activity versus linker length and compare it to the theory presented. We conclude with a
discussion of the fitting parameters used.
2. Experimental design, materials and methods

2.1. Mean time to capture for a tethered ligand

We present the calculation of the mean time to capture for a tethered and an untethered ligand.
We treat the tether as a Gaussian coil in the weakly stretched limit resulting in a Hookean effective
potential between the ligand and its binding site. We treat the binding site as an isolated spherical
volume of radius a, which has dimensions characteristic of the receptor, a� 10 nm. One may consider
an ensemble of such ligands distributed about the binding site with concentration field cð x!; tÞ. The
membrane to which the receptor is bound is impenetrable to the ligands and thus introduces a
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Dicherlet boundary condition requiring the normal component of the concentration current to vanish
at the membrane. This extra boundary condition complicates the solution, but should not change the
fundamental scaling behavior of the answer, so we neglect it here. Accordingly, we treat the binding
site as an isolated volume centered at the origin of coordinates in a system with spherical symmetry.
This ligand undergoes a biased random walk towards the binding volume as it is pulled by the
polymeric tether. To calculate the mean time to capture we imagine a related steady-state advection
diffusion problem. Particles are released at a constant rate on the surface of a sphere of radius R
centered on the capture sphere of radius aoR. This fixes the particle concentration there to a fixed
(and ultimately irrelevant) value. These particles are annihilated when they contact the capture
sphere. There is also an outer boundary sphere with reflecting boundary conditions; particles
reaching this outer boundary reflect off of it and are thus confined in the space between the inner
capture sphere and the outer boundary sphere: ao roR�. The role of this outer boundary is to mimic
the effect of the maximum extension of the polymeric tether: R*¼Nb, where N is the polymerization
index and bis the Kuhn length [2]. We ignore the nonlinear elasticity of the polymer in the strongly
stretched regime R� R�. As a result, our answer should overestimate the mean time to capture. But
since strongly stretched states of the polymer are exponentially rare κR�2ckBT , we expect the
magnitude of the error is small, and from now on, we will work in the units that the Boltzmann's
constant is unity kB ¼ 1.

By solving this spherically symmetric advection diffusion problem in three dimensions, we
determine (1) the steady-state number of particles in the system and (2) the rate at which they are
being annihilated on the surface of the capture sphere. The ratio of the number of particles in the
system to the annihilation rate is then the mean lifetime of the particles in the system [3,4]. This is
equal to the mean time for a tethered particle, initially at a distance R from the origin, to first reach
the capture sphere. We take this initial distance to be the root mean square end-to-end distance of
the polymer in thermal equilibrium to then estimate the mean time to capture of the free ligand
attached to the polymeric tether. This approximation neglects both the distribution of such end-to-
end distances in equilibrium and the potential effect of the cell membrane surface in perturbing the
equilibrium distribution of those end-to-end distances. In principal, both effects could be studied in a
more sophisticated treatment of the first passage time calculation, but we suspect that these effects
are small compared to two main ones incorporated in our more simple treatment. Namely, (1) the
effect of the tether brings a second ligand near to the receptor upon the binding of the first of the
tethered ligands, and (2) the polymeric tether provides a Hookean spring, enhancing the likelihood of
finding the ligand close to the already bound one.

2.1.1. The advection diffusion problem
As outlined above, we consider following the steady-state diffusion problem with spherical

symmetry. Particles are release at a fixed radius R. While attached to Hookean spring anchored the
origin of coordinates, they move between an outer boundary of radius R�4R with reflecting
boundary conditions and an inner boundary of radius aoR representing the capture sphere of the
already bound ligand/receptor pair. The reflecting outer boundary is taken to be the maximum
extension of the polymeric tether. The role of the tether (other than providing this outer boundary
condition) is to give an effective parabolic potential in which the tethered ligand diffuses.

Given such boundary conditions discussed above, the ligand concentration current J
!

is given in
terms of the concentration c where we have introduced the ligand diffusion constant D¼ Tμ with
mobility μ and the (polymeric) spring constant κ.

J
!¼ �D∇c�κμ r!c

These particles are annihilated upon contact with the binding sphere (the spherical zone of radius
a centered on the origin of coordinates) so that

cðaÞ ¼ 0
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To balance in steady state this loss of particles, which is equal to the total flux of particles into the
capture sphere

F ¼ 4πa2∇J U r̂
���
r ¼ a

We inject new particles at the radius R so that the concentration there is fixed in time:

cðRÞ ¼ 1

We have set this steady-state concentration to unity without loss of generality. Finally, at the outer
boundary, we require a zero flux boundary condition

J
!

U r̂
���
r ¼ R� ¼ 0

so that no particles may escape to larger radii. Thus, in this steady-state system the total number of
particles is

N¼
Z
ar j x!jrR�

d3 x!cð x!Þ

By taking the ratio of the number of particles (tethered ligands) in this steady-state system to their
annihilation rate, both given above, we determine their mean life-time in the system

TðR; κÞ ¼ N
F

As a final step we set the initial radius of the particles to be the rms end-to-end distance of the
polymer Rrms ¼

ffiffiffiffi
N

p
b to obtain the mean time to capture for the second ligand. Since the maximum

distance R*¼Nb and the polymeric spring constant

κðNÞ ¼ 3T

b2N

are also determined by the polymerization index N, we may write the final mean time (using the
above spring constant) to capture solely in terms of N, a characteristic diffusion time, and the ratio of
the capture radius to the Kuhn length

τ N;
a
b

� �
¼ τ0T ðRrms; κðNÞÞ

where we have introduced a nondimensionalized capture time T and a fundamental time scale

τ0 ¼ a2=D

representing the typical time scale for a ligand to diffuse a distance equal to the radius of the capture
sphere. Since we expect both the Kuhn length and capture radius of a cell membrane bound receptor
to be a molecular size, we expect a� b. To simplify the results, we take them to be equal in the
following.

2.1.2. Stead-state concentration profiles
The solution to the steady-state concentration profile results requiring the divergence of the

concentration current to vanish, which requires: ∇U J
!¼ 0. Given the imposed spherical symmetry of

the problem, this reduces to one-dimensional differential equation for the radial dependence of the
steady-state concentration profile:

∂2r cðrÞþ
2
r
þ κ

T
r

� �
∂rcðrÞþ

3κ
T

cðrÞ ¼ 0

It is helpful to introduce a dimensionless independent variable defined by

x¼ r

ffiffiffi
κ
T

r
¼ r=r0
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In terms of this variable the differential equation for the concentration field takes the form

c″ðxÞþ 2
x
þx

� �
c0ðxÞþ3cðxÞ ¼ 0

The physical meaning of this variable transformation is that we now work in distance units so that the
work done to stretch the polymeric spring to x¼ 1, or κr2, is equal to thermal energy T . The solution
to the above differential equation is given by the linear combination

cðxÞ ¼ Ae� x2
2 þBf ðxÞ

where the function f(x)

f ðxÞ ¼
ffiffiffiffi
π
2

r
e� x2

2 erf i
xffiffiffi
2

p
� �

� 1
x

may be written in terms of the imaginary error function [5].
We now determine an inner and outer solution where the inner solution satisfies the boundary

conditions at r¼ a;R and the outer solution satisfied the boundary conditions at r¼ R;R�. Of course,
this implies a discontinuity in the radial derivative of the concentration field at r¼ R, which is phy-
sically understandable as a delta-shell source of particles injected into the system to maintain the
steady-state concentration field.

For the inner solution we find the coefficients are

Ainner ¼
� f ðaÞea2

2

f ðRÞ� f ðaÞexp½�ðR2�a2Þ=2�

Binner ¼
1

f ðRÞ� f ðaÞexp½�ðR2�a2Þ=2�

In the above equations and hereafter it is convenient to introduce dimensionless radii (denoted by an

overbar) by scaling these distances by r0 defined above, a¼ a=r0 and R¼ R=r0, with r0 ¼ b
ffiffiffi
N
3

q
.

For the outer solution we find that

Aouter ¼ eR
2
=2

Bouter ¼ 0

This simple result may be understood as follows. Of the two linearly independent solutions to the
differential equation, the first one has zero current everywhere as may be checked by the fact that it is
equal to the equilibrium probability distribution for a particle in a parabolic potential. As an equili-
brium solution, it must give zero current. Thus the zero current boundary condition at the outer
boundary forces Bouter ¼ 0. The value of the coefficient of the first solution is then immediately clear
from the concentration condition at the shell of particle injection.

Taking the above results we compute the rate of particle annihilation at the surface of the capture
sphere to be

F ¼ 4πDBinnerr0

We compute the total number of particles in the steady-state system from the integral of the steady-
state concentration field over the allowed range between r¼ a and r¼ R�. The result is somewhat
complex

N¼ 4πr30 AinnerΔ1þBinnerΔ2þAouterΔ3�
Binner

2
ðR2�a2Þ

� 	

but can be written compactly in terms of three dimensionless integrals:

Δ1 ¼
Z

aRz2e� z2=2dz Δ2 ¼
Z

aRz2 f ðzÞþ 1
z

� 	
dz Δ3 ¼

Z
R
R
�

z2e� z2=2dz



Fig. 1. The mean time to capture in units of the diffusion time τ0 ¼ a2=D as a function of the polymerization index N. The large
and small N limits of this function are discussed in the text.

Fig. 2. A schematic representation of the tethered ligand binding process. In state I the free ligand pair is shown tethered by
the (green) random coil polymer that produces an effective Hookean potential. This tethered ligand pair binds to a membrane
bound receptor (blue) on the cell surface (purple) with on and off rates ron , rof f respectively. The transition from the singly
bound state (II) to the signaling, doubly-bound one (III) is assumed to occur with a rate equal to the inverse of the mean capture
time determined above: rcapture . The doubly bond state is stabilized relative to the singly bound one, but has a small off rate
~rof f ooron; rof f . The backwards rate from state III to state II is assumed to even slower and it thus neglected, although this is
not an essential simplification of the model.
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Forming ratio of N=F to get the mean time to capture for the ligand we write

TðRÞ ¼ r20
DBinner

AinnerΔ1þBinnerΔ2þAouterΔ3�
Binner

2
ðR2�a2Þ

� 	

The final result for the mean time for second ligand capture after the binding of the first tethered
ligand is given by the above result evaluated at Rrms ¼

ffiffiffiffi
N

p
b=r0. We also use the polymeric spring

constant κ Nð Þ defined above, and set the maximum length of the tether to be R
� ¼Nb=r0. This result

scaled by τ0 is plotted in Fig. 1 as a function of the polymerization index N.

τðNÞ ¼ τ0
Tð

ffiffiffiffi
N

p
b=r0Þ

τ0

" #

The small N limit of the mean time to capture, τ-0 as N approaches one from above, is trivially true
in that the starting length of the tether approaches the Kuhn length b, which has been set to the
capture radius. The Gaussian coil model of the polymer is clearly inappropriate in this case and our
neglect of the size and shape of the ligands is similarly unjustifiable. Excluded these details that must
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become important in the limit of extremely short tethers, we do expect the mean time to capture to
be a monotonically increasing function of the polymerization index N.

In the limit of high molecular weight tethers, where our analysis is applicable, one may check that
the mean time to capture approaches a power-law in N:

τðNÞ � τ0N3=2

The increase in mean time to capture results physically from two separate effects. First, the initial
distance between the ligands grows as N1/2. Second, the polymeric spring constant decreases as N�1.
The result above implies that the mean time to capture diverges as the polymerization index goes to
infinity. This is unphysical at any finite concentration of ligands. For extremely long tethers and a
finite concentration of ligands, we expect that the time for the second ligand binding will be cut off at
large N when the mean time to capture for the second ligand in the tethered pair exceeds the mean
time for capture for a free ligand (or one ligand in a different tethered pair). If the number density of
ligands is c1, implying a mean spacing between ligands of c�1=3

1 then the competitive binding of the
untethered ligands will dominate at tether lengths larger than

ffiffiffiffiffiffi
N�p

b� c1�1=3 leading to an upper
bound on the mean time to capture

τmax ¼ τðb�3=c1Þ � τ0ðb3c1Þ�1=2

We expect that at relevant concentrations of the ligand, τmax44τ Nð Þ. Otherwise, the effect of the
tether on the binding kinetics and the steady-state concentration of doubly bound ligands will be
negligible.

2.2. Polymer tether effects on the binding kinetics

We now consider a simple model for the binding kinetics of the tethered ligand to the receptor.
The binding of the single ligand is weak, but with the formation of the additional ligand/receptor
bond, the complex becomes strongly bound. We propose a simple three state kinetic model of the
process. The states are (I) free tethered ligands, (II) singly bound tethered ligands, and (III) doubly
bound tethered ligands. A schematic representation of the three states and the allowed transitions is
shown in Fig. 2.

As calculated above, the advantage of the tether is to decrease the time (i.e., increase the reaction
rate) of the transition between states II and III, and thereby suppress the competing reaction of II-I.
To examine how this affects the concentration of doubly bound linkers, we write a set of three
coupled rate equations for time evolution of the probabilities of observing any of the three states of
linker binding, PαðtÞ, α¼ I; II; III. In terms of the interconversion rates (defined below) these equations
take the form of

PI

�
¼ �PIðtÞronþPIIðtÞrof f þPIIIðtÞ~rof f

PII

�
¼ PIðtÞron�PIIðtÞ rof f þrcapture


 �
PIII

�
¼ PIIðtÞrcapture�PIIIðtÞ~rof f

The first equation determines the time rate of change for the probability of observing free (unbound)
tethered linkers in terms of the rate at which singly bound linkers bind ron, unbind rof f and the (much
slower) rate at which doubly bound linkers unbind ~rof f oorof f . The second two equations can be
interpreted similarly; Fig. 2 provides a simple pictorial representation of the full set of these
equations.

The contribution of the tether to the binding kinetics is found entirely in the transition from state
II to state III; rcapture ¼ 1=τ Nð Þ provides a faster rate of second linkers binding than would
otherwise occur.

Solving for the steady-state probabilities (by setting the time derivatives on the right hand side of
the above system of equations to zero), one immediately finds that ratio of the probability of
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observing a doubly bound linker to the receptor pair to observing free linkers is

PIII

PI
¼ ron

~rof f

1
1þτðNÞrof f

� 	

This is equal to the ratio of the concentration of doubly bound linkers to free linkers in the
steady state.

To quantify the enhancement of binding due to the presence of the tether, it is useful to compare
the concentration of doubly bound tethered linkers with the doubly bound untethered linkers, both
in thermal equilibrium. To examine the case of untethered linkers, we simply replace rcapture ¼ 1=τ Nð Þ
with ron. Thus, the enhancement of doubly bound linkers ℜ is

ℜ¼ 1þKd

1þronτðNÞKd

when written in terms of the dissociation constant of the single ligand receptor bond (divided by the
concentration of membrane bound receptors) and on rate of single ligands ron.

Stating this in another way, a concentration c0 of tethered linkers in solution will doubly bind to
the membrane-bound receptors (and presumably generate the same effective cell signaling) as a
higher concentration ℜc0 of untethered linkers. Note that ℜ41 and represents an enhancement
factor of the effective concentration so long as ronτ Nð Þo1. The mean time to capture for the tethered
linker must be shorter than the mean time for capture of a free one. As noted above, the growth of
τ Nð Þ with polymerization index (and thus the decrease of the enhancement factor ℜ) is cut off by the
competitive binding of free ligands. We see that the concentration enhancement factor can range
between:

1rℜr1þKd

Larger enhancement factors are only possible if one assumes that the polymer tether also changes
either the rate of attachment in some other way, i.e., in orienting the ligands appropriately for binding
(an effect we do not consider in this model) or by directly changing the binding energy of the
complex. We consider the latter possibility to be highly remote.

2.3. Polymer tether length versus cellular metabolic activity

The principal point of our analysis is the result. But this concentration enhancement factor is only
indirectly measured in our experiments, which determine the cellular metabolic activity enhance-
ment in the presence of tethered dimers (at fixed concentration) as a function of tether length. These
data are shown in Fig. 3. Cellular metabolic activity is measured in human dermal fibroblast cells via
the CellTiter-Blue

s

assay after adding FGF2 dimer with different PEG tether lengths. Each result is
normalized to blank medium only as the control group.
Fig. 3. Percent metabolic activity of human dermal fibroblasts normalized to blank medium versus degree of polymerization
(N, number of monomer repeat units) in the covalent tether between two FGF2 molecules. The highest percent cell metabolic
activity was observed for FGF2 dimer with a linker length of 2 kDa.



Fig. 4. The (red) theoretical curve ΔMtheoryðNÞ (with two fitting parameters adjusted to achieve the best fit when excluding the
point at N¼1) compared to the experimental results – see Fig. 3 – represented by nine black circles taken from the inter-
polation function shown in Fig. 3. The best fit is achieved with β¼ 78:5 and γ ¼ 0:00063.
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In order to compare these data with the theoretical calculation, we need to make a number of
assumptions, as outlined here. First, we associate the enhancement of cellular metabolic activity with
the enhancement of the bound dimers on the cell membrane by assuming a linear relationship
between the concentration of bound dimers and the increase of metabolic activity M over its basal
value (100%). Given that cell signaling is quite possibly nonlinear, this assumption may be invalid. We
adopt it, however, in order to minimize the number of fitting parameters in our model. Thus we
express the metabolic activity enhancement (as a percentage)

ΔM¼ M�M0

M0
¼ αðℜ�1Þ

as being proportional to the enhancement of the efficacy of tethered ligand binding with an
unknown proportionality constant α. Treating the on rate also as a free parameter we attempt to fit
the data with two parameters:

ΔMtheory ¼
β�γN3=2

1þγN3=2 :

Here we adjust the constants β, γ to fit the data. The results are shown by the red line in Fig. 4, the
fitting was based on several data points and using the least squares method. Comparing this fit to the
data we observe that one may understand the increase in metabolic activity by the increase in
dimerized ligand binding associated with shortening the polymeric tether. We find that the curvature
of the fit agrees reasonably well with the data, suggesting that the proposed mechanism for the
tether's enhancement of dimerized-ligand binding is supported by these data. We also observe that
one cannot account for the rapid decrease in metabolic activity with a further reduction of molecular
weight of the polymeric tether below 2 kDa. As discussed earlier, for these shorter tethers the model
assumptions of Gaussian coil tethers and no steric interactions between the tether and the ligands (or
between the two ligands) must become invalid. The fact that these effects are not evident until the
point of maximum metabolic activity suggests that the omitted steric interactions become dominant
at this point. In fact, it is reasonable to suppose that the point at which steric interactions begin to
dominate is precisely the point at which the binding enhancement of associated with short tethers
begins to diminish. Only future molecular dynamics simulations can directly test this point.

Finally, we note that a more direct test of the theory outlined here requires a direct measurement
of the concentration of bound dimers as a function of tether length. Such experiments, presumably in
an in vitro membrane system may be possible in the future.
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